
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 10 Issue: 01 | Jan 2023 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 379

Compiler Design Using Context-Free Grammar

Arpit Patil, Saloni Khedekar, Omkar Vyavhare, Rahul Dound

--***---

ABSTRACT

Compiler design is a crucial aspect of computer science, as
it enables the translation of high-level programming
languages into machine-readable code. One approach to
compiler design is to use context-free grammars (CFGs) to
specify the syntax of a programming language. In this
research paper, we will explore the use of CFGs in compiler
design and their benefits and limitations. We will first
provide an overview of CFGs and their role in compiler
design, including a description of the formal definition of a
CFG and the processes involved in creating a CFG for a
programming language. Additionally, we will examine the
challenges and limitations of using CFGs in compiler
design, including issues of ambiguity and efficiency, and
discuss potential solutions and alternatives.

Keywords

Compiler Design, Context-Free Grammar, Python, Lexing,
Parsing.

1. INTRODUCTION

Compilers are essential tools in the field of computer
science, as they allow users to write and execute
programs in high-level programming languages. In order
to translate these programs into machine code,
compilers must be able to accurately parse and
understand the syntax and structure of the source
language. One key aspect of this process is the use of
context-free grammar (CFGs) to define the syntax of
programming languages. CFGs are a formal way of
specifying the syntactic structure of a language, using a
set of rules and symbols to define the allowed sequences
of tokens (such as keywords, variables, and operators) in
a program. These grammars can be used to generate
parse trees, which represent the hierarchical structure of
a program and can be used to check its syntax and
semantics. In this research paper, we will delve into the
role of CFGs in compiler design and discuss the various
techniques and algorithms that are used to implement
them. We will also explore the challenges and limitations
of using CFGs in compiler design, including issues of
ambiguity and efficiency, and discuss potential solutions
and alternatives examining the role of CFGs in compiler
design, we aim to provide a better understanding of how
these tools work and how they can be used to effectively
parse and understand programming languages.

2. LITERATURE REVIEW

Noam Chomsky [1] made significant contributions to the
field of formal languages and the concept of context-free
grammar (CFGs). His work laid the foundation for the
use of CFGs in compiler design and other areas of
computer science. Chomsky's work on CFGs has had a
significant impact on the field of compiler design, as they
provide a formal way of specifying the syntactic
structure of a language. Many compiler design
techniques and algorithms, such as top-down and
bottom-up parsing, are based on the use of CFGs to
generate parse trees and check the syntax and semantics
of programs.

Alfred Aho and Jeffrey Ullman [2] in their book, provide a
thorough overview of the use of CFGs in compiler design,
including the various techniques and algorithms that are
used to implement them. The role of CFGs in defining the
syntax of programming languages and the importance of
generating accurate parse trees to check program syntax
and semantics. Aho and Ullman also address the
challenges and limitations of using CFGs in compiler
design, including issues of ambiguity and efficiency. The
solutions to these challenges, such as using
disambiguation rules and incorporating additional
formalisms, such as attribute grammar, to improve the
expressiveness and precision of CFGs.

Steven Johnson[3] is known for his work on the
development of the Yacc parser generator, which is used
to automatically generate parsers from context-free
grammars (CFGs). Yacc, which stands for "Yet Another
Compiler Compiler," is a widely used tool in compiler
design and has been influential in the development of
many programming languages. Johnson's work on Yacc
has had a significant impact on the field of compiler
design, as it provides a convenient and efficient way of
implementing CFGs in compiler design. Using Yacc,
programmers can specify the syntax of a programming
language using a CFG and then automatically generate a
parser that can check the syntax and semantics of
programs written in that language.

Andrew Appel [4] who is known for his work on the
development of the Tiger programming language and the
accompanying compiler, which was used as a case study
to demonstrate the use of context-free grammars (CFGs)
in compiler design. In his work on the Tiger compiler,
Appel demonstrated how CFGs can be used to effectively
define the syntax of a programming language and
generate parse trees that can be used to check the syntax

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 10 Issue: 01 | Jan 2023 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 380

and semantics of programs written in that language. He
also addressed the challenges and limitations of using
CFGs in compiler design, including issues of ambiguity
and efficiency, and discussed potential solutions and
alternatives.

Frank DeRemer and Tom Pennello [5] are computer
scientists who are known for their work on bottom-up
parsing and the development of the LL(k) and LR(k)
parsing algorithms, which are widely used in compiler
design. Bottom-up parsing involves constructing a parse
tree from the leaves and expanding it towards the root,
using the rules of context-free grammar rules the input
program into its underlying syntactic structure. The
LL(k) and LR(k) algorithms are two common techniques
for implementing bottom-up parsing and have been
widely used in compiler design due to their ability to
handle left recursion and efficiently parse large
programs.

3. METHODOLOGY

For this project, Python is used to design a compiler and
our own programming language. To design our own
programming language and compiler following
techniques are used:

1. Lexical analysis: This is the process of breaking the
source code into a sequence of tokens, which are the
basic units of the programming language.

2. Syntax analysis: This is the process of checking the
source code for correct syntax, using grammar rules.

3. Semantic analysis: This is the process of checking the
source code for meaning and ensuring that it is
semantically correct.

4. Intermediate code generation: This is the process of
generating an intermediate representation of the source
code, which is easier for the compiler to work with.

5. Code optimization: This is the process of improving
the efficiency of the generated code by making it run
faster or use fewer resources.

6. Code generation: This is the process of generating
machine code from the intermediate representation of
the source code.

3.1 Proposed System

This Compiler design using a Context-Free Grammar
project helps to create a custom programming language
using our own set of rules and syntax. We have declared
our own Context Free Grammar i.e. our own set of rules
and have developed our own compiler to compile that
programming language and display the desired output.

Overall, the process of a compiler is breaking down the
input program into its individual tokens, generating a
parse tree to represent the syntax of the program, check
the semantics of the program, generating machine code,
and assembling the machine code into a form that can be
executed. These steps are typically carried out by
different components of the compiler, such as the lexer,
parser, semantic analyzer, code generator, and
assembler.

Steps in designing the compiler and language:

Step 1: Define the syntax and semantics of the
programming language: This will involve
deciding on the structure and rules of the
language, including the types of variables,
operators, and control structures it will support.

Step 2: Implement the lexer: to break down the input in
a sequence of tokens by writing code that can
match the various tokens in the language and
define functions to handle the lexing process.

Step 3: Implement the parser: The parser is responsible
for generating a parse tree from the input
program, using the rules of the CFG defined in
step I. We used a parsing algorithm, such as top-
down or bottom-up parsing, to construct the
parse tree. To implement the parser, we write
code that can apply the rules of the CFG to the
input program and generate the parse tree.

Step 4: Implement the semantic analyzer: The semantic
analyzer is responsible for checking the
semantics of the program, including verifying
the types of variables and ensuring that the
program follows the rules of the language. To
implement the semantic analyzer, we write a
code that can check the semantics of the
program and report any errors that are found.

Step 5: Implement the code generator: The code
generator is responsible for translating the
parse tree into machine code that can be
executed by the computer. To implement the
code generator, we write code that can traverse
the parse tree and generate the corresponding
machine code.

Step 6: Test and debug your compiler: Once we have
implemented the various components of our
compiler, it will be important to thoroughly test
it to ensure that it is functioning correctly and
producing the desired output. For that, we have
debugged our compiler to fix any issues that
arise.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 10 Issue: 01 | Jan 2023 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 381

3.2 Flowchart

Fig 1. Flowchart of the project

4. RESULTS AND DISCUSSIONS

All the above process is used in designing this language’s
grammar and compiler.

The user needs to first create a file with the program as
per the given syntax and rules. Then need to save it with
the .opl extension the user needs to start the compiler
and enter the command RUN(“filename.opl”).

After doing this, if the syntax and rules are correct then
the desired output will get displayed.

Fig 2. Program to print Fibonacci series

Fig 3. The output of the program

Fig 4. Grammar of the programming language

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 10 Issue: 01 | Jan 2023 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 382

Fig 5. Grammar of the language

5. LIMITATIONS

• Only Limited programs can be implemented
using this language.

• Ambiguity: Context-free grammar is
sometimes ambiguous, which means that they
allow multiple parse trees to be constructed
for the same input string. This can lead to
difficulty in determining the intended
meaning of the input and can make it harder
to generate the correct code.

6. Conclusion

In this project, we understood that there are many
different approaches to compiler design, and context-
free grammars play a central role in many of them. By
using context-free grammar to define the structure of a
programming language, compilers can parse and analyze
the source code to ensure that it is syntactically correct
and semantically meaningful. This is a critical step in the
compilation process, as it enables the compiler to
generate efficient machine code that can be executed by
the computer.

7. Future Scope

 Improved parsing algorithms: Currently, most
compilers use variations of the top-down or
bottom-up parsing algorithms. However, there is
room for improvement in these algorithms, as

well as the development of new parsing
algorithms that are more efficient and effective.

 Language extensions: As programming
languages continue to evolve, there is a need for
compilers that can handle new language
constructs and features. Research in this area
could focus on extending context-free grammar
to support these new language features.

8. References

[1] Kuldeep Vayadande, Aditya Bodhankar, Ainkya
Mahajan, Diksha Prasad, Shivani Mahajan,
Aishwarya Pujari and Riya Dhakalkar,
“Classification of Depression on social media
using Distant Supervision”, ITM Web Conf.
Volume 50, 2022

[2] Kuldeep Vayadande, Rahebar Shaikh, Suraj
Rothe, Sangam Patil, Tanuj Baware and Sameer
Naik,” Blockchain-Based Land Record SysteM”,
ITM Web Conf. Volume 50, 2022.

[3] Kuldeep Vayadande, Kirti Agarwal, Aadesh
Kabra, Ketan Gangwal and Atharv Kinage,”
Cryptography using Automata Theory”, ITM
Web Conf. Volume 50, 2022

[4] Samruddhi Mumbare, Kunal Shivam, Priyanka
Lokhande, Samruddhi Zaware, Varad
Deshpande and Kuldeep Vayadande,”Software
Controller using Hand Gestures”, ITM Web Conf.
Volume 50, 2022

[5] Preetham, H. D., and Kuldeep Baban Vayadande.
"Online Crime Reporting System Using Python
Django."

[6] Vayadande, Kuldeep B., et al. "Simulation and
Testing of Deterministic Finite Automata
Machine." International Journal of Computer
Sciences and Engineering 10.1 (2022): 13-17.

[7] Vayadande, Kuldeep, et al. "Modulo Calculator
Using Tkinter Library." EasyChair Preprint 7578
(2022).

[8] VAYADANDE KULDEEP. “Simulating Derivations
of Context-Free Grammar”(2022).

[9] Vayadande, Kuldeep, Ram Mandhana, Kaustubh
Paralkar, Dhananjay Pawal, Siddhant
Deshpande, and Vishal Sonkusale. "Pattern
Matching in File System." International Journal
of Computer Applications 975: 8887.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 10 Issue: 01 | Jan 2023 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 383

[10] Vayadande, Kuldeep, Ritesh Pokarne,
Mahalakshmi Phaldesai, Tanushri Bhuruk,
Tanmay Patil, and Prachi Kumar. "Simulation Of
Conway’s Game Of Life Using Cellular
Automata." SIMULATION 9, no. 01 (2022).

[11] Gurav, Rohit, Sakshi Suryawanshi, Parth
Narkhede, Sankalp Patil, Sejal Hukare, and
Kuldeep Vayadande. "Universal Turing machine
simulator." International Journal of Advance
Research, Ideas and Innovations in Technology,
ISSN (2022).

[12] Vayadande, Kuldeep B., Parth Sheth,
Arvind Shelke, Vaishnavi Patil, Srushti Shevate,
and Chinmayee Sawakare. "Simulation and
Testing of Deterministic Finite Automata
Machine." International Journal of Computer
Sciences and Engineering 10, no. 1 (2022): 13-
17.

[13] Vayadande, Kuldeep, Ram Mandhana,
Kaustubh Paralkar, Dhananjay Pawal, Siddhant
Deshpande, and Vishal Sonkusale. "Pattern
Matching in File System." International Journal
of Computer Applications 975: 8887.

[14] Vayadande, Kuldeep B., and Surendra
Yadav. "A Review paper on Detection of Moving
Object in Dynamic Background." International
Journal of Computer Sciences and Engineering 6,
no. 9 (2018): 877-880.

[15] Vayadande, Kuldeep, Neha Bhavar,
Sayee Chauhan, Sushrut Kulkarni, Abhijit Thorat,
and Yash Annapure. Spell Checker Model for
String Comparison in Automata. No. 7375.
EasyChair, 2022.

[16] Vayadande, Kuldeep, Harshwardhan
More, Omkar More, Shubham Mulay, Atharva
Pathak, and Vishwam Talnikar. "Pac Man: Game
Development using PDA and OOP." (2022).

[17] Preetham, H. D., and Kuldeep Baban
Vayadande. "Online Crime Reporting System
Using Python Django."

[18] Vayadande, Kuldeep. "Harshwardhan
More, Omkar More, Shubham Mulay, Atahrv
Pathak, Vishwam Talanikar,“Pac Man: Game
Development using PDA and
OOP”." International Research Journal of
Engineering and Technology (IRJET), e-
ISSN (2022): 2395-0056.

[19] Ingale, Varad, Kuldeep Vayadande,
Vivek Verma, Abhishek Yeole, Sahil Zawar, and

Zoya Jamadar. "Lexical analyzer using
DFA." International Journal of Advance Research,
Ideas and Innovations in Technology, www.
IJARIIT. com.

[20] Manjramkar, Devang, Adwait Gharpure,
Aayush Gore, Ishan Gujarathi, and Dhananjay
Deore. "A Review Paper on Document text
search based on nondeterministic automata."
(2022).

[21] Chandra, Arunav, Aashay Bongulwar,
Aayush Jadhav, Rishikesh Ahire, Amogh Dumbre,
Sumaan Ali, Anveshika Kamble, Rohit Arole,
Bijin Jiby, and Sukhpreet Bhatti. Survey on
Randomly Generating English Sentences. No.
7655. EasyChair, 2022.

