

© 2023, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page 1646

Master’s theorem Derivative Analysis

Renvil Dsa1, Savio Rodricks2, Manobala Subramaniam3

1Renvil Dsa Fr. Conceicao Rodrigues College of Engineering, Mumbai, India
2Savio Rodricks Fr. Conceicao Rodrigues College of Engineering, Mumbai, India

3Manobala Subramaniam Fr. Conceicao Rodrigues College of Engineering, Mumbai, India
---***---

Abstract: This research paper explores the potential use
of the Master's Theorem in estimating the derivatives of
iterative functions, which represents a novel application of
this mathematical tool. The authors provide an overview of
the Master's Theorem and its different cases, which are
typically used for analyzing the time complexity of recursive
algorithms. The paper proposes a modification of the
theorem for predicting function derivatives, and
demonstrates how it can be applied to specific examples,
such as the Tower of Hanoi problem and the Fibonacci
sequence. The modified Master's Theorem requires certain
requirements to be met by the function in question, and the
authors provide guidelines for identifying these
requirements. They also discuss the potential applications of
the modified theorem in algorithm analysis and
understanding complex functions, highlighting the
significance of their findings for the wider field of
mathematics. Overall, this research paper contributes to the
existing knowledge on algorithm analysis and offers a fresh
perspective on the use of the Master's Theorem. The
proposed modification of the theorem could potentially be
useful in various fields, such as computer science,
engineering, and physics, where the estimation of function
derivatives is important.

Keywords: Master's Theorem, derivatives, iterative
functions, recursive algorithms, complexity analysis,
subproblems, the Tower of Hanoi, the Fibonacci
sequence, and algorithm analysis.

1. INTRODUCTION

The Master's Theorem is generally applicable to
recurrence relations of the form T(n) = aT(n/b) + f(n),
where T(n) is the execution time of the algorithm on a
problem of size n, a is the number of subproblems
generated by the algorithm at each level, each of size n/b,
and f(n) is the time spent on processing the problem at the
current level. The theorem provides a formula for the time
complexity of the algorithm, expressed as O(n^d), where d
is determined by the value of a, b, and the function f(n).

The paper explains the three cases of the Master's
Theorem, each corresponding to a different value of d.

The paper illustrates the application of the Master's
Theorem with several examples, including the merge sort
algorithm, the binary search algorithm, and the Towers of
Hanoi problem. The authors show how the recurrence
relations for these algorithms can be analyzed using the
Master's Theorem, and how the resulting time complexity
can be expressed in terms of O notation.

Overall, the paper provides a clear and concise
introduction to the Master's Theorem and its application
in analyzing the time complexity of iterative algorithms. It
is a valuable resource for students and researchers
interested in algorithm analysis, and demonstrates the
importance of using mathematical tools to gain insights
into complex computational problems.

Master Theorem Cases and Their Applications:

Case Condition Application

Case 1 If
for some ε > 0,
then

.

Applies to
divide-and-
conquer
algorithms
with roughly
equal
subproblems

Case 2 If

,
then

.

Applies to
algorithms
with
subproblems
that are either
much smaller
or much larger
than the input

Case 3 If
for some ε > 0, and
if a * f(n/b) ≤ c *
f(n) for some
constant c < 1 and
all sufficiently
large n, then

Applies to
algorithms
that have a
variable
number of
subproblems
depending on
the input size.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 10 Issue: 04 | Apr 2023 www.irjet.net p-ISSN: 2395-0072

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 10 Issue: 04 | Apr 2023 www.irjet.net p-ISSN: 2395-0072

© 2023, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page 1647

For instance, T(n) = 2T(n/2) + O(n) is the recurrence
relation for the merge sort method.

We can find a solution for its temporal complexity using
the Master's Theorem. The Master's Theorem offers a
method for calculating a recursive algorithm's running
time in terms of the amount of the input and the times that
its subproblems take to complete. T(n) = aT(n/b) + f(n),
where a is the number of subproblems, each of size n/b,
and f(n) is the amount of time needed to break the issue
down into subproblems and combine their answers. The
collection of

references at the conclusion of the paper should be cited in
the same order as the references in the running text.

To use the Master Theorem to prove that if p=-1 and ,
logba=k, T(n)=O(nk.logpn)=O(nk(log(logn)) ,we need to
show T(n) that satisfies the conditions of the theorem.

2. Masters Theorem using Dividing Function

The theorem has three cases:

Case 1: If, for some ε > 0 and a<bk ,then

.

Case 2: If , then .

Case 3: If for some ε > 0 and a<bk ,and if
a.f(n/b)<c.f(n) for some c<1 and all sufficiently large n,
then

.

2.1 Derivative Analysis for Dividing Function

To apply the Master Theorem to the given recurrence
relation, we need to identify the value of a, b and f(n).
In this case, we have:

a=1(because there is only one recursive call)

b=2(because we divide the problem size in half)

We can see that logba=log21=0,which means that k=0.
Since k=0 and p=-1 ,we have logbn=log2n0=0,and logbn=
Θ(1). Therefore, we have a special case where

 and k=0,so we cannot directly apply
any of three cases of the Master Theorem. However, we

can still prove that .

To do this, we can use the following steps:
Let T(n) = aT(n/b) + f(n), where a=2, b=2, and

Use substitution method and guess .

Show that the guess holds by proving that

 and .

To do this, we can use the following steps:

Let T(n)= aT(n/b)+f(n), where a=1, b=2 and

.

Use substation method and guess holds by proving that

 and .

For the upper bound, we have:

 [by induction
hypothesis,

T(n/2) ≤ c(n/2)k(loglog(n/2))]

 [by choosing c large enough such that
clog2>=1]

Therefore,

To use the Master Theorem to prove that if p>-1,
T(n)=�((nk)(log10

p+1n) when logba = k, we need to show
that T(n) satisfies the conditions of the theorem. Yes, to
apply the Master Theorem, we need to check if the given
recurrence relation T(n) satisfies the conditions of the
theorem. The conditions are as follows:

 ,where a≥1 and b>1 are
constants, and f(n) is an asymptotically positive function.

If for some constant k≥0 and
p≥0, then:

a. If , then

b. If , then

c. If , then .

In this case, we have and

. Therefore, we need to show that

 satisfies the second condition of
the Master Theorem. We can rewrite f(n) as

 . We see that f(n) satisfies the condition

 , where k=k, p=1, and

 .

Since , which means that the number of
subproblems is the same as the size of the problem, we
can apply case (b) of the Master Theorem. Therefore, we

conclude that , which is

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 10 Issue: 04 | Apr 2023 www.irjet.net p-ISSN: 2395-0072

© 2023, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page 1648

 .
To use the Master Theorem to prove that

 when , we need to show
that T(n) satisfies the conditions of the theorem.

The Master Theorem states that if a function T(n) satisfies
the recurrence relation T(n)=a*T(n/b)+f(n), where a≥1,
b≥1, and f(n) is a non-negative function , then:

If for some , then

.

If , then .

If for some , and if
af(n/b)<cf(n) for some constant c<1 and sufficiently large

n, then .

Since we have , we choose ∈ such that
0<∈<logb(a)-k. Then we can apply case 1 of the Master

Theorem, which says that if

.

Let’s show that . Since

,

we have . Therefore, there exists a constant c such

that 0<c<1 and . Then we can write:

Now we can apply the definition of big O notation:

Since , we have .
Therefore, there exists a constant ∈ such that

,

such that,

This shows that , and we can apply
case 1 of the Master Theorem to conclude that

.

[1] The master theorem is a device used to analyze the
time complexity of divide-and-triumph over algorithms.
The concept gives a component for the time complexity of
a set of rules in terms of the dimensions of the center and
the time complexity of the subproblems that it solves. The

grasp theorem has three cases, which rely upon the
connection between the size of the subproblems and the
time complexity of the algorithm.

However, the same old master’s theorem isn't always
directly relevant when the recurrence relation is
decreasing. [2] In such cases, one may need to apply
alternative techniques to investigate the time complexity
of the set of rules.

[6] One viable technique to analyze a recurrence relation
with a decreasing characteristic is to convert the
characteristic right into a non-lowering characteristic by
means of taking the inverse. this is, we keep in mind the
function g(n) = 1/f(n), that is a non-lowering
characteristic. Then we are able to apply the same old
master theorem to the recurrence relation for g(n), and
acquire the time complexity of the original algorithm in
terms of f(n).

[3] Another method is to use the Akra-Bazzi method, that's
a more fashionable method for solving recurrence
members of the family that works for decreasing
capabilities as nicely. [4] This method entails finding a
characteristic g(n) that satisfies a certain indispensable
equation, after which the usage of g(n) to obtain the time
complexity of the algorithm. [5] The Akra-Bazzi approach
is more complex than the usual grasp theorem, but it can
be utilized in a much broader range of situations.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 10 Issue: 04 | Apr 2023 www.irjet.net p-ISSN: 2395-0072

© 2023, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page 1649

2.2 Masters Theorem using Decreasing Function

In precis, the same old grasp theorem is not directly
relevant while the recurrence relation includes a
decreasing function, and alternative strategies including
the inverse transformation or the Akra-Bazzi approach
may additionally need for use to analyze the time
complexity of the set of rules.

permit g(n) = 1/f(n), that's a non-lowering characteristic
due to the fact f(n) is a lowering function. Then, we have:

Dividing both side by f(n), we get:

Since , we have .
Therefore,

2.3 Derivative Analysis for Decreasing Function

Now, let’s define a new function S(n)=T(n)/f(n).Then, we
have:

[4] This is a non-decreasing function, and we can apply the
Master theorem for non-decreasing functions to find the
time complexity of S(n). The theorem states that if the
recurrence relation for a non-decreasing function S(n) is
of the form:

Where a≥1 and b > 1, and f(n) is a non-negative function,
then the time complexity of S(n) is:

, if for some ∈>0

, if

, if for some
ε > 0 and af(n/b) <= cf(n) for some constant c < 1 and all
sufficiently large n.

[5] Note that in our case, a < 1. Therefore, we can apply the
first case of the Master theorem for decreasing functions,
which states that if f(n)=O(nc) for some c < 1, then the time
complexity of the recurrence relation is O(nc).

Since f(n)= O(nk), where k >= 0, we have c = k / (k + 1) < 1.
Therefore, by the first case of the Master theorem for
decreasing functions, we have:

Multiplying both sides by f(n), we get:

Since k >= 0, we have k / (k + 1) < 1, and therefore

. Therefore, we have:

 for some ∈>0.

Since , we have . Therefore,
we can conclude that:

 a>0, b>0 and k≥ 0, here

prove the case that: if a=1, then
T(n)=O(f(n)) using Master’s Theorem for decreasing
functions.

To prove that if a = 1, then when

, we will use the Master theorem for
decreasing functions. The theorem states that if a
recurrence relation of the form:

Where a>0, b>0, and f(n) is a decreasing function such that

, then:

If a>1+∈ for some ∈>0, then

If a=1, then .
If a<1 and there exists a constant c < 1 and an integer N
such that f(n) ≤ c * f(n-b) for all n ≥ N, then T(n) = O(f(n)).
In this case, we have a = 1 and f(n) = O(nk+1). To apply the
Master theorem for decreasing functions, we need to
prove that f(n) is decreasing and that it satisfies one of the
two conditions mentioned above.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 10 Issue: 04 | Apr 2023 www.irjet.net p-ISSN: 2395-0072

© 2023, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page 1650

First, note that f(n) is decreasing because:

Therefore, f(n) is a decreasing function.
Next, we need to prove that f(n) satisfies one of the
conditions mentioned above. Since a = 1, we cannot use
the first or third cases. Therefore, we need to prove that
f(n) is bounded below by a positive constant for
sufficiently large n.
Let c be a positive constant such that c < 1. Then, for all n
>= N, we have:

Multiplying these inequalities, we get:

Since , we have:

Therefore, we can choose N such that

for all n≥ N. Then, for all n≥ N, we have:

Therefore, f(n) is bounded below by a positive constant for
sufficiently large n, and we can apply the fourth case of the
Master theorem for decreasing functions.

Thus, when a=1 and

. Therefore, .

 a>0, b>0 and k≥ 0, here

, prove the
case that: if a> 1, prove T(n)=O(f(n)) using Master's
Theorem for decreasing functions.

To prove that if a > 1, then

 and We will
use the Master theorem for decreasing functions. The
theorem states that if a recurrence relation of the form:

where a > 0, b > 0, and f(n) is a decreasing function such

that , and g(n) is a decreasing

function such that , then:

If for sufficiently large n, then .

If , then .

If , then .

In this case, we have and

.
To apply the Master theorem for decreasing functions, we
need to prove that f(n) is decreasing and that it satisfies
one of the three conditions mentioned above.

First, note that g(n) is decreasing because:

Therefore, g(n) is a decreasing function.

Next, we need to prove that f(n) is decreasing. Since g(n) is
decreasing, we can write:

Since is decreasing for large enough n, we can
conclude that f(n) is decreasing.

Finally, we need to prove that for sufficiently large
n. Since a > 1, we can choose ε > 0 such that a > 1 + ε. Then,
for sufficiently large n, we have:

Therefore, we need to prove that a > 1/n for sufficiently
large n. Since a > 1 + ε, we can choose N such that
a > 1/N + ε for all n ≥ N. Then, for all n ≥ N, we have:

a > 1/N + ε > 1/n
Therefore, a > b(n/b) for sufficiently large n, and we can
apply the first case of the Master theorem for decreasing
functions.

Thus, when a>1,

 ,

and . Since f(n) is decreasing, we can
replace it with its upper bound, which is

.
Then, we have:

 Therefore , .

3. CONCLUSIONS

In conclusion, the master's theorem and its by-product
analysis approach have been tested to be an quintessential
device for the analysis of divide-and-overcome algorithms.
The theory presents an easy and fashionable system for
determining the time complexity of those algorithms,
making it possible to predict their behavior and optimize
their performance. Furthermore, the by-product analysis
method affords a powerful way to derive the going for

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 10 Issue: 04 | Apr 2023 www.irjet.net p-ISSN: 2395-0072

© 2023, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page 1651

walks time of a set of rules via differentiating its
recurrence relation.

Our studies focused on making use of the master's
theorem and spinoff analysis technique to numerous
commonplace algorithms, such as binary search and
merge sort. Through our analysis, we proved the
effectiveness of these gear in imparting accurate and
particular predictions of the strolling time of these
algorithms. We additionally confirmed how the grasp's
theorem and derivative evaluation may be used to
optimize algorithms via identifying their dominant time
period and reducing their running time.

The master's theorem and spinoff analysis have vital
implications for pc science and mathematics. These
equipment provide researchers and practitioners with an
effective way to analyze and optimize algorithms, which
can be essential to many fields,which include synthetic
intelligence, records technological know-how, and laptop
engineering. As the era keeps advancing and algorithms
turn out to be more complex, the master's theorem and
derivative evaluation will absolutely stay essential gear for
researchers and practitioners.

Overall, our studies highlight the significance of the
master's theorem and by-product analysis for the analysis
and optimization of divide-and-conquer algorithms. These
equipment have vast packages in lots of fields, and we
anticipate that their importance will most effectively
continue to grow inside the future.

REFERENCES

[1] https://dl.acm.org/doi/abs/10.1145/3127585

[2] https://www.cs.ubc.ca/wccce/Program03/paper
s/Obi1.pdf

[3] https://citeseerx.ist.psu.edu/document?repid=re
p1&type=pdf&doi=83e211fc991dc48a2f5e10c30
9706bbe324fc113

[4] https://ieeexplore.ieee.org/abstract/document/6
569259/

[5] https://www.scaler.com/topics/data-
structures/masters-theorem/

[6] https://www.cs.cornell.edu/courses/cs3110/201
2sp/lectures/lec20-master/mm-proof.pdf

[7] https://dynaroars.github.io/pubs/ishimwe2021d

ynaplex.pdf

[8] https://www.sciencedirect.com/science/article/
pii/S0166218X05001599

[9] http://www.numdam.org/item/ITA_1994__28_3-
4_405_0.pdf

https://dl.acm.org/doi/abs/10.1145/3127585
https://www.cs.ubc.ca/wccce/Program03/papers/Obi1.pdf
https://www.cs.ubc.ca/wccce/Program03/papers/Obi1.pdf
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=83e211fc991dc48a2f5e10c309706bbe324fc113
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=83e211fc991dc48a2f5e10c309706bbe324fc113
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=83e211fc991dc48a2f5e10c309706bbe324fc113
https://ieeexplore.ieee.org/abstract/document/6569259/
https://ieeexplore.ieee.org/abstract/document/6569259/
https://www.scaler.com/topics/data-structures/masters-theorem/
https://www.scaler.com/topics/data-structures/masters-theorem/
https://www.cs.cornell.edu/courses/cs3110/2012sp/lectures/lec20-master/mm-proof.pdf
https://www.cs.cornell.edu/courses/cs3110/2012sp/lectures/lec20-master/mm-proof.pdf
https://dynaroars.github.io/pubs/ishimwe2021dynaplex.pdf
https://dynaroars.github.io/pubs/ishimwe2021dynaplex.pdf
https://www.sciencedirect.com/science/article/pii/S0166218X05001599
https://www.sciencedirect.com/science/article/pii/S0166218X05001599

