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Abstract - Thompson Sampling (TS) is a popular algorithm 
used in multi-armed bandit problems. In the standard setting, 
it assumes that the rewards associated with each arm are 
stationary, which means that the reward distribution remains 
fixed throughout the experiment. However, in many real-world 
scenarios, the reward distribution can change over time, and 
this is known as a non-stationary bandit problem. In this case, 
the traditional TS algorithm may not perform well. To address 
this issue, several extensions of the standard TS algorithm 
have been proposed for non-stationary bandits. One such 
extension is the Bayesian Online Changepoint Detection 
(BOCD) algorithm. BOCD uses a Bayesian framework to model 
the changes in reward distribution and adjust the exploration 
and exploitation trade-off accordingly. The BOCD algorithm 
maintains a posterior distribution over the possible locations 
of the change points in the reward distribution. At each time 
step, it uses this posterior to compute the probability that a 
change point has occurred. If the probability of a change point 
is high, the algorithm explores more to adapt to the new 
reward distribution. Otherwise, it exploits more to maximize 
its expected reward. 

Another extension of the standard TS algorithm for non-
stationary bandits is the Dynamic Thompson Sampling (DTS) 
algorithm. DTS uses a sliding window approach to detect 
changes in the reward distribution. The algorithm maintains a 
separate posterior distribution for each window and selects 
the arm with the highest expected reward based on the 
posterior distribution of the current window. In summary, 
Thompson Sampling is a powerful algorithm for the multi-
armed bandit problem, and several extensions can be used to 
handle non-stationary bandits. These extensions allow the 
algorithm to adapt to changes in the reward distribution over 
time and continue to make optimal decisions. 

Key Words:  Sampling, Algorithm for Non-Stationary 
Bandits, Stationary Bandits, detection based. 

1. INTRODUCTION 

The multi-armed bandit (MAB) framework is a classic 
problem in decision theory and reinforcement learning. It 
involves an agent (or decision-maker) who must choose 
between a set of actions (often called "arms"), each of which 
has an unknown reward distribution. The goal of the agent is 
to maximize its cumulative reward over time while balancing 

the exploration of new actions with the exploitation of 
actions that have already been found to be rewarding. 

One common example of the MAB problem is the slot 
machine or "one-armed bandit" problem. In this scenario, 
the agent must choose between pulling the levers of several 
slot machines, each of which has a different payout 
distribution. The agent must decide how many times to pull 
each lever to maximize its total payout. 

There are many variations of the MAB problem, each with 
different assumptions and objectives. One common approach 
is the epsilon-greedy algorithm, which chooses the action 
with the highest estimated reward with probability 1-
epsilon, and chooses a random action with probability 
epsilon. This balances the exploitation of known rewarding 
actions with the exploration of new actions. 

Other popular algorithms for the MAB problem include 
UCB1, Thompson Sampling, and EXP3. These algorithms 
differ in their assumptions about the distribution of rewards, 
and their strategies for balancing exploration and 
exploitation. 

The MAB problem has many applications in fields such as 
advertising, finance, and healthcare. For example, in online 
advertising, advertisers must decide which ads to display to 
maximize click-through rates while balancing the need to 
explore new ads with the need to exploit effective ads. 

2. UPPER CONFIDENCE BOUND (UCB) ALGORITHM 

The Upper Confidence Bound (UCB) algorithm is a popular 
algorithm for multi-armed bandit problems, which are a 
class of sequential decision-making problems. In the multi-
armed bandit problem, a decision maker must repeatedly 
choose between a set of actions (or "arms") with uncertain 
rewards, to maximize their total reward over time. 

The UCB algorithm works by balancing the exploration of 
different actions with their potential rewards. At each time 
step, the algorithm chooses the action with the highest upper 
confidence bound, which is a measure of the uncertainty of 
the estimated reward for that action. 

The upper confidence bound is calculated as the sum of two 
terms: the estimated reward for the action and a confidence 
interval term that takes into account the uncertainty in the 
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estimate. The confidence interval term typically grows over 
time to ensure that the algorithm continues to explore new 
actions, even as the estimates of the rewards for existing 
actions become more certain. 

By balancing exploration and exploitation in this way, the 
UCB algorithm can achieve good performance in a wide 
range of multi-armed bandit problems. 

3. ALGORITHM- DISCOUNTED THOMPSON 
SAMPLING (DTS) 

Discounted Thompson Sampling (DTS) is a decision-making 
algorithm that is often used in the context of online 
advertising, recommendation systems, and other settings 
where there is uncertainty about the effectiveness of 
different actions or choices. DTS is a modification of the well-
known Thompson Sampling algorithm, which is a Bayesian 
approach to decision-making that has been widely used in 
machine learning and artificial intelligence. 

The basic idea behind DTS is to take into account the fact 
that the value of future rewards may decrease over time, due 
to factors such as discounting or decay. This means that it 
may be more important to take action now, rather than 
waiting for more information to become available. To 
incorporate this idea into the Thompson Sampling algorithm, 
DTS uses a discount factor that reduces the weight given to 
future rewards. 

In DTS, each action or choice is associated with a probability 
distribution over the possible rewards. At each step of the 
algorithm, a random sample is drawn from each of these 
distributions, and the action with the highest sample is 
chosen. The distribution for each action is updated based on 
the observed reward, using Bayesian inference. The discount 
factor is applied to the observed reward before it is used to 
update the distribution. 

One of the advantages of DTS is that it can handle non-
stationary environments, where the underlying probabilities 
or reward distributions may change over time. The discount 
factor allows the algorithm to adjust to these changes, by 
placing more weight on recent observations. 

DTS is effective in a variety of applications, including online 
advertising and recommendation systems. However, like all 
decision-making algorithms, its effectiveness depends on the 
specific context and the quality of the input data. 

3.1.Stochastic Bandits 

Stochastic bandits are a class of decision-making problems in 
which an agent must select actions from a set of options or 
arms, with uncertain rewards associated with each arm. In 
other words, the agent doesn't know the true reward 
distribution of each arm, but it can explore by taking 
different actions and observing the resulting rewards. 

The goal of the agent is to maximize the total reward it 
receives over a certain period, or to minimize the regret, 
which is the difference between the expected reward if the 
agent had chosen the optimal arm from the beginning and 
the actual reward obtained. 

There are several algorithms to solve stochastic bandit 
problems, including the epsilon-greedy, UCB (Upper 
Confidence Bound), and Thompson sampling. Epsilon-greedy 
is a simple algorithm that selects the best arm with 
probability 1-epsilon and a random arm with probability 
epsilon. UCB is a more sophisticated algorithm that balances 
exploration and exploitation by selecting arms with the 
highest upper confidence bounds. Thompson sampling is a 
Bayesian algorithm that randomly samples reward 
distributions for each arm and selects the arm with the 
highest expected reward according to the samples. 

Stochastic bandits have numerous applications in various 
fields, including recommender systems, online advertising, 
and clinical trials. 

 

Figure-1: Stochastic Bandits 

4. LITERATURE REVIEW 

In the section of the literature review, we have studied the 
previous research paper related to Thompson sampling for 
different decision-making, the summary of all previous 
research papers is given below: 

Joseph: Every genuinely autonomous system must have the 
capacity to make choices. One approach to finding such ways 
is via experience-based learning of decision-making 
strategies, since this kind of learning may help uncover 
strategies that are robust against the influence of noise and 
flexible enough to be used in a variety of settings. The multi-
armed bandit problem and the best arm identification 
problem have been used as starting points for our 
exploration of this area (and related variations). After much 
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trial and error, we've found that Thompson Sampling is an 
effective method for dealing with the multi-armed bandit 
algorithm. This solution is optimal for the Bernoulli armed 
bandit issue because it meets the lower restriction on 
anticipated cumulative regret. In many circumstances, the 
cost of computing is minimal. By using conjugate priors, 
MCMC, or variational methods, Thompson Sampling may be 
used to model a broad range of decision-making settings, 
including contextual bandit issues. It is adaptable to include 
cross-hand dependencies and is resistant to reward delays. 
To extend the evidence of Agrawal and Goyal to the 
optimistic variant of the approach, we make certain 
adjustments to optimism such that it also fulfills the lower 
limit for cumulative regret. As an additional finding, we find 
that the Normal Thompson Sampling approach (one that 
employs the Normal distribution as the conjugate prior) 
outperforms the more standard Thompson Sampling 
strategy (which employs a Beta prior) in terms of empirical 
performance. 

Mellor, Jonathan: Many methods that combine Thompson 
Sampling with Change Point detection have been explored in 
this work. In their designated roles, we have shown their 
utility. Bandit scenarios using real-world data sets like the 
Yahoo! dataset and the Foreign Exchange further highlight 
their usefulness. They are shown to fail the PASCAL 
challenge when pitted against comparably complex but 
carefully calibrated competing algorithms. Our research, 
however, lends credence to a pair of methods that are 
analogous to Adapt-EvE but only keep tabs on changes to the 
"best" arm: Global-CTS2 and PA-CTS2. Due to its 
adaptability, the model holds out possibilities for further 
improvement via the introduction of additional assumptions. 
It's also worth noting that other reward distributions beyond 
Bernoulli's are completely OK. False alarms are a common 
issue with change point detection methods, but a Bayesian 
approach might help avoid them. Given that they are derived 
from fundamental models, the algorithms have theoretical 
support; nonetheless, further research is needed before a 
complete theoretical account of their performance can be 
provided. 

Alami: We propose Global-STS-CF, an extension of the 
Switching Corrupt Bandit Problem using three distinct 
Thompson Sam plings. The experimental results 
demonstrate the superior performance of the suggested 
method. Notably, Global-STS-CF competes with an oracle, 
Corrupted Feedback, that is aware of the inflection points in 
advance, posing a challenge to Thompson sampling. These 
outcomes are a direct consequence of Global-STS-foundation 
CF's in the Bayesian idea of following the most 
knowledgeable individuals throughout the world, which 
enables us to detect and react to shifts in the landscape with 
remarkable efficiency. By keeping an expert distribution on a 
per-arm basis, the suggested approach may be easily 
adapted to the Per-arm Switching Corrupted Multi-Armed 

Bandit. Next, we'll examine the Global-STS-CF via the lens of 
pseudo-cumulative regret. 

Gourab: To keep tabs on the dynamic two-armed bandit 
problem environment, we investigate a change-detection-
based Thompson Sampling approach (TS-CD). We have 
established the minimum stationary regime time window for 
TS-CD, making it possible to detect the transitions as soon as 
they occur. Our results show that the proposed TS-CD 
algorithm converges to asymptotic optimality over a wide 
range of update rates. To test the efficacy of the strategy, we 
apply it to the RAT selection problem at the wireless 
network's edge. We have shown that TS-CD is superior to the 
standard max power band selection method and other 
bandit algorithms designed for unpredictable environments. 

Maarten: We have investigated the OLTR issue in a dynamic 
setting where user tastes change quickly. Here, we provide 
cascading non-stationary bandits, an online-learning 
variation of the widely-used cascade model (CM) for 
predicting users' click behaviors. It has been suggested that 
the algorithms CascadeDUCB and CascadeSWUCB be used to 
solve it. They are proven to experience sub-linear remorse 
by our theoretical analysis. Our experimental results on the 
Yandex click dataset corroborate these theoretical 
predictions. Many new paths for the development of mobile 
OLTR are opened up. To begin with, we have just thought 
about the CM configuration. Future research should take into 
account other click models such as DBN [Chapelle and Zhang, 
2009] that can process multiple clicks. The second area of 
interest was UCB-based policy. One alternative is to apply a 
policy from the softmax family [Besbes et al., 2014]. In this 
direction, it is possible to get upper limits that are insensitive 
to the number of transitions. 

Giuseppe: We put forward a novel bandit method to solve 
the issue of learning in dynamic settings. The algorithm 
demonstrated superior performance over state-of-the-art 
solutions and the ability to adapt to various patterns of 
nonstationarity. All-Season is also far easier to use and more 
sturdy than its competitors, making it well-suited for use in 
industrial settings and requiring less upkeep. We speculate 
that there is more work to be done in addressing the model 
misspecification issue and choosing which models should be 
eliminated. In particular, we think that constructing the 
posterior prediction weights using the General Bayes 
technique (Knoblauch et al., 2019) might be a more robust 
option. 

Gourab et.al: To account for the unpredictability of real-
world environments, we provide a KS-test-based change 
detection technique in the context of the Multi-Agent-Based 
(MAB) architecture. We use our KS-test-inspired, actively 
adaptable TS algorithm, TS-KS, for the MAB problem. TS-KS 
has a sub-linear regret in the two-armed bandit problem. It's 
important to note that the proposed approach may detect a 
change even when more sophisticated methods based on 
mean estimates fail. As seen in two instances, we 
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demonstrate that the TS-KS algorithm outperforms both the 
actively adaptive TS-CD technique and the passively adaptive 
D-TS strategy. To add, the results of the portfolio 
optimization case study demonstrate that TS-KS is 
competitive with other leading forecasting algorithms, like 
Facebook-PROPHET and ARIMA. 

Zhang: Due to the inherent uncertainty of real-world 
settings, we provide a KS-test-based change detection 
approach within the framework of the Multi-Agent-Based 
(MAB) architecture. As an application of our KS-test-
inspired, actively adaptive TS algorithm, TS-KS, we tackle the 
MAB issue. In the two-armed bandit dilemma, TS-KS 
experiences a sub-linear regret. Note that the suggested 
technique may succeed when more advanced approaches 
based on mean estimation fail to spot a shift. Using two 
examples, we show that the TS-KS algorithm outperforms 
the active TS-CD method and the passive D-TS approach. 
Furthermore, the portfolio optimization case study shows 
that TS-KS can hold its own against other top forecasting 
algorithms like Facebook-PROPHET and ARIMA. 

5. CONCLUSION 

After studying the above literature review, we found some 
conclusion, that is given here. Thompson sampling, also 
known as the Bayesian bandit algorithm, is a popular 
algorithm used for decision-making problems in various 
fields such as marketing, medicine, and engineering. It is a 
probabilistic algorithm that balances exploration and 
exploitation to find the optimal solution for a given problem. 
Thompson sampling can be used to optimize decision-
making in robotics applications such as autonomous vehicles 
and drones. Thompson sampling can be used to optimize the 
recommendation process in recommender systems by 
choosing the most relevant items to recommend to users.  
Thompson sampling can be used to optimize the design of 
clinical trials by efficiently allocating patients to different 
treatment groups. 
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