

Optimization of powertrain of jib crane

Aditya Gokhale¹, Dheeraj Bangar², Prof. Prasad Bhide³

¹BE in mechanical engineering PVG's College Of Engineering and Technology, Pune, Maharashtra, India ²BE in mechanical engineering PVG's College Of Engineering and Technology, Pune, Maharashtra, India ³Assistant Professor, Dept.Mechanical Engineering of PVG's College of Engineering and technology, Pune, Maharashtra, India

Abstract - To optimize the power transmission system for the slewing motion of a jib crane, including the gear, pinion, and geared motor, for all coordinates of the lifted load from the pillar center, the entire system needs to be carefully analyzed and refined. This involves selecting suitable gears, pinions, and a geared motor that can handle the load requirements and desired range of motion. The design should consider factors like torque, speed, efficiency, and safety. it is necessary to perform a comprehensive analysis and implement topology optimization techniques for the ring gear.

A boom of jib crane experiences a maximum load when the load is acting at the maximum span / Outreach of the crane from pillar centre. Hence the motor and gearbox for jib crane is designed according to the beam under maximum possible loading condition. However, the actual movement of load happens at various coordinates from centre of the pillar which is different from the maximum value. The aim of this project is optimization of complete power transmission for slewing motion of jib crane which includes the gear, Pinion, and Geared Motor for all coordinates of the lifted load from pillar centre.

Key words: jib crane , ring gear , Optimization.

1. INTRODUCTION

1.1 Jib crane

A jib crane is a crane which has cantilevered beam which consists of a hoisting mechanism and trolley. It is attached to a building column or either to a cantilever beam from an independent column mounted on the floor.

It is a type of crane which is most often fixed near certain workstation so that the load movement in the specific zone is catered to.

Jib cranes can be wall or Pillar (Tower) mounted. All jib cranes swivel and can lift and carry loads. Most jib cranes also traverse, in that the job crane can traverse the beam from the center of the circle to the edge of the circle created by the jib as the jib crane rotates.

The jib arm is usually mounted on a vertical pole or column (tower) and sometimes on an inclined jib. In other outriggerless structures such as derricks, the load is

suspended directly from the outriggers (usually often called jibs).

Crane companies in India sell its global products in Jib crane segment, and they want to localise the design as well as manufacturing and supply chain so as to make the design suitable to India market. It also will then cater to Indian standards, and the direct and indirect costs will also come down. This is the basic concept behind starting with this project.

At present, while standardizing the gearbox, many factors like country standards, material available for fabrication & manufacturing, specifications of geared motor from the motor catalogue, material standards, lifting load variations and its frequency of operations are to be considered which cannot be followed directly from the global product for the Indian standards.

1.2 Elements of jib crane

Fig -1: Elements of jib crane

Fig -1: Elements of gearbox

1) Pillar: Vertical Member of jib crane which support the complete Jib

2) Jib Arm: Horizontal member on which the Hoist travel. Hoist: Lifting machine which lifts the load. It has 2 motions

a) Lifting/ Lowering, b) Travelling.

3) Pendant: It is one of the devices which gives control signals to the jib crane, other devices are Radio remote, Joystick etc...

4) Pinion: It engages with the Gear ring which revolves and rotates giving slewing motion to the Jib arm.

5) Gear Ring: The Gear is fixed to pillar and pinion revolve around the gear to give slewing motion to jib arm.

6) Slip Ring assembly: Slip Ring assembly is needed to deliver the power supply to the other machineries as the jib cranes rotates 360 degrees.

7) Festoon System: System delivering power to the hoist based C track and power supply trolleys.

1.2 Calculations

Fig -2: front view and top view of jib crane

Term	abbrevia tion	Hoist dimensions	abbreviation
Safe working load(SWL)	GL	Length-	LH
Out reach	L	Width-	BH
Hook approach _Inner	Lan 1	Jib Slewing rpm-	n
Hook approach _Outer	Lan 2	Safe Working Load (SWL) dimensions-	
Beam Overhang on rear side	L1	Length	L swl
Position of Arm	L2	Width	B swl
Arm Height	H1	Height	H swl
Diameter of Pillar	Ds	Height	H swl
Hook path above floor	Н		
Hoist Head Room	С		
Floor to bottom of beam	Ho = H+C		
Hoist weight	Gh		

Total cycles- 25000

Jib rpm = 1

Total duration = 25000 min

Total duration in h = 4166.67

2. Types of loads acting on jib crane-

1.Uniformly Distributed Load (UDL) (Festoon system)

2.Point Load

3. Live Load

4.Fixed Crane Load

Int IRJET Vo

International Research Journal of Engineering and Technology (IRJET) Volume: 10 Issue: 05 | May 2023 www.irjet.net

2.1.Calculations for UDL (festoon system) -

O-O' = Axis passing through the center of mass A-A' = Axis parallel to the axis O-O' h = Perpendicular distance between O-O' and A-A'

Fig -3: MOI explaination

UDL=l kg/m

length of UDL = a m

Width of UDL = b m

:. Point load= $m = la \times mass \ factor \ (kg)$

Horizontal distance of CG of udl =x

Vertical distance of CG of udl =y

Distance of CG of UDL from pillar = $r = \sqrt{x^2 + y^2}$

Ic = MMI of UDL around CG = $\frac{(a^2 + b^2)m}{12}$

Io = $Ic + mh^2$

Moment about pillar = UDL force $\times x$

2.2 Calculations for point load & fixed crane loads-

Load = m kg

 \therefore Total load = M = m * Mass factor

Length of load = a m

Width of load = b m

Diatance of x coordinate = x

Distance of y coordinate = y

 \therefore Radius = $r = \sqrt{x^2 + y^2}$ $\therefore \text{ Ic} = \frac{M \times (a^2 + b^2)}{12}$ Io = Ic + Mr^2 Moment around pillar = $M \times \gamma$ 2.3 Calculations for live load **Iteration 1-**Total load = M = SWL + Hoist load Radius = R1 m $Ic swl = \frac{SWL(Lswl^2 + Wswl^2)}{12} kgm^2$ Ic hoist = $\frac{Hoist \ load(Lhoist^2 + Whoist^2)}{12} \ kgm^2$ \therefore Io1= Ic swl + Ic hoist + MR1² : Moment around pillar = $M \times R1$ Nm **Iteration 2-** $R2 = R1 + \frac{L-R1}{L}$:: Corresponding Io2= Ic swl + Ic hoist + $MR2^2$ \therefore Moment around pillar = M2 = $M \times R2$ Nm **Iteration 3-** $R3 = R2 + \frac{L-R2}{L}$ \therefore Corresponding Io3 = Ic swl + Ic hoist + MR3² \therefore Moment around pillar = M3 = $M \times R3$ Nm And so on for further iterations ∴Max. Io = Io corresponding to max. radius kgm² $\therefore \text{RMS Io} = \sqrt{\frac{Io1^2 + Io2^2 + Io3^2 + \cdots}{no.of iterations}} kgm^2$

Max. Moment =moment corresponding to max. radius Nm

 $\therefore \text{RMS moment} = \sqrt{\frac{M1 + M2 + M3 + \cdots}{no.of \ iterations}} \ Nm$

∴Total MMI =

International Research Journal of Engineering and Technology (IRJET)e-ISSVolume: 10 Issue: 05 | May 2023www.irjet.netp-ISS

e-ISSN: 2395-0056 p-ISSN: 2395-0072

$Io(Live load) + Io(UDL) kgm^2$
∴Total axial force = 9.81(UDL + point load + fixed crane load + live load)N
$ \therefore \text{Total Moment around pillar} = \\ Moment(\\ \Sigma_{UDL} + point \ load + fixed \ crane \ load + \ live \ load) \\ Nm$
Arm height = H1 m
$\therefore \text{ Radial force} = \frac{\text{Total momet around pillar}}{\text{arm height}} N$
Total acceleration torque= Total MMI × angular acceleration
Frictional force = (travel resistance of selected roler \times (radial force) N

Io(point load) + Io(fixed crane load) +

 \therefore Frictional torque = Frictional force \times (diameter of pilar) Nm

Axial torque= $Total \text{ axial force } \times \mu(roller \text{ bearing}) \times \frac{inner \text{ diameter} + ouetr \text{ diameter}}{2} Nm$

9.81

∴Total torque = Frictional torque + axial torque + acceleration torque Nm

Set motor rpm = *Motor rpm* × *set point*

Total ratio = $\frac{set \ motor \ rpm}{jib \ rpm}$

 $\therefore torque \ refered \ to \ motor = \frac{total \ torque}{total \ ratio} \ Nm$

∴power =

torque refered to motor $\times \frac{\text{set motor rpm}}{60} W$

Total efficiency = *efficiency of system* × Effciency Gear × Effciency Gearbox Power

: Final motor power = $\frac{Power}{total efficiency}$ kW

Optimization of power of motor

© 2023, IRJET

Table -2: Input constants -

Hook approach _Inner	Lan 1	750 mm
Hook approach _Outer	Lan 2	250 mm
Beam Overhang on rear side	L1	350 mm
Position of Arm	L2	600 mm
Arm Height	H1	1030 mm
Diameter of Pillar	Ds	670 mm
Hook path above floor	Н	3000 mm
Hoist Head Room	С	300 mm
Floor to bottom of beam	Ho=H+C	3300 mm
Hoist weight	Gh	600 kg
Hoist dimensions-		
Length	LH	350 mm
Width-	BH	350 mm
Jib Slewing rpm-		1
Safe Working Load (SWL) dimensions-		
Length	L swl	1581 mm
Width	B swl	255 mm
Height	H swl	1581 mm

2. HEADING 2

Using maximum method-

UDL (Uniformly Distributed Load) -

Festoon 1

```
UDL=5 kg/m

Width of UDL= 50 mm= 0.05 m= b

UDL start(Y start)= 200 mm

UDL end(Y end)= 6000 mm

Total Y= Yend - Ystart

= 6000-200

= 5800 mm

= 5.8 m

= a

CG of Y= Ystart + \frac{(totalY/)}{2}

= 3100 mm

= Y coordinate

Distance of festoon 1 from jib arm

= 500 mm
```

= X coordinate

IRJET

International Research Journal of Engineering and Technology (IRJET)e-ISSN:Volume: 10 Issue: 05 | May 2023www.irjet.netp-ISSN:

e-ISSN: 2395-0056 p-ISSN: 2395-0072

(x,y)=(500,3100) \therefore Radius= $\sqrt{500^2 + 3100^2}$ = 3140.1 mm R = 3.14 m \therefore Total load =length of UDL \times UDL =total Y × UDL $= 5.8 \times 5$ = 29 kg Mass factor(M.F.) = 1.1 \therefore Load with M.F = total load \times MF ∴M =31.9 kg \therefore MR^2 = 31.9 × 3.14² = 314.5 kgm^2 ::Self MR^2= Ic =MMI about CG of festoon1 $=\frac{M(a^2+b^2)}{M(a^2+b^2)} = \frac{31.9(5.8^2+0.05^2)}{M(a^2+b^2)}$ 12 12 Ic =89.4 kgm^2 \therefore MMI about pillar= $Io = Ic + MR^2$ = 89.4+ 314.5 $= 404 \text{ kgm}^2$ ∴Moment about Pillar = $\frac{M * 9.81 * CG Y}{M * 9.81 * CG Y} = \frac{31.9 * 9.81 * 3100}{M * 9.81 * 3100}$ 1000 1000

=970.1 Nm

Festoon 2-For festoon 2, Distance of festoon 1 from jib arm = 750 mm = X coordinate (x,y) = (750,3100)∴Radius= 3189.4 mm M = 31.9 kg ∴**MR^2=** 31.9* 3.189^2 = 324.5 kgm^2 ∴Self MR^2 =Ic = MMI about CG of festoon2 $=\frac{M(a^2+b^2)}{M(a^2+b^2)}=\frac{31.9(5.8^2+0.05^2)}{1.9(5.8^2+0.05^2)}$ 12 12 =89.4 kgm^2 : MMI about pillar = $Io = Ic + MR^2 = 89.4 + 324.5^2$ = 413.9 kgm^2 $\therefore Moment about Pillar = \frac{M * 9.81 * CG Y}{M * 9.81 * CG Y} = \frac{31.9 \times 9.81 \times 3100}{M \times 9.81 \times 3100}$ 1000 1000 = 970.1 Nm $\sum MR^2 = 639 \text{ kg}m^2$ $\sum Ic = 178.9 \text{ kg}m^2$

$$\sum \text{Io} = 817.9 \text{ kg}m^2$$
$$\sum \text{Moment} = 1940.2 \text{ Nm}$$

Name of Load	Point load1	Point load2	Point load 3	
Discription	Electric cubical	Canopy	Drives	
Load 'L' (kg)	500	0	57	
Length a'(mm)	500	1000	250	
Width'b'(mm)	250	500	250	
X coordinate (mm)	750	0	500	
Y coordinate (mm)	500	0	0	
Radius 'R' (mm)	901.4	0	500	
$(\sqrt{x^2+y^2})$				
Mass factor (MF)	1	1	1	
Load with M.F.'M'(kg) ($MF \times L$)	500	0	57	Σload=557 kg

Table -3 Point loads

ISO 9001:2008 Certified Journal | Page 1649

International Research Journal of Engineering and Technology (IRJET) e-IS

e-ISSN: 2395-0056 p-ISSN: 2395-0072

IRJET Volume: 10 Issue: 05 | May 2023

www.irjet.net

MR ²	406.3	0	14.3	$\sum MR^2 = 420.5 \text{ kg}m^2$
$M(\frac{R}{1000})^2 \qquad kg m^2$				-
Self MR^2 'Ic'	13	0	0.6	\sum Ic = 13.6 kgm ²
$\frac{M}{12} \times (\frac{a}{1000}^2 + \frac{b}{1000}^2) kgm^2$				Δ
Total Mr^2 'Io'	419.3	0	14.8	$\sum_{10} = 434.1 \text{kg}m^2$
$(Ic + MR^2) kgm^2$				
Moment (Nm)	2452.5	0	0	\sum Moment = 2452.5 Nm
$M \times 9.81 \times Y$ Coordinate				
1000				

Table -4 Fixed crane load

Name of Loads		Point load 1	Point load 2	
Discriptions		Jib	Arm	
Load'L'(kg)		785	150	
Length(a)	L+Lan2+L1	6600	400	
Width(b)		250	250	
X coordinate		0	0	
Y coordinate		(L+Lan2+L1)/2-L1 = 2950	L2= 600	
Radius (mm)	$M = (\sqrt{x^2 + y^2})$	2950	600	
Mass Factor 'MF'		1.3	1.3	
Load with MF 'M'(kg)	$(MF \times L)$	1020.5	195	
MR^2	$M(\frac{R}{1000})^2$	8880.9	70.2	$\sum MR^2 = 8951.1 \text{ kg}m^2$
Self MR^2 (kgm^2)	$Ic = \frac{M}{12} \times \left(\frac{a^2}{1000} + \frac{b^2}{1000}\right)$	3709.7	3.6	$\sum Ic = 3713.3 \text{ kg}m^2$
Total Mr^2 (kgm^2)	$Io = (Ic + MR^2)$	12590.6	73.8	$\sum Io = 12664.4 \text{ kg}m^2$
Moment (Nm)	$\frac{M \times 9.81 \times Y \ Coordinate}{1000}$	29532.75	1147.7	\sum Moment = 30680.52 Nm

IRJET

p-ISSN: 2395-0072

 Live load-**Iteration 1** Max. outreach= 6000 mm \geq Max. Load = 5000 kg \triangleright Hoist load = 600 kg ∴Total load= 5600 kg **Iteration1-**SWL=5000 kg Hoist Load= 6000 kg Total Load= SWL + Hoist load M = 5600 kgDistance of SWL & Hoist load from pillar= Max. of outreach/2 & position of arm $= \max\left(\frac{L}{2} \& L2\right)$ $= \max(\frac{6000}{2} \& L2)$ = 3000 mm= R1 $\therefore MR^{2} = M \times \frac{R^{2}}{1000}$ $= 5600 \times \frac{3000}{1000}^2$ = 50400 kgm^2 $\therefore \text{Self MR^2 of SWL= Ic1} = \frac{SWL(Lswl^2 + Bswl^2)}{12}$ $\frac{5000(\frac{1581^2}{1000} + \frac{Bswl^2}{1000})}{5000(\frac{1581^2}{1000})}$ 12 =1068.58 kgm^2 $\therefore \text{ Self MR^2 of hoist= Lc2=} \frac{\text{Hoist load } (\text{Lswl}^2 + \text{Bswl}^2)}{\text{Hoist}^2}$ $\frac{600(\frac{350}{1000}^2 + \frac{350}{1000}^2)}{1000}$ 12 =12.25 kgm^2 ∴Total MR^2 around the pillar = Io $= MR^{2} + Ic1 + Ic2$ =50400 + 1068.58 + 12.25 = 51480.8 kgm^2 Moment around jib arm total load×9.81×R 1000 5600×9.81×3000 = 1000 =164808 Nm **Iteration 2-**Self MR^2 of SWL= Ic1

=1068.58 kgm^2 \therefore Self MR² of hoist= Lc2 = 12.25 kgm^2 $R2 = R1 + \frac{L - R1}{4} = 3000 + \frac{6000 - 3000}{4}$ = 3750 mm = 3.75 m \therefore MR² = 5600 × 3.75² = 78750 kgm^2 \therefore Total MR² = MR² + Ic1 + Ic2 = 78750 + 1068.58 + 12.25= 79830.8 kgm^2 \therefore Moment = total load \times 9.81 \times R2 $= 5600 \times 9.81 \times 3.75$ = 206010 Nm **Iteration3-**Self MR^2 of SWL= Ic1 =1068.58 kgm^2 ∴Self MR^2 of hoist= Lc2 = 12.25 kgm^2 $R3 = R2 + \frac{L - R2}{4} = 3750 + \frac{6000 - 3750}{4}$ = 4500 mm = 4.5 m \therefore MR^2 = 5600 × 4.5² = 113400 kgm^2 \therefore Total MR² = MR² + Ic1 + Ic2 = 113400 + 1068.58 + 12.25= 114480.8 kgm^2 \therefore Moment = total load \times 9.81 \times R2 $= 5600 \times 9.81 \times 4.75$ = 247212 Nm **Iteration 4-**Self MR^2 of SWL= Ic1 =1068.58 kgm^2

∴Self MR^2 of hoist= Lc2

International Research Journal of Engineering and Technology (IRJET)e-ISSN: 2395-0056Volume: 10 Issue: 05 | May 2023www.irjet.netp-ISSN: 2395-0072

= 12.25 kgm^2

$$R4 = R3 + \frac{L - R3}{4} = 4500 + \frac{6000 - 4500}{4}$$

= 5250 mm = 5.25 m

 \therefore MR² = **5600** × **5.25²** = 154350 kgm²

∴Total MR² = MR² + Ic1 + Ic2 = 154350 + 1068.58 + 12.25 = 155430 kgm²

 $\therefore Moment = total load \times 9.81 \times R4 = 5600 \times 9.81 \times 5.25$

= 288414 Nm

Iteration 5-

Self MR² of SWL= Ic1 =1068.58 kgm²

∴Self MR^2 of hoist= Lc2 = 12.25 kgm^2

$$R5 = R4 + \frac{(L - R4)}{4} = 5250 + \frac{6000 - 5250}{4}$$

= 6000 mm = 6 m

 $::MR^{2} = 5600 \times 6^{2}$ $= 201600 \text{ kgm}^{2}$

∴Total MR^2 = MR^2 + Ic1 + Ic2 = 201600 + 1068.58 + 12.25 = 202680 kgm^2

∴Moment

 $= total \ load \ \times 9.81 \times R5 = 5600 \times 9.81 \times 6$

= 329616 Nm

Table -5 MMI and moment using maximum and RMS
method

	MMI around the pillar of total load kgm ²	Square	Moment around the pillar (Nm)	Square
Iterat	51480.8	265027560	164808.00	27161676
ion1	000000	0.08476	0000000	864
Iterat ion2	79830.8	637296101 9.33476	206010	42440120 100
Iterat	114480.	131058598	247212	61113772
ion3	8	65.08480		944
Iterat	155430.	241587421	288414	83182635
ion4	8	37.33480		396
Iterat	202680.	410795178	329616	10864670
ion5	8	36.08480		7456
	Max.	RMS MMI	Max.	RMS
	MMI =	=	Moment =	Moment=
	202680.	132187.3	329616	253986
	8 <u>kgm²</u>	kgm ²	Nm	Nm

Similarly we can find Max. and RMS Io and MMI & compare togrther

Table - 6 RMS power	calculated using different iterations
---------------------	---------------------------------------

Safe Working Load(SWL)(kg)	Outreach(m)	Hoist load(kg)	Max. MMI kgm ²	RMS MMI kgm ²	Max. moment Nm	RMS Moment Nm
5000	6	600	202680	132187	329616	253986
1000	6	600	57826	37692	94176	75267
2000	6	600	94039	61315	153036	117922
3000	6	600	13053.4	84939	211896	163276

Table - 7 Power calculated using maximum method

Load (kg)	2	2.5	3	3.5	4	4.5	5	5.5	6
500	0.029	0.037	0.046	0.056	0.066	0.078	0.090	0.103	0.116
1000	0.037	0.048	0.059	0.072	0.086	0.101	0.118	0.135	0.153
1500	0.045	0.058	0.073	0.089	0.106	0.125	0.146	0.167	0.19
2000	0.053	0.069	0.086	0.106	0.127	0.149	0.174	0.199	0.227
2500	0.061	0.079	0.1	0.122	0.147	0.173	0.201	0.232	0.264
3000	0.069	0.090	0.113	0.139	0.167	0.197	0.229	0.264	0.301
3500	0.076	0.1	0.127	0.156	0.187	0.221	0.257	0.296	0.338
4000	0.084	0.111	0.140	0.172	0.207	0.245	0.285	0.329	0.375
4500	0.092	0.121	0.154	0.189	0.227	0.269	0.313	0.361	0.411
5000	0.1	0.132	0.167	0.205	0.247	0.293	0.341	0.3953	0.4478

Table - 8 Comparison with power calculated using RMS method

Outreach (m)									
Load (kg)	2	2.5	3	3.5	4	4.5	5	5.5	6
500	0.025	0.031	0.038	0.046	0.054	0.063	0.072	0.082	0.093
1000	0.030	0.039	0.048	0.058	0.068	0.080	0.092	0.105	0.119
1500	0.036	0.046	0.058	0.07	0.083	0.097	0.112	0.128	0.145
2000	0.042	0.054	0.067	0.082	0.097	0.114	0.032	0.150	0.171
2500	0.048	0.062	0.077	0.094	0.112	0.131	0.151	0.173	0.197
3000	0.054	0.07	0.087	0.106	0.126	0.148	0.171	0.196	0.223
3500	0.06	0.077	0.097	0.118	0.14	0.165	0.191	0.219	0.249
4000	0.065	0.085	0.106	0.13	0.155	0.182	0.211	0.242	0.0275
4500	0.071	0.093	0.116	0.733	0.169	0.199	0.231	0.265	0.301
5000	0.077	0.1	0.126	0.154	0.184	0.216	0.251	0.288	0.32

ISO 9001:2008 Certified Journal Page 1653

% Decrease in power for maximum Load & outreach conditions-

% Decrease in power (kW)=

Conclusion- For each iteration of load vs outreach data, Root Mean Square method power is coming to be minimum for corresponding iteration for maximum method.

Thus, power required to rotate the jib is reduced by 28.41%

Validation using Tooth root stress -

Known data -Module = m = 6Pressure angle = 20 degHelix angle = 0 degPinion gear = gear 1 Ring gear = gear 2 $\therefore PCD1 = \frac{Z1*m}{\cos(\text{Helix angle})} mm$ V1 = pitch line velocity = $\frac{\pi \times PCD1 \times N1}{60 \times 1000} m/s$ Tangential force transmitted = $Wt1 = \frac{power \ transmitted \ by \ motor \times 1000}{Tangential}$ Pitch line velocity (V1) Velocity factor = $\frac{6}{6+V1}$ **CT** =Temperature Factor $Kv1 = \frac{6}{6++0.023}$ CR = Reliability Factor Permissible stress = $\sigma p1 = \frac{Wt1}{Kv \times m \times y \times Fw1}$ AGMA stress ratio = $\frac{CL \times CH \times Sc}{CL}$ $BHN = \frac{Sut of pinion gear material}{3} Mpa$ $\therefore \text{Dynamic factor} = \text{Kv1} = \sqrt{\frac{50}{50 + (200 \times pitch line velocity)}}}$ Infinite life strength for tooth root stress = $Sut \times 0.3$ ∴Safety factor = Overload correction factor × Load distributionn factor ...Svt = Infinite life strength × Stress concentration factor Factor of safety = $\frac{Syt}{m1}$ ∴Geometrical factor = $\frac{\cos(pressure\ angle\)\times\sin(pressure\ angle\)}{}$ × $\frac{m}{}$ $\therefore \text{ Balanced FOS} = \frac{FOS}{requird \min FOS}$ \therefore Weight force transmitted = Wtf= $Sc^2 \times Kv1 \times FW2 \times PCD1 \times geometrical factor$ N \therefore Transmittable power = Elastic coefficient² motor power \times balanced FOS $\therefore \text{Safety factor} = \frac{Wtf}{\text{Tangential force transmitted}}$ ∴Calculation accuracy power in validation software kW transmittable power ∴ Transmittable power = Safety factor × motor power Validation using flank strength -∴ Calculation accuracy Contact strength = Sc = 2.76 BHN1 - 70power in validation software kW transmittable power CL =Life Factor CH= Hardness factor

L

3. CONCLUSIONS

The accuracy coming from method of tooth root stress is around 85% for gear 1(pinion) while for some gear of is of 115%

While using flank strength method the accuracy for gear 1 is coming to be 81% and for gear 2 it is around 150%.

In general validation unsung tooth root stress is considerable and can be used for optimization of ring gear.

REFERENCES

[1] Krunal Gandhare, Vinay Thute, "Design Optimization of Jib Crane Boom Using Evolutionary Algorithm", International Journal of Scientific Engineering and Research, Volume 3 Issue 4, pp. 2-8, 2014.

[2] Baker J. Cranes in Need of Change, Engineering, Vol. 211, PP- 298, 1971.

[3] Sandip D. Shinde"Standardization of Jib Crane Design by "F.E.M. Rules" and Parametric Modeling", International Journal of Recent Trends in Engineering, Vol. 1, No. 5, pp. 145-149, May 2009.

[4] K. Suresh Bollimpelli, V. Ravi Kumar, "Design and Analysis of Column Mounted JIB Crane", International Journal of Research in Aeronautical and Mechanical Engineering, Vol 3 issue 1, pp. 32-52, 2015.

[5] Amreeta R. K. "Design and Stress Analysis of Single Girder Jib Crane", International Journal of Engineering Research & Technology Vol. 4 Issue 09, pp. 932-936, September-2015.

[6] Subhash N. Khetre, S. P. Chaphalkar "Modelling and Stress Analysis of Column Bracket For Rotary Jib Crane", international journal of mechanical engineering and technology Volume 5, Issue 11, pp. 130-139, November 2014.

[7] Gerdemeli .I, Kurt .S and Tasdemir "Design and Analysis with Finite Element Method of Jib Crane", Mechanical Engineering Istanbul Technical University – Turkey 2012.

[8] B. Ünal, I. Gerdemeli, C. E. Imrak "Modelling and Static Stress Analysis of Shipyard Jib Crane With Finite Element Method", University Review Vol. 2, No. 4 Trenčín: Alexander Dubček University of Trenčín2, 90 p, 2008.

[9] Fuad Hadžikadunić, NedeljkoVukojević and SenadHuseinović "An Analysis of Jib Crane Constructive Solution in Exploatation", 12th International Research/Expert Conference Trends in the Development of Machinery and Associated Technology'' TMT 2008, Istanbul, Turkey, pp. 26–30 August, 2008 10) Shigley's Mechanical Engineering Design Book by J. Keith Nisbeth and Richard G. Budyna

BIOGRAPHIES

Aditya Anant Gokhale is currently pursuing Bachelor of Engineering degree in mechanical engineering program in Pune Vidhyarthi Griha's College of Engineering and Technology.

Dheeraj Bharat. Bangar is currently pursuing Bachelor of Engineering degree in mechanical engineering program in Pune Vidhyarthi Griha's College of Engineering and Technology.

Prof. Bhide Prasad Pramod Assistant Professor³ Assistant Professor, Dept . Mechanical Engineering of PVG's College of Engineering and technology, Pune, Maharashtra, India