Comparative study on performance of RC multi-storey structure with shear wall and steel bracing subjected to seismic load

Sachin V¹, Adarsh M², Ashwitha M³, Chandana C⁴, Megha S Mahaladkar⁵

^{1,2,3,4}B.E. Students, Department of Civil Engineering, Vidya Vikas Institute of Engineering And Technology, Karnataka, India

⁵Asst. Students, Department of Civil Engineering, Vidya Vikas Institute of Engineering And Technology, Karnataka. India ***

Abstract - The seismic performance of multi-storey buildings is a critical consideration for structural engineers, especially in earthquake-prone regions. Shear walls and steel bracings are two common methods used to enhance the seismic resistance of reinforced concrete (RC) multi-storey buildings. In this study, we compared the seismic performance of RC multi-storey buildings with shear walls and steel bracings. Our findings showed that both shear walls and steel bracings can effectively enhance the seismic performance of RC multi-storey buildings. This study provides valuable insights into the design and construction of RC multi-storey buildings under seismic loads and can assist structural engineers in selecting the most appropriate seismic-resistant method for their specific projects

Key Words: ETAB, Seismic analysis, Bracings, Shear wall, IS 1893(part I):2002, IS 1893(part I):2016, IS 16700:2017.

1.INTRODUCTION

Earth quake is a natural disaster that causes violent earth motions that have an impact on buildings. Due to the construction of new metropolitan populations near seismically active areas, socioeconomic disasters have spread throughout the world. Structures must have enough lateral stability, strength, and ductility to ensure the safety of the buildings. To safely withstand the significant lateral stresses that are applied to structures during frequent earthquakes, structures must have appropriate earthquake resistant features. These lateral forces have the potential to cause a structure to experience critical stresses, unpleasant vibrations, and lateral sway-all of which could create discomfort for the inhabitants. To improve the lateral stiffness, ductility, minimal lateral displacements, and safety of the structure, shear walls and bracings are placed. When designing structures for earthquakes, storey drift and lateral displacements are crucial considerations.

1.1 SHEAR WALL

One of the most widely used lateral load resisting components in high rise buildings is the shear wall. High in plane stiffness and strength, shear walls (SW) can be employed to support gravity loads and resist heavy

horizontal loads at the same time. The goal of the current work is to analyze and examine the performance of RC shear walls in medium-rise buildings. In bare frame buildings, reinforced concrete shear walls are utilized to withstand lateral forces brought on by wind and earthquake.

1.2 STEEL BRACING

One of the technique that the building uses to withstand lateral forces is a bracing system. By improving the lateral stiffness and capacity of the frame, the bracing system enhances the seismic performance of the structure. By flowing through the weak columns, weight might be transmitted from the frame and into the bracing system. The bracing system's enhanced rigidity is maintained virtually to peak strength.

One or more of the following functions are performed by bracings:

- Control buckling.
- Load distribution.
- Dimensional control.

2. METHODOLOGY

It is a piece of engineering software that handles the study and design of multistory buildings. ETABS can be used to analyze simple or complex systems under static or dynamic conditions. Modal and direct-integration time history analyses may be coupled with P-Delta and large displacement effects for a sophisticated evaluation of seismic performance. ETABS is a coordinated and effective tool for designs ranging from straightforward 2D frames to intricate modern highrises because to its interoperability with a number of design and documentation platforms.

2.2 MODEL DESCRIPTION

Number of storey = (G+8) storey Plan dimension = $17m \times 17m$ X and Y direction = 5 bays, 3 bays spaced 3m and other 2 spaced 4m Bottom storey height =3.5m Typical storey height =3m

Chart: 2.2: Plan of the mode

2.3 BARE FRAME STRUCTURE

2.3.1. Material properties

Density of concrete =25 kN Density of steel = 7850 Grade of concrete =M25 Grade of steel =Fe500 **Sectional properties** Beam = 300mm×450mm Column= 450mm×450mm Slab = 150mm **General Loading** Live load (IS:875 1987) = 1.5kN/m2 Dead load (IS:875 1987) = 1.5 kN/m2 Earthquake load (IS:1893 2002) = 1.25 kN/m2

Chart: 2.3: 3d view of Bare frame

2.3.2 STRUCTURE WITH SHEAR WALL AT CORNER PERIPHERY

Section properties:

- Thickness of shear wall =230mm
- Grade of concrete = M25
- Grade of steel = Fe500

2.3.3 STRUCTURE WITH STEEL BRACING AT CORNER PERIPHERY

The cross(X) steel bracings used for the analysis is ISLB 200. The section dimensions are as follows: Total depth = 200mm Total width =75mm Thickness of flange =10.8mm Thickness of web=5.5mm

Chart: 2.3.3: 3D view of steel bracing

3. RESULTS AND DISCUSSIONS

Seismic analysis is conducted for G+8 structure i.e, bare frame structure, structure with shear wall at corner periphery and structure with steel bracings at corner periphery. The response of the structure subjected to seismic load is obtained in terms of Storey shear, Storey Displacement and Storey Drift is discussed below.

3.1 BARE FRAME STRUCTURE

3.1.1 STOREY SHEAR

IRJET

The Storey Shear of the structure subjected to seismic load is shown below.

Storey	Storey Shear(kN)
Story 8	66.988
Story 7	59.7532
Story 6	45.182
Story 5	32.644
Story 4	22.1392
Story 3	13.6676
Story 2	7.2293
Story 1	2.8816
GL	0.1182
Base	0

Chart 3.1.1: Bare frame storey shear

3.1.2 STOREY DISPLACEMENT

The Storey Displacement of the structure subjected to seismic load is shown below.

Table 3.1.2:	Bare frame	storey d	lisplaceme	nt
Table 3.1.2:	Bare frame	storey d	lisplaceme	n

Storey	Storey displacement(mm)	
Story 8	82.573	
Story 7	79.548	
Story 6	74.548	
Story 5	67.419	
Story 4	58.182	
Story 3	46.901	
Story 2	33.699	
Story 1	18.915	
GL	2.347	
Base	0	

Chart 3.1.2: Bare frame storey displacement

3.1.3 STOREY DRIFT

The Storey Drift of the structure subjected to seismic load is shown below.

Table 3.1.3: Bare frame storey drift

Storey	Storey drift (in 10 ⁻³)	
Story 8	1.009	
Story 7	1.666	
Story 6	2.376	
Story 5	3.079	
Story 4	3.76	
Story 3	4.401	
Story 2	4.928	
Story 1	4.734	
GL	1.565	

Chart 3.1.3: Bare frame storey drift

3.2 SHEAR WALL STRUCTURE

3.2.1 STOREY SHEAR

The Storey Shear of the structure subjected to seismic load is shown below.

Table 3.2.1: Shear wall storey shear

Storey	Storey shear(kN)	
Story 8	146.4044	
Story 7	143.7054	
Story 6	108.6619	
Story 5	78.5082	
Story 4	53.2443	
Story 3	32.8702	
Story 2	17.3859	
Story 1	7.0209	
GL	0.2995	

3.2.2 STOREY DRIFT

The Storey Drift of the structure subjected to seismic load is shown below.

Table 3.2.2: shear wall storey drift

Storey	Storey drift (in 10 ⁻³)	
Story 8	0.886	
Story 7	0.911	
Story 6	0.926	
Story 5	0.925	
Story 4	0.898	
Story 3	0.839	
Story 2	0.734	
Story 1	0.565	
GL	0.633	

Chart 3.2.2: shear wall storey drift

3.2.3 STOREY DISPLACEMENT

The Storey Displacement of the structure subjected to seismic load is shown below.

Table 3.2.3: shear wall storey displacement

Storey	Storey displacement(mm)	
Story 8	21.281	
Story 7	18.624	
Story 6	15.89	
Story 5	13.113	
Story 4	10.339	
Story 3	7.644	
Story 2	5.128	
Story 1	2.927	
GL	0.949	

Chart 3.2.3: shear wall storey displacement

3.3 STEEL BRACING STRUCTURE

3.3.1 STOREY SHEAR

The Storey Shear of the structure subjected to seismic load is shown below.

Table 3.3.1: Steel bracing storey shear

Storey	Storey shear(kN)	
Story 8	95.5956	
Story 7	85.5338	
Story 6	64.6758	
Story 5	46.7283	
Story 4	31.6911	
Story 3	19.5644	
Story 2	10.3481	
Story 1	4.1252	
GL	0.1704	

Chart 3.3.1: Steel bracing storey shear

3.3.2 STOREY DRIFT

The Storey Drift of the structure subjected to seismic load is shown below.

Table 3.3.2: Steel bracing storey drift

Storey	Storey drift (in 10 ⁻³)	
Story 8	0.969	
Story 7	1.266	
Story 6	1.526	
Story 5	1.759	
Story 4	1.958	
Story 3	2.11	
Story 2	2.212	
Story 1	2.155	
GL	0.894	

Charture 3.3.2: Steel Bracing storey drift

3.3.3 STOREY DISPLACEMENT

The Storey Displacement of the structure subjected to seismic load is shown below.

Table 3.3.3: Steel bracing storey displacement

Storey	Storey displacement(mm)	
Story 8	44.282	
Story 7	41.376	
Story 6	37.577	
Story 5	33	
Story 4	27.722	
Story 3	21.848	
Story 2	15.52	
Story 1	8883	
GL	1.342	

International Research Journal of Engineering and Technology (IRJET)e-ISSNVolume: 10 Issue: 05 | May 2023www.irjet.netp-ISSN

e-ISSN: 2395-0056 p-ISSN: 2395-0072

Chart 3.3.3: Steel bracing storey displacement

4. Comparison of response parameter structure

The comparison of the response of the building with bare frame and with structural systems such as shear wall and steel bracings in terms of parameters such as storey shear, storey drift and storey displacement is explained below. From the comparison of the response, it is seen that bare frame structure is very weak to seismic actions while the structure with shear wall and steel bracings at the corner periphery performs well against seismic load when compared to bare frame structure.

4.1. Storey shear

The comparison of Storey Shear with bare frame, shear wall and steel bracing the structure subjected to seismic load is shown below.

Storey	Storey shear(kN)		
	Bare	Shear	Bracing
	frame	wall	_
Story 8	66.988	146.4044	95.5956
Story 7	59.7532	143.7054	85.5338
Story 6	45.182	108.6619	64.6758
Story 5	32.644	78.5082	46.7283
Story 4	22.1392	53.2443	31.6911
Story 3	13.6676	32.8702	19.5644
Story 2	7.2293	17.3859	10.3481
Story 1	2.8816	7.0209	4.1252
GL	0.1182	0.2995	0.1704

Table 4.1: Comparison of storey shear with bare
frame, shear wall and bracing

Chart 4.1: comparison of storey shear with bare frame, shear wall and steel bracing

4.2 STOREY DRIFT

The comparison of Storey Drift with bare frame, shear wall and steel bracing the structure subjected to seismic load is shown below.

Table 4.2: Comparison of storey drift with bare frame,shear wall and bracing

	Storey drift (in 10 ⁻³)		
Storey	Bare frame	Shear wall	Bracing
Story 8	1.009	0.886	0.969
Story 7	1.666	0.911	1.266
Story 6	2.376	0.926	1.526
Story 5	3.079	0.925	1.759
Story 4	3.76	0.898	1.958
Story 3	4.401	0.839	2.11
Story 2	4.928	0.734	2.212
Story 1	4.734	0.565	2.155
GL	1.565	0.633	0.894

Chart 4.3: Comparison of storey drift with bare frame, shear wall and bracing

International Research Journal of Engineering and Technology (IRJET)e-ISSN: 2395-0056Volume: 10 Issue: 05 | May 2023www.irjet.netp-ISSN: 2395-0072

According to the obtained above graph, the structure with a shear wall and steel bracings experiences less storey shear, displacement, and drift than a typical bare frame building. Buildings with corner shear walls experience 4%, 36%, 26% less story shear, displacement, and drift, correspondingly. Storey shear, displacement, and drift are reduced by 10%, 23.%, and 11% respectively as compared to bare frame structure and structure with corner X steel bracings. As a result, it may be said that shear walls and steel bracings are more effective at protecting structures from earthquake load

5. CONCLUSION

Based on analysis and design of multistory structure the following conclusions are made:

Providing shear walls in suitable sites significantly reduces the earthquake related displacements. The seismic reaction is more significantly impacted by the placement of shear walls at corner and bracings at corner than bare frame.

When compared to a normal structure, the above designed structures natural lifespan is drastically reduced the following the installation of steel bracings and shear wall.

By using X Type steel bracing system, the building's lateral displacement is decreased by 35% to 45%, and the X bracing ty pe also reduces maximum displacement. By using X type steel bracing system the structure frame will have minimum possible bending moments compared to other two steel bracing types.

REFERENCES

- [1] Yashashri Ankalkhope (2021), "Wind and seismic analysis of building using ETABS", IRE Journals, Volume 04 Issue 12.
- [2] Dr. K. Chandra Sekhar Reddy (2019), "Seismic Analysis of High-rise Buildings (G+30) by using ETABS", International Journal of Technical Innovation in Modern Engineering & Science (IJTIMES), Volume 05 Issue 03, pp: 174-181.
- [3] B. Kusuma (2017), "Seismic Analysis of a High-rise RC Framed Structure with Irregularities", International Research Journal of Engineering and Technology (IRJET), Volume 4, Issue 7,pp: 1405-1411, July2017.
- [4] S. K. Madan, R. S. Malik, V. K. Sehgal, "Seismic Evaluation with Shear Walls and Braces for Buildings". World Academy of Science, Engineering and Technology International Journal of Computer and Information Engineering Vol:9, No:2, 2015

- [5] Alashker, Y., El-Tawil, S. and Sadek, F. (2015).
 "Progressive collapse resistance of steel-concrete composite floors," Journal of Structural Engineering, Vol. 136, No. 10,October 1, P1187-1196.
- [6] Mohd Atif1, Prof. Laxmikant Vairagade2(2015), "Comparative study on seismic analysis of multistorey building stiffened with bracing and shear wall". International Research Journal of Engineering and Technology (IRJET) ISSN: 2395-0056 <u>www.irjet.net</u> Volume: 02 Issue: 05, Aug-2015 P-ISSN: 2395-0072.
- [7] Ashwinkumar BalasoKarnale (2015), Comparative Seismic Analysis of High Rise and Low Rise RCC Building with Shear Wall, International Journal of Innovative Research in Science, Engineering and Technology, ISSN (Online) :2319-8753, ISSN (Print): 2347-6710 Vol. 4, Issue 9, September 2015.
- [8] S.R. Thorat and P.J. Salunke (2014), "Seismic Behavior of Multistory Shear Wall Frame Versus Braced Concrete Frames" International Journal of Advanced Mechanical Engineering. ISSN 2250-3234 Volume 4, Number 3 (2014), pp. 323-330