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Abstract - Video prediction aims to generate future 
frames from a given past frames. This is one of the 
fundamental tasks in the computer vision and machine 
learning. It has attracted many researchers and there are 
various methods have been proposed to address this task. 
However, most of them have focused on increasing the 
performance and ignored memory space and computation 
cost issue. In this paper, we proposed a lightweight yet 
efficient network for video prediction. In spire by 
depthwise and pointwise convolution in the image 
domainm, we introduce the 3D depthwise and pointwise 
con volution neural network for video prediction. The 
experiment results have shown that our proposed 
framework outperforms state-of-the-art methods in terms 
of PSNR, SSIM and LPIPS on standard datasets such as 
KTH, KITTI and BAIR datasets. 

Index Terms - Video Prediction, Lightweight Model, Video 
Processing. 

1.INTRODUCTION 

Video prediction is one of the fundamental problems in 
com puter vision. The goal of this task is to predict future 
frames from past video frames. The predicted future 
frames may be in the form of RGB images and/or optical 
flow. These fu ture frames can be used for a variety of 
tasks such as action prediction, video encoding, video 
surveillance, autonomous driving, etc. In recent years, 
deep learning has significantly improved the performance 
of the video prediction problem. Most of these methods 
use a convolutional neural network (CNN) model, a Long 
Short-Term Memory (LSTM) model, or a variant of them 
e.g., the ConvLSTMs model.  

 

Fig. 1. Overview of video prediction 

The video prediction task closely captures the 
fundamen tals of predictive coding modeling, and it is 
considered an in termediate step between raw video data 
and decision making. The potential to extract meaningful 
descriptions of underly ing patterns in video data makes 
the video prediction task a promising avenue for self-

supervised representational learn ing [1]. Unlike still 
images, video provides complex trans formations and 
patterns of movement across time. At a small level of 
detail, if we focus on a small array at the same spa tial 
location over successive time steps, we can identify a se 
ries of locally similar visual distortions due to consistent 
over time. In contrast, by looking at the big picture, 
successive frames will be visually different but 
semantically consistent. This variation in the visual 
appearance of videos at different scales is mainly due to, 
aberrations, variations in lighting con ditions and camera 
movement, among other factors. From this time-ordered 
visual signal, predictive models can extract representative 
space-time correlations describing movements in a video 
sequence. proposed to solve the problem mainly based on 
CNN and LSTM networks, ... Figure 1 shows an overview of 
the proposed machine learning methods to solve the video 
prediction problem. In it, a network is proposed to take as 
input i.e. videos, a sequence of stacked frames, and the 
output of the network is also a sequence of frames. How 
ever, the key difference between network input and 
output is that input frames display objects including 
shape, size, color, motion, etc, at the current time while 
output of the network are the predicted frames for the 
object’s future movements.  

Some typical methods can be mentioned as Kwon et al 
[2] have proposed a model based on liver retrospective 
cycle to solve the problem. Straka et al. [3] introduced a 
new net work architecture called PrecNet. Meanwhile, 
Byeon et al. [4] proposes a Contextvp network that allows 
both temporal and spatial information to be learned 
across Conv-LSTM lay ers. In this paper, we focus on the 
remaining problems that the above deep models have not 
solved and propose to build deep learning models with 
high results on standard datasets.  

Specifically, we propose a lightweight deep learning 
model based on 3D CNN to effectively solve the video pre 
diction problem. In which, instead of using conventional 
Convolution blocks, we propose to use Deptwise 
Convolution and Pointwise Convolution blocks to reduce 
computational cost and memory storage during training 
and testing. The test results show that the method 
proposed by us gives superior results compared to other 
state-of-the-art methods. 

The rest of the paper is presented as follows: Part 2 
presents the works related to video prediction problem in 
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cluding Future frame prediction and Video Prediction. The 
model we propose is described in Part 3 of the paper. It in 
cludes detailed problem and lightweight network model 
using Deptwise Convolution and Pointwise Convolution. 
Experi mental and comparative results are provided in 
section 4 of the paper. Finally, the Conclusions and 
References.  

2. RELATED WORK 

2.1. Future frame prediction 

* Autoregressive Models  

Autoregressive models have been widely used for 
future frame prediction tasks. These models typically 
employ recurrent neural networks (RNNs) or 
convolutional neu ral networks (CNNs) to capture 
temporal dependencies and generate future frames based 
on past observations. For in stance, Oh et al. [5] introduced 
a convolutional autoregressive model that predicts future 
frames by conditioning on previous frames using a spatial-
temporal transformer. Similarly, Lotter et al. [6] proposed 
an autoregressive model that combines an LSTM (Long 
Short-Term Memory) network with a spatial transformer 
to generate future frames.  

* Recurrent Neural Networks (RNNs)  

Recurrent Neural Networks have also been widely 
adopted for future frame prediction tasks. These models 
excel at mod eling sequential data and have been 
successful in capturing long-term dependencies. Villegas 
et al. [7] introduced a con ditional generative model based 
on an LSTM network, which learns to predict future 
frames conditioned on the available past frames. Mathieu 
et al. [8] proposed an encoder-decoder architecture with 
recurrent connections for video prediction, which learns 
to generate future frames by leveraging a com bination of 
past frames and the hidden states of the recurrent units.  

* Generative Adversarial Networks (GANs)  

Generative Adversarial Networks have emerged as a 
pow erful framework for future frame prediction. GAN-
based models consist of a generator network that 
synthesizes fu ture frames and a discriminator network 
that distinguishes between real and generated frames. 
Finn et al. [9] introduced a predictive GAN that learns to 
predict future frames by op timizing a multi-step 
prediction objective. Xue et al. [10] proposed a GAN-based 
framework that incorporates adver sarial training to 
generate more realistic future frames by capturing spatial 
and temporal coherence.  

* Hybrid Approaches  

Several recent approaches have combined different 
tech niques to improve future frame prediction 

performance. Wu et al. [11] proposed a hybrid model that 
combines autore gressive and GAN-based approaches to 
generate high-quality future frames. Their model 
leverages the strengths of both methods by using an 
autoregressive model to provide initial predictions and a 
GAN-based refinement network to enhance the generated 
frames. Zhang et al. [2] introduced a hybrid recurrent 
network that combines convolutional and recurrent layers 
to capture spatial and temporal dependencies for accu rate 
future frame prediction.  

Overall, these existing approaches have made significant 
con tributions to the field of future frame prediction. 
However, challenges such as long-term dependency 
modeling, spatial temporal coherence, and generating 
diverse and realistic fu ture frames remain active areas of 
research.  

2.2. Video prediction  

* Autoregressive Models  

Autoregressive models have been widely employed for 
video prediction, leveraging the tempo ral dependencies 
present in video sequences. These models typically utilize 
recurrent neural networks (RNNs) or con volutional 
neural networks (CNNs) to generate future frames based 
on past observations. Finn et al. [9] introduced a varia 
tional autoencoder (VAE) with a recurrent decoder for 
video prediction, which models the future frame 
distribution given the past frames. Similarly, Ranzato et al. 
[12] proposed a deep autoregressive model based on a 
combination of CNNs and RNNs for video prediction, 
capturing both spatial and temporal information.  

* Generative Adversarial Networks (GANs)  

Generative Adversarial Networks have emerged as a 
pow erful framework for video prediction. GAN-based 
models consist of a generator network that synthesizes 
future frames and a discriminator network that 
distinguishes between real and generated frames. 
Vondrick et al. [13] introduced a GAN based video 
prediction model that generates plausible future frames 
by training a generator to minimize the adversarial loss 
against a discriminator. Mathieu et al. [8] extended this ap 
proach by incorporating an adversarial loss alongside a re 
construction loss, leading to improved video prediction 
per formance.  

* Optical Flow-based Methods  

Optical flow-based methods leverage the estimation of 
motion between frames to predict future frames. These 
meth ods typically estimate the dense optical flow field 
and use it to warp the current frame to generate the next 
frame. Walker et al. [14] proposed a flow-based video 
prediction model that learns to generate future frames by 
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warping the current frame based on estimated optical 
flow. By incorporating optical flow estimation, these 
methods can capture dynamic changes in the video 
sequence and produce accurate predictions.  

* Hybrid Approaches  

Recent research has focused on combining different 
tech niques to improve video prediction performance. 
Wang et al. [15] introduced a hybrid model that combines 
autoregressive and GAN-based approaches. Their model 
utilizes an autore gressive network to generate initial 
predictions, which are refined by a GAN-based network to 
enhance the visual quality and realism of the generated 
frames. Liu et al. [16] proposed a hybrid approach that 
combines a deterministic motion model with a GAN-based 
model to capture both deterministic and stochastic 
aspects of video dynamics.  

Overall, the existing approaches in video prediction have 
made significant contributions to the field. However, chal 
lenges such as long-term prediction accuracy, capturing 
com plex dynamics, and generating diverse and realistic 
future frames remain active areas of research.  

3. PROPOSED METHOD 

3.1. Problem Setup 

Given a sequence of past t frams i.e., I1, I2,…, It  where I = 1, 
2, …, t and          , in which, H, W, 3 denote the 
hieght, width and channel, respectively. Video prediction 
aims to predict the future frames             We build the 
encoder network    and decoder network    to generate 

predictive future frames  ̂     ̂      where   and   are the 
trainable model weights. 

To train all network in our proposed approach, we 
minimize the final objective loss function in Eq. 1. 

                     (1) 

where      is the    loss i.e., mean squared error (MSE) 

between perdictive frame  ̂    and ground-truth frame 
     as follows: 
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Beside MSE, we also utilize the gradient difference loss 
     as introduced in [8, 17] for both  ̂    and      

In Eq. 3. 
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Where   is an integer greater or equal to 1,       and 
      which H and W denoting the high and width of 
the image, respectively, and | . | is the absolute value 
function operation. 

3.2. Traditional Convolution 

Deep learning models heavily rely on the mathematical 
operation of convolution. With the aid of image frames, it 
can be used to classify data and learn characteristics. 
Assume that the input data has the following dimensions: 
       , where M is the number of channels (3 for an 
RGB image) and Df, Df, can be the size of the image. 
Assume there are N filters or kernels with the size 
       . The output size will be         if a 
standard convolution operation is performed (see Figure 
2). 

 

Fig. 2. The describe about common convolution 

Since there are N filters and each filter sildes vertically and 
horizontally Dp time. So for normal convolution operation, 
total no of multiplication =            . 

3.3. Depthwise and Pointwise Convolution 

In depth-wise operation, convolution is applied to a single 
channel at a time unlike standard CNN’s in which it is done 
for all the M channels. So here the filters/kernels will be of 
size        . Given there are M channels in the input 
data, then M such filters are required. Output will be of 
size         (see Figure 3 (a)). So for depth wise 
convo lution operation, total no of multiplications is 
         . 
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Fig. 3. The describe about (a) Depthwise Convolution and 
(b) Pointwise Convolution 

In point-wise operation, a     convolution operation 
is applied on the M channels. So the filter size for this 
operation will be      . Say we use N such filters, the 
output size becomes         (see Figure 3 (b)). So for 
point wise convolution operation, total no of 
multiplications =        . 

3.4. Encoder Network 

This network aims to find the spatio-temporal features 
from the input video. Specifically, the output of the 
encoder net work E as follows: 

                 

where h is spatio-temporal feature vectors generated from 
the encoder network E. The encoder network architecture 
is shown in Table. 1. 

Table 1. The encoder network architecture. The network 
in cludes 6 3D Conv blocks. Each block includes two 
convolu tion layers where the stride of the first 
convolution layer is set to stride value in the column 
”Specification”, and the other is set to 1. The SE module is 
applied at the end of each block. 

Layer Specification Output Size 

Input          

3D Conv 
Block 1 

         

stride = 2,2,2 

 

 
 

 

 
 

 

 
    

3D Conv 
Block 2 

         

stride = 1,1,1 

 

 
 

 

 
 

 

 
    

3D Conv 
Block 3 

          

stride = 2,2,2 

 

 
 

 

 
 

 

 
     

3D Conv 
Block 4 

          

stride = 1,1,1 

 

 
 

 

 
 

 

 
     

3D Conv 
Block 5 

          

stride = 2,2,2 

 

 
 

 

 
 

 

 
     

3D Conv 
Block 6 

          

stride = 1,1,1 

 

 
 

 

 
 

 

 
     

 
In particular, total has six 3D Conv blocks in the 

encoder network E. In which, each block contains two 
depthwise and pointwise convolution layers. Following 
each convolution layer are a BatchNormalize layer and a 
Leaky ReLU layer. We also utilize a Squeeze-and-
Excitation (SE) [18] module after the second convolution 
layer. This helps to recalibrate the dynamic channel-wise 
feature via explicitly modeling in terdependencies 
between channels.  

3.5. Decoder Network 

The decoder network D has six DeConv blocks, just like 
the encoder network. However, the DeConv block seeks to 
increase the height and breadth and decrease the channel 
dimensions of each feature matrix following the en coder 
block in order to gradually restore the next future frame. 
Note that we also use the residual connection from the 
encoder to the decoder, i.e., 3D Conv block 2 is connected 
to 3D DeConv block 5, 3D Conv block 4 is connected to 3D 
DeConv block 3, and 3D Conv block 6 is connected to 3D 
DeConv block 1. The decoder network is detailed in Table 
2. 

Table 2. The decoder network architecture. This 
backbone consists of 6 decoder blocks. In which each 
block has two convolution layers, with the first layer's 
stride being set to 1 throughout all convolution layers. We 
apply the Upsampling layer at the top of each block to 
increase the height and breadth of feature matrices based 
on the "upsample" parameter. At the conclusion of each 
block, the SE module is applied.  

Layer Specification Output Size 

Input  
 

 
 

 

 
 

 

 
     

3D DeConv 
Block 1 

          

upsample = 1,1,1 

 

 
 

 

 
 

 

 
     

3D DeConv 
Block 2 

          

upsample = 2,2,2 

 

 
 

 

 
 

 

 
     

3D DeConv 
Block 3 

          

upsample = 1,1,1 

 

 
 

 

 
 

 

 
     

3D DeConv 
Block 4 

          

upsample = 2,2,2 

 

 
 

 

 
 

 

 
     

3D DeConv 
Block 5 

         

upsample = 1,1,1  

 

 
 

 

 
 

 

 
    

3D DeConv                   
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Block 6 upsample = 2,2,2 

Prediction 
        

stride = 1,1,1 
        

 

4. EXEPERIMENTS 

4.1. Datasets 

In this work, we utilize three standard datasets including 
KTH Action [19], KITTI [20, 21] and BAIR [22], to evaluate 
the proposed framework and compare to other state-of-
the-art ap proaches. 

KTH Action is widely used and comprises six activities: 
walk, jog, run, box, hand-wave, and hand clap. To ensure 
performance accuracy, each action was performed by 25 
different individuals, and the conditions were consistently 
al tered for each actor. The environmental modifications 
consist of outdoor (s1), outdoor with scale variation (s2), 
outdoor with different attire (s3), and indoor (s4). These 
variations evaluate the ability of each algorithm to 
distinguish activities regardless of background, actor 
appearance, and actor size. 

KITTI is a widely used dataset in mobile robotics and au 
tonomous driving. It includes multiple hours of traffic 
scenar ios recorded using various sensor modalities, such 
as high resolution RGB, grayscale stereo cameras, and a 3D 
laser scanner. In video prediction, we only use the RGB 
frames following previous settings [23].  

BAIR is comprised of a collection of images measuring 64 
× 64 pixels. These images depict a robot pushing objects 
on a tabletop surface. The dataset contains a large number 
of im ages, which allows for the training and evaluation of 
machine learning algorithms for various computer vision 
and robotics tasks. The dataset can be used to train 
machine learning mod els to recognize and track the 
objects on the table, to estimate the pose of the robot, or to 
predict the trajectory of the objects being pushed by the 
robot. 

4.2. Implementation Detail  

For the KITTI dataset, we adopt 10 frames as an input 
video to train the model to predict the next 10 frames. For 
the KTH Action dataset, we adopt 10 frames as an input 
video to train the model to predict the next 30 frames. And 
for the BAIR dataset, we use 2 frames as the input and 
predict next 10 frames. All frames in all datasets are 
normalized to be [0, 1] by dividing each element pixel by 
255. We utilize the Adam optimizer for backpropagation 
with the initial learning rate of 0.003,       , and 
        . In our framework, the loss weight factor   in 
Eq. 1 is set to 1. 

 

4.3. Quantitative Metric  

Peak Signal-to-Noise Ratio (PSNR) is a measure used to 
evaluate the quality of a signal, such as an image or a 
video, by comparing the original signal with the degraded 
or com pressed version of the signal. It is commonly used 
in im age and video processing to quantify the level of 
distortion that occurs during compression or 
transmission. In video pre diction, we use PSNR to 
compare the difference between the original frame and the 
predicted frame. The higher value rep resents better 
similarity.  

Structured Similarity (SSIM) is a metric used to measure 
the similarity between two images or videos. It is a full ref 
erence image quality assessment technique that evaluates 
the structural information of an image or video, rather 
than just the pixel values. SSIM measures the similarity 
between two images by comparing the luminance, 
contrast, and structure of the images. The metric 
calculates the similarity index be tween two images, which 
ranges from -1 to 1, where 1 indi cates that the two images 
are identical, and -1 indicates that they are completely 
dissimilar.  

Learned Perceptual Image Patch Similarity (LPIPS) is a 
perceptual image quality assessment metric that uses 
deep neural networks to measure the similarity between 
two im ages. LPIPS uses a deep neural network that is 
trained on a large dataset of images to learn the features 
that are important for human perception of image quality. 
The network is trained to predict the similarity score 
between two images, based on the differences between the 
features that it extracts from the images.  

4.4. Comparison and Analysis  

We first compare the our proposed framework to state-of 
the-art methods on the KTH dataset. As shown in Table 3, 
our method outperforms all others by a margin of 0.92 – 
4.1 PSNR, 0,0113 – 0,1246 SSIM.  

Table 3. Compare the performance of our proposed frame 
work to state-of-the-art methods in terms of PNSR, SSIM, 
and LPIPS metrics on the KTH dataset. All methods use 10 
frames as an input video to train the model to predict the 
next 30 frames. 

Model PSNR( ) SSIM( ) LPIPS( ) 

SV2P [24] 28.19 0.8141 0.2049 

SAVP [25] 26.51 0.7564 0.1120 

SVG [26] 28.06 0.8438 0.0923 

SRVP [27] 29.69 0.8697 0.0736 

SLAMP [23] 29.20 0.8633 0.0951 

Ours 30.61 0.881 0.089 
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We next conduct the experiment of our framework and 
compare it to several methods such as SRVP [27], SVG 
[26], SLAMP [23], etc on the KITTI dataset. As expected, 
our framework achieve 13.94 PSNR, 0.375 SSIM and 0.516 
LPIPS in Table 4. This better than all other methods by a 
margin of 0.48 – 1.24 PSNR, 0.0113 – 0.1246 SSIM, and 
0.021 – 0.119 LPIPS. 

Table 4. Compare the performance of our proposed frame 
work to state-of-the-art methods in terms of PNSR, SSIM, 
and LPIPS metrics on the KITTI dataset. 

Model PSNR( ) SSIM( ) LPIPS( ) 

SVG [26] 12.70 0.329 0.594 

SRVP [27] 13.41 0.336 0.635 

SLAMP [23] 13.46 0.337 0.537 

Ours 13.94 0.375 0.516 

 

We further experiment with our approach on the BAIR 
dataset. As shown in Table 5, our approach outperforms 
most state-of-the-art methods. Overall, we demonstrate 
that our framework achive the state-of-the-art 
performance on stan dard datasets. 

Table 5. Compare the performance of our proposed frame 
work to state-of-the-art methods in terms of PNSR, SSIM, 
and LPIPS metrics on the BAIR dataset. 

Model PSNR( ) SSIM( ) LPIPS( ) 

SV2P [24] 20.39 0.8169 0.0912 

SAVP [25] 18.44 0.7887 0.0634 

SVG [26] 18.95 0.8058 0.0609 

SRVP [27] 19.59 0.8196 0.0574 

SLAMP [23] 19.67 0.8161 0.0639 

Ours 19.87 0.834 0.061 

 

5. CONCLUSION  

In this work, we present an efficient network for video 
predic tion. Specifically, our framework is based on 
Depthwise and Pointwise Convolution to reduce the model 
size and computa tional cost yet keeping the state-of-the-
art performance. This have been demonstrated in the 
image domain. For this task, we expand it for video 
domain and compare it to various deep learning-based 
methods. Experiment results on several com mon datasets 
have shown that our approach achieves best per formance 
compared to state-of-the-art methods but requires less 
memory space and computational cost. In future work, we 
plan to expand this approach for other tasks such as action 
recognition, video summary, etc.  
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