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Abstract - In this study, a Modified Mountain Gazelle 
Optimizer (MMGO) algorithm is presented. The proposed 
algorithm was designed to improve the ability of MGO in 
solving high-dimensional problems, increase convergence 
speed, and enhance stability. The modification is based on the 
application of a logistics chaotic mapping at the initialization 
stage, a modified Migration pattern in the Search of Food 
(MSF) phase for diversity maintenance, and a controlling 
factor at the Territorial and Solitary Males (TSM) phase using 
the truncation selection technique. The proposed algorithm 
was implemented in MATLAB software and its performance 
was tested on 23 benchmark functions, and a real-life 
engineering problem to prove its efficiency and adaptability. 
The results of the MMGO were compared with those of the 
basic Mountain Gazelle Optimizer (MGO), Particle Swarm 
Optimization (PSO), and Gravitational Search Algorithm 
(GSA). The findings of the work indicated that the MMGO 
outperformed the other state-of-the-art algorithms in terms of 
both optimization accuracy and computational efficiency. The 
results demonstrated the effectiveness and robustness of the 
proposed MMGO algorithm, in solving high-dimensional 
optimization problems in engineering and other fields.  
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1. INTRODUCTION 
 
The use of metaheuristic algorithms in finding optimal 
solutions to complex problems has seen wide applications in 
various fields such as engineering, finance, and computer 
science [1,2]. However, as the complexity and dynamism of 
the problem increase, metaheuristic algorithms often 
struggle to find the global optimum solution within a 
reasonable time frame and iterations [3-5]. To address this 
limitation, researchers have proposed modifications to 
metaheuristic algorithms to enhance their performance in 
solving complex optimization problems [6-8]. These 
modifications can improve the search efficiency of the 
metaheuristic algorithms, thereby enabling them to find 
better solutions. One such modification is the incorporation 
of problem-specific operators [9]. For instance, Ogun et al 
proposed a modified bull optimization algorithm for 
continuous optimization problems based on genetic 
operators [10], and Bing et al improved the Sparrow Search 

Algorithm (SSA) with a mutation strategy for global 
optimization [11].  

Though these improved algorithms offer a promising avenue 
for solving complex problems, researchers are still in search 
of novel algorithms that exhibit robustness, flexibility, and 
the ability to handle diverse problem domains. Also, the 
dynamic nature of many real-world problems necessitates 
newly developed algorithms that are adaptive and can 
quickly respond to changing or evolving problem conditions 
[9,11]. The Mountain Gazelle Optimizer (MGO) developed by 
Benyamin et al [12] in 2022 is one of such algorithms. The 
MGO has been proven to handle problems characterized by 
high nonlinearity, and combinatorial complexity and has 
exhibited good performance when tested on some standard 
benchmark test functions and real-life engineering problems. 
However, similar to some other metaheuristic algorithms, it 
still suffers from optimization accuracy, slow convergence, 
and entrapment in suboptimal solutions when applied to 
complex high-dimensional optimization problems [12]. 
These high-dimensional and large-scale problems often 
exhibit a large number of variables, constraints, and 
interactions, making it difficult for the MGO to get an exact 
solution due to the exponential growth of the search space. 

This is mainly associated with the poor quality of the initial 
population, lack of proper diversity maintenance 
mechanism, and lack of effective convergence control in the 
algorithm derivation [12]. However, in order to ensure the 
holistic application of this essential algorithm which is based 
on the social intelligence of mountain gazelles in the wildlife, 
there needs to be an improvement of its parameters to 
ensure its exploration and exploitation ability to deal with 
high dimensional problems.  

Therefore, this paper proposes a Modified Mountain Gazelle 
Optimizer (MMGO), an improvement of the MGO algorithm 
to enhance its performance in solving high-dimensional 
engineering problems. Three modifications are incorporated. 
Firstly, a Logistic Chaotic mapping [13][14] is utilized to 
replace the random initialization in MGO to improve the 
quality of the initial population. Secondly, an operator is 
modified to maintain diversity in the population during the 
execution process to avoid suboptimal solutions [15]. 
Thirdly, a Truncation Selection Technique [16] is adopted to 
determine the value of the newly introduce parameter to 
control the convergence speed. The effectiveness of the 
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proposed MMGO algorithm is established by benchmarking 
its performance against the original MGO and other state-of-
the-art optimization algorithms, including PSO [8], and GSA 
[17].  

The remainder of this paper is arranged as follows: the basic 
MGO algorithm is briefly described in section 2. In section 3, 
a detailed description of the three modifications is 
presented. Section 4 contains the test benchmark functions 
and the engineering problem, together with test parameters. 
Section 5: the results are presented and discussed. Finally, 
the conclusion and recommendations are presented in 
section 6. 

2. MOUNTAIN GAZELLE OPTIMIZER (MGO) 

2.1 Inspiration 
 

The mountain gazelle is a type of gazelle that is native to 
the Arabian Peninsula and surrounding areas [12]. Although 
it has a large distribution range, its population density is 
quite low. The species is closely associated with the habitat of 
the Robinia tree species. Mountain gazelles are highly 
territorial and their territories are located at a significant 
distance from one another. They form three types of groups, 
including mother-offspring herds, young male herds, and 
single males with their territories. Male gazelles engage in 
regular battles, with the struggle for resources being more 
dramatic than the battles for the possession of females. 
Immature males use their horns more often in fights than 
adults or territorial males. Mountain gazelles migrate more 
than 120 km in search of food. They have a high running 
speed, with the ability to run a hundred meters at 80 km/h. 

2.2 Mathematical Model of MGO 
 

The MGO optimization algorithm is derived from the 
social behavior and habitats of mountain gazelles and is 
based on a mathematical model that incorporates key 
aspects of the gazelles’ group life, including the behavior of 
bachelor male herds (BMH), maternity herds (MH), 
territorial and solitary males (TSM), and migration pattern 
in search of food (MSF) [12]. They are modelled 
mathematically, as follows. 

 
Territorial Solitary Males (TSM): 
 
Adult mountain gazelles create and protect their 

territories by engaging in a battle, and this phenomenon is 
modeled into equation 1 as follows. 

 

  1 2

 
Where; ri1 and ri2 are random integers 1 or 2, malegazelle 

represents the position vector of the global solution (best 
male gazelle), and HB, F, Cofr are given in equations (2), (3), 
and (4) respectively. 

 1 2 3
, .....N

ra prBH X r M r ra N           (2) 

 
Xra is a random solution (young male) in the range of ra. 

Mpr is the average number of search agents randomly 
selected. N is the number of gazelles, and r1 and r2 are 
random values from a range of 0 and 1. 

 

    2
1 exp 2

MaxIter
F N D Iter                   (3) 

 
N1 is a random value in the problem dimension 

determined using a standard distribution, Iter, and MaxIter 
represents the iteration counter and the maximum iterations 
respectively. 

In equation (4), a is calculated using equation (5). also, r3 
and r4 are random values selected from a range of 0 to 1. N2, 
N3, and N4 are random numbers in the normal range of the 
search space and have the problem dimension. 

 
 

 

 

 

        

3

2

4

2

3 4 4 3

1 ,

,

,

cos 2 ,

i

a r

a N D
Cof

r D

N D N D r N D

 



 

    

  (4) 

 
 

               (5) 

 
Maternity Herds (MH): 
 
Maternity herds play an important role in mountain 

gazelles’ life as the mother provides immediate protection 
and grooming to her young ones. This is modelled in 
Equation 6 below. 

 

 
Xrand is a random vector position of a gazelle from the 

entire population, ri3 and ri4 are integers randomly selected 
from either 1 or 2. 

 
Bachelor Male Herds (BMH): 
 
Upon maturity, young adult males create their territories 

and turn to engage in a battle with the adult males for the 
possession of the female gazelles. This is formulated into 
equation (7). 

 

 

 
 

   
 

1a Iter
MaxIter

1

5 6gazelle rBMH X t D ri male ri BH Cof             (7)     

   1, 3 4 1,r gazelle rand rMH BH Cof ri male ri X Cof               (6) 

| |gazelle rTSM male ri HB ri X t F Cof               (1) 
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X(t) is the position vector of the gazelle in the current 
iteration, ri5, and ri6 are integers of either 1 or 2. D is 
determined using equation (8), where r6 is a randomly 
selected value from a range of 0 to 1. 

 

   6| ( ) | | | 2 1gazelleD X t male r                  (8) 

 
Migration in Search of Food (MSF): 
 
Mountain gazelles continuously look for food by traveling 

over long distances. This random movement is modelled in 
Equation (9) below. 

 

  7MSF ub lb r lb      (9) 

 
Where; lb, and ub are the lower and upper bounds of the 

search space respectively, and r7 is a randomly determined 
value (0,1). 

 
Algorithm 1: Pseudo-code of MGO 
Inputs: the population size N, and maximum iterations 
Output: Gazelle’s location and fitness potential 
Create a random population, Xi ( i=1,2,..N) 
Calculate Gazelle’s fitness level. 
While (the stopping condition is not met) do 

for (each Gazelle (Xi)) do 
Calculate TSM using equation (1) 
Calculate MH using equation (2) 
Calculate BMH using equation (3) 
Calculate MSF using equation (4) 
Calculate the fitness values of TSM, MH, BMH, 
and MSF 

end for 
Sort the entire population in ascending order according 
to fitness. 

end while 
Return XbestGazelle , the Best Fitness value. 

 
3. PROPOSED MODIFICATION 
 
To modify the basic mountain gazelle optimizer (MGO) to 
improve its performance in handling high-dimensional 
optimization problems, three approaches were used. Firstly, a 
logistic chaotic mapping [13] is adopted to generate the 
initial population of the algorithm in place of the random 
approach used in the traditional MGO. This is given in 
Equation (10) below. 

Where; Xch is a set of values generated from the range 0 to 1 
with the problem dimension using logistic chaotic mapping 
by equation (11). 
 

 1 1 , 1,....,j j j jX r x x j d       (11) 

 
Where; rj is a randomly chosen value from the range of 3.5 to 
4, x0 is the initial value of xj chosen as 0.5. Below is the 
pseudocode for XCh. 
 
Initialize xo (xo =0.5), d, lb, ub, and N. 

For i=1:N 

 3.5 4 3.5 ;r rand   
 

For j=1:d 

                  Update the value ChX  according to equation (11). 

End 

Update the value iX   according to equation (10). 

End 
 
Also, the update operator at the territorial and solitary male 
(TSM) phase, that is equation (12), is modified to increase 
the convergence speed of the MGO algorithm by introducing 
a controlling factor whose value is determined using the 
truncation selection technique in the genetic algorithm [16]. 
The updated operator is shown in equation (12). 
 

  1 2| |gazelle rTSM male ri BH ri X t F Cof                  (12) 

 

Where  0,1    is a controlling factor determined using the 

truncation selection technique based on the pseudocode 
given below. 
 
Start  
Select n, the sample size. 
For i=1: n 

 
();ix rand

 
 Evaluate the performance of ix . 

End 
Sort all values of x according to the performance from best to 
worst. 

Select 1x  , where 1x  is the best x value. 

End 
 
Finally, the update operator at the migrating to search for 
food (MSF) phase is modified by changing it to enhance its 
ability to search thoroughly within the search space for the 
continuous maintenance of good divergence in the 
population for high dimensional problems. The adopted 
approach has been applied in [5,15]. It is given in equation 
(13) below. 
 

  71MSF ub lb r lb       (13) 

 

  ( ), 1,...,i chX lb ub lb X d i N              (10) 
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Where lb and ub, are the lower and upper bounds of the 
search space, and r7 is a random value selected from the 
range 0 to 1. 
 
The flowchart of the propose modified MGO is shown in fig 1 
below 
 

Start

Initialize population N using equation 

(10), Iter, and MaxIter

Calculate TSM, MH, BMH, and MSF using the modified 

eq (12), eq(6), eq(7), and eq(13) respectively

Calculate the fitness of TSM, MH, BMH, 

and MSF from the modified equations

Update and sort entire population in ascending 

order according to their fitness values

t >= T ?

Yes

j > = N ?

Yes

End

Save the best fitness value

No j = j+1

t=t+1 No

Return X(best) and F(best)

 
 

Fig-1: Flow Chart of MMGO algorithm 

 
4. TESTING OF PROPOSED MMGO 

Twenty-three (23) Standard benchmark test functions and 
the parameter estimation for FM sound wave optimization 
problem [12], were used to test the proposed modification to 
ascertain the effectiveness of its performance. The twenty-
three (23) standard benchmark test functions that consist of 
third-teen (13) high-dimensional problems, and ten (10) 
fixed-dimensional problems were tested on. The results 
were compared to other three optimization algorithms, 
including original MGO [12], Particle Swarm Optimization 
(PSO) [8], and Gravitational Search Algorithm (GSA) [17]. 
The details of the functions are given in Table 1. 
 
 
 
 

Table-1: Detail Information of Benchmark Functions 
 

No Function Search Range Global 
Optimum 

Dime
nsion 

1 F1 [-100, 100] 0 30 
2 F2 [-10, 10] 0 30 
3 F3 [-100, 100] 0 30 
4 F4 [-100, 100] 0 30 
5 F5 [-30, 30] 0 30 
6 F6 [-100, 100] 0 30 
7 F7 [-1.28, 1.28] 0 30 
8 F8 [-500, 500] -12,569 30 
9 F9 [-5.12, 5.12] 0 30 
10 F10 [-32, 32] 0 30 
11 F11 [-600, 600] 0 30 
12 F12 [-50, 50] 0 30 
13 F13 [-50, 50] 0 30 
14 F14 [-65.53, 65.53] 0.998 2 
15 F15 [-5, 5] 0.00030 4 
16 F16 [-5, 5] -1.0316 2 
17 F17 [-5, 0] [10, 15] 0.398 2 
18 F18 [-5, 5] 3 2 
19 F19 [0, 1] -3.86 3 
20 F20 [0, 1] -3.32 6 
21 F21 [0, 10] -10.1532 4 
22 F22 [0, 10] -10.4028 4 
23 F23 [0, 10] -10.5363 4 

 
In addition to the above details, the proposed MMGO 
algorithm was implemented in MATLAB 2019a version using 
the standard parameters in reference [12]. These included 
500 iterations and 30 runs for each test function. The 
following statistical information was extracted from the 
results and compared to that of the original MGO, PSO, and 
GSA; best solution (Best), worst solution (Worst), mean 
solution (Mean), and standard deviation of the solutions 
(STD). 
 
To assess the performance of the proposed MMGO algorithm 
on handling high dimensional engineering problems, it was 
tested on the standard Parameter Estimation of FM Sound 
Wave optimization problem which is one of the challenging 
high-dimensional and multimodal engineering problems 
[12]. The proposed MMGO algorithm was tested on it to 
establish its superiority over other algorithms by 
comparison of their solutions. 
 

The best solution of the problem is   0solf X   , where 

 1 1 2 2 3 3, , , , ,solX a a a   .  

 

The mathematical representation of the problem used as 
objective function is presented in equation 14. 
 

   
100

2

0

0

( ) ( )sol

t

f X y t y t


           (14) 
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Where, 

   1 1 2 2 3 3( ) .sin . . .sin . . .sin . .y t a t a t a t                   (15) 

     0 (1.0).sin (5.0). . (1.5).sin (4.8). . (2.0).sin (4.9). .y t t t t         (16) 

 

Where; 
2

100


   

 

5. RESULTS AND DISCUSSIONS 
 
The outcome of the tests is as shown in table 2. Table 2 
contains the simulation results of the proposed MMGO 
algorithm and other state-of-the-art optimization algorithms 
(MGO, PSO, and GSA). The comparison is based on the best 
results, worst results, mean, and standard deviation from 
repeated runs of thirty times. The proposed MMGO 
significantly outperformed MGO, PSO, and GSA in F1, F2, F3, 
F4, F5, F6, F7, F8, F9, F10, F11, F12, and F13. These functions 
are high-dimensional optimization test functions, implying 
that the proposed MMGO would outperform the others in 
real high-dimensional problems. 
 

Table – 2: Results Comparison of Test Functions 
 

Fn Para 
MMGO MGO PSO GSA 

F1     Best 
Worst 
Mean 
STD 

6.39E-149 
8.92E-137 
3.34E-138 
1.63E-137 

2.41E-81 
4.95E-71 
4.74E-72 
1.34E-71 

7.11E-09 
7.36E-05 
4.46E-06 
1.45E-05 

1.46E-16 
1.06E-15 
4.04E-16 
2.27E-16 

F2 
Best 
Worst 
Mean 
STD 

3.15E-90 
5.63E-84 
4.64E-85 
1.34E-84 

1.67E-46 
6.08E-41 
3.91E-42 
1.19E-41 

5.69E-06 
2.05E-02 
3.33E-03 
5.41E-03 

 5.78E-08 

3.11E+00 

1.87E-01 

6.02E-01 

F3 
Best 
Worst 
Mean 
STD 

4.46E-42 
3.23E-12 
1.10E-13 
5.89E-13 

3.53E-14 
1.64E-07 
6.82E-09 
2.98E-08 

1.82E+01 
3.48E+03 
5.89E+02 
9.90E+02 

4.95E+02 
2.05E+03 
1.11E+03 
3.91E+02 

F4 Best 
Worst 
Mean 
STD 

1.99E-47 
7.22E-39 
2.47E-40 
1.32E-39 

5.25E-30 
4.14E-22 
1.59E-23 
7.54E-23 

2.64E-01 
2.10E+00 
5.33E-01 
3.80E-01 

 3.99E+00 
1.14E+01 
7.96E+00 
1.79E+00 

F5 Best 
Worst 
Mean 
STD 

0.00E+00 
8.71E-29 
6.56E-30 
1.71E-29 

0.00E+00 
2.55E-22 
1.19E-23 
4.95E-23 

1.98E+01 
1.08E+02 
4.66E+01 
3.05E+01 

2.31E+01 
1.91E+02 
6.38E+01 
4.53E+01 

F6 Best 
Worst 
Mean 
STD 

3.49E-12 
7.97E-07 
3.90E-09 
1.67E-09 

4.81E-12 
3.51E-08 
4.54E-09 
7.65E-09 

6.74E-09 
4.11E-05 
2.91E-06 
7.60E-06 

1.83E-11 
1.08E+01 
5.96E-01 
2.29E+00 

F7 Best 
Worst 
Mean 
STD 

2.45E-05 
2.42E-03 
5.38E-04 
3.14E-04 

3.24E-05 
1.53E-03 
5.59E-04 
3.89E-04 

4.07E-02 
1.56E-01 
9.50E-02 
2.99E-02 

3.36E-02 
2.91E-01 
1.11E-01 
5.09E-02 

F8 
Best 
Worst 
Mean 
STD 

-1.25E+04 
-1.25E+04 
-1.25E+04 
 5.21E-10 

-1.25E+4 
-1.25E+4 
-1.25E+4 
3.99E-08 

-3.31E+3 
-1.95E+3 
-2.59E+3 
2.810E+2 

-3.15E+3 
-1.52E+3 
-2.39E+3 
3.48E+02 

F9 
Best 
Worst 
Mean 
STD 

0.00E+00 
0.00E+00 
0.00E+00 
0.00E+00 

0.00E+0 
0.00E+0 
0.00E+0 
0.00E+0 

1.99E+01 
7.26E+01 
3.86E+01 
1.35E+01 

1.59E+01 
5.77E+01 
3.25E+01 
9.91E+00 

F10 
Best 
Worst 
Mean 
STD 

8.881E-16 
8.881E-16 
8.881E-16 
0.00E+00 

8.88E-16 
4.44E-15 
1.71E-15 
1.53E-15 

3.77E-06 
2.41E+00 
3.13E-01 
7.30E-01 

8.08E-09 
1.64E+00 
1.38E-01 
4.25E-01 

F11 
Best 
Worst 
Mean 
STD 

0.00E+00 
0.00E+00 
0.00E+00 
0.00E+00 

0.00E+00 
0.00E+00 
0.00E+00 
0.00E+00 

6.319E+1 
1.037E+2 
8.319E+1 
1.073E+1 

2.236E+1 
4.291E+1 
3.195E+1 
5.336E+0 

F12 Best 
Worst 
Mean 
STD 

1.570E-32 
1.570E-32 
1.570E-32 
5.567E-48 

1.57E-32 
2.19E-25 
1.69E-26 
4.54E-26 

9.37E-11 
1.56E+00 
2.49E-01 
3.71E-01 

6.51E-02 
5.25E+00 
2.32E+00 
1.34E+00 

F13 Best 
Worst 
Mean 
STD 

1.349E-32 
1.349E-32 
1.349E-32 
5.567E-48 

1.35E-32 
6.40E-32 
1.81E-32 
9.95E-33 

2.92E-11 
1.10E-02 
2.56E-03 
4.72E-03 

6.00E-02 
3.43E+01 
1.28E+01 
7.60E+00 

F14 Best 
Worst 
Mean 
STD 

9.980E-01 
9.980E-01 
9.980E-01 
2.719E-17 

9.98E-01 
9.98E-01 
9.98E-01 
1.84E-16 

9.98E-01 
1.99E+00 
1.33E+00 
4.76E-01 

9.98E-01 
1.47E+01 
4.76E+00 
3.61E+00 

F15 Best 
Worst 
Mean 
STD 

3.07E-04 
1.22E-03 
3.05E-04 
2.27E-04 

3.07E-04 
1.22E-03 
3.70E-04 
2.31E-04 

3.07E-04 
2.03E-02 
1.28E-03 
3.63E-03 

8.68E-04 
1.18E-02 
4.33E-03 
2.63E-03 

F16 Best 
Worst 
Mean 
STD 

-1.032E-0 
-1.032E-0 
-1.032E-0 
5.296E-17 

-1.032E-0 
-1.032E-0 
-1.032E-0 
4.79E-16 

-1.032E-0 
-1.032E-0 
-1.032E-0 
6.38E-16 

-1.032E-0 
-1.032E-0 
-1.032E-0 
5.83E-16 

F17 Best 
Worst 
Mean 
STD 

3.97E-01 
3.97E-01 
3.97E-01 
0.00E+00 

3.97E-01 
3.97E-01 
3.97E-01 
0.00E+0 

3.97E-01 
3.97E-01 
3.97E-01 
0.00E+0 

3.97E-01 
3.97E-01 
3.97E-01 
0.00E+00 

F18 Best 
Worst 
Mean 
STD 

3.00E+00 
3.00E+00 
3.00E+00 
1.108E-15 

3.0E+00 
3.0E+00 
3.0E+00 
1.41E-15 

3.0E+00 
3.0E+00 
3.0E+00 
2.05E-15 

3.00E+00 
3.00E+00 
3.00E+00 
4.77E-15 

F19 Best 
Worst 
Mean 
STD 

-3.86E+0 
-3.86E+0 
-3.86E+0 
2.146E-15 

-3.86E+0 
-3.86E+0 
-3.86E+0 
2.25E-15 

-3.86E+0 
-3.86E+0 
-3.86E+0 
2.404E-3 

-3.86E+0 
-3.86E+0 
-3.86E+0 
2.49E-15 

F20 Best 
Worst 
Mean 
STD 

-3.32E+0 
-3.32E+0 
-3.32E+0 
1.603E-15 

-3.32E+0 
-3.32E+0 
-3.32E+0 
6.032E-2 

-3.32E+0 
-2.956E-0 
-3.238E-0 
1.014E-1 

-3.32E+0 
-3.32E+0 
-3.32E+0 
1.695E-2 

F21 Best 
Worst 
Mean 
STD 

-10.1532 
-10.1532 
-10.1532 
0.0000 

-10.1532 
-10.1532 
-10.1532 
0.0000 

-10.1532 
-2.6305 
-6.7321 
3.5630 

-10.1532 
-2.6829 
-5.2432 
3.5442 

F22 Best 
Worst 
Mean 
STD 

-10.4029 
-10.4029 
-10.4029 
0.0000 

-10.4029 
-10.4029 
-10.4029 
0.0000 

-10.4029 
-2.7519 
-6.7370 
3.5639 

-10.4029 
-2.7659 
-10.1484 
1.3943 

F23 Best 
Worst 
Mean 
STD 

-10.5364 
-10.5364 
-10.5364 
0.0000 

-10.5364 
-10.5364 
-10.5364 
0.0000 

-10.5364 
-2.4217 
-7.2984 
3.7994 

-10.5364 
-2.4217 
-9.9954 
2.0588 
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Also, MMGO maintained the best results produced by MGO, 
and improve the worst value, mean value, and standard 
deviation in F14, F15, F16, F17, F18, F19, F20, F21, F22, and 
F23. These consist of fixed-dimensional optimization 
benchmark functions, and this implies that the proposed 
MMGO has the potential to perform efficiently on real fixed-
dimensional problems. 
 
In addition, the convergence characteristics of MMGO, MGO, 
PSO, and GSA are plotted on the high-dimensional functions 
and presented as F1 to F12. It is observed in the curves that 
MMGO converges very fast and produced the best or optimal 
solutions with fewer iterations compared to the other 
optimization algorithms (MGO, PSO, and GSA). This confirms 
that the proposed MMGO is suitable for real-life optimization 
problems that require fast convergence with less iteration. 
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Finally, the result from the test on the parameter estimation 
of FM sound wave is presented in Table 3 below. It is 
compared with that of the original MGO, PSO, and GTO 
picked from literature [12], and it is shown from the results 
that MMGO outperformed them with competitive results. 
 

Table -3: Results Comparison of Engineering Test 
Problem 

 

Algorithm MMGO MGO PSO GTO 

X(1) -1.0000 1.0000 0.8563 -1.0000 

X(2) -5.0000 5.0000 4.9215 -5.0000 

X(3)  -1.5000 -1.5000 -1.1521 -1.5000 

X(4) -4.8000 4.8000 2.4955 -4.8000 

X(5) 2.0000 -2.0000 -4.9331 2.0000 

X(6) -4.9100 -4.9000 -2.4247 -4.9000 

Maximum 
Cost 

5.97E-28 4.56E-28 11.20E+00 6.02E-28 
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6. CONCLUSION 
 
 An improved version of the traditional MGO algorithm called 
modified mountain gazelle optimizer (MMGO) is presented. 
The modified MGO introduces three modifications at the 
initialization, the migration to search for food (MSF) phase, 
and the territorial and solitary male (TSM) phase. The 
proposed MMGO has been compared with the original MGO, 
PSO, and GSA on 23 standard benchmark test functions. The 
proposed MMGO outperformed the other algorithms on all 
23 test functions in terms of quality results, fast 
convergence, and stability. It also avoided stagnation in local 
optimal or suboptimal solutions. 
 
The proposed MMGO algorithm is recommended for 
application in solving high-dimensional engineering 
problems, such as optimal integration of shunt 
compensators in distribution systems, optimal integration of 
distribution generations, and optimal placement of 
sectionalizing switches in power systems. Also, MMGO can 
be applied to optimization problems in the field of control 
systems that require fast convergence. 
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