Design & Analysis of Circular Water Tank by Using Staad Pro Software

Shafin Sheikh ⁽¹⁾ Tamboli Sohel Salim ⁽²⁾ Malge Kiran Rajendra ⁽³⁾ Sonawane Sumital Gulabrao ⁽⁴⁾ Mohammeed Ameer Mohammed Shabbir ⁽⁵⁾ Prof Vilas T Patil ⁽⁶⁾

^{1,2,3,4,5} Fourth year Civil Engineering Department, Government College of Engineering Jalgaon-425001[MS] India ⁶Assistant Professor Civil Engineering Department, Government College of Engineering Jalgaon-425001[MS] India ***

Abstract: As of now a Water tank are genuinely significant for a public help, attractive area and furthermore for the counterfeit construction. The plan and development styles utilized in substantiated concrete are told by the overall development rehearses, the actual property of the material and the climatic circumstances. Prior to taking up the plan, the most reasonable sort of arranging of tanks and right assessment of burdens including statically balance of design especially in regards to overturning of overhanging individuals are made. The plan is made considering the absolute worst mix of burdens, minutes and shears emerging from opposite burdens and vertical burdens acting toward any path when the tank is full as well as unfilled. In this plan by playing out the examination of water tank. Water tank are authentically valuable for storage facility of water to include the utilization of water we want to clutch the limit of water as significant required. Presently a day's storage facility tank is reasonable for a wide range of environmental factors we live as old as developed style. Water is the normal requirement for every one of the living organic entities to get by. portable water is basic for good strength of mortal creatures. It means quite a bit to supply mobile water to each existent and everyone; subsequently it's genuinely needful to store water. A circuitous tank is physically planned. It's additionally dissected utilizing the introduction examination programming StaadPro.

Key words – Population Forecasting, StaadPro Software, Water Storage Capacity, Risk Assessment, ESR.

1.INTRODUCTION

Capacity repositories and above tank are utilized to store water, fluid oil, oil-based commodities and comparable fluids. These designs are made of stone work, steel, built up concrete and pre pushed concrete. Out of these, workmanship and steel tanks are utilized for more modest limits. The expense of steel tanks is high and consequently they are seldom utilized for water stockpiles. Supported substantial tank is high and subsequently they are seldom utilized for water stockpiles. Built up substantial tanks are exceptionally famous in light of the fact that, other than the development and plans being basic, they are modest, solid in nature and can be made sealed. By and large, no breaks are permitted to occur in any piece of the construction of fluid holding R.C.C tanks and they made water tight by utilizing more extravagant blend (at the very least M20) of cement. Furthermore, once in a while water sealing materials are likewise used to make tanks water tight. Porousness of cement is straightforwardly relative to water concrete proportion. Legitimate compaction utilizing vibrators ought to be finished to accomplish impenetrability. Concrete substance running spillage issue. Utilization of high strength twisted bars of level 415 are suggested for the development of fluid holding structures. Anyway, gentle steel bars are additionally utilized. Right setting of support, utilization of little estimated and utilization of twisted bars lead to differential breaks. A break width of 0.1mm has been acknowledged as reasonable worth in fluid holding structures.

2.METHODOLOGY

Restricted breaking in the construction planned by working pressure technique was the principal motivation behind why the Indian Standard IS: 3370 (1965) didn't embrace the cutoff state plan strategy even after reception by IS; 456 1978.However, with the accompanying benefits of Cutoff State Plan strategy, IS:3370 took on Breaking point State Plan Technique in 2009.

Limit State Plan Technique considers the materials as indicated by their properties.

Limit State Plan Technique considers the heap as indicated by their tendency.

Limit State Strategy additionally checks for functionality.

IS: 3370-2009 Section (I-IV) takes on Breaking point State Plan Technique with safety measures. It embraces the standards for restricting break width when the designs are planned by considering extreme cutoff state and confines the burdens to 130MPa in steel so that breaking width isn't surpassed. These safeguard guarantees breaking width to be under 0.2 mm for example fit for fluid capacity. This likewise

determines plainly the way in which a fluid stockpiling structure contrasts with different designs.

2.1Details of Design of Water Tank

A water tank is a compartment for putting away water. The requirement for a water tank is pretty much as old as civilization, stockpiling of water for use in numerous applications, drinking water, water system horticulture, fire concealment, rural cultivating, both for plants and animals, substance producing, food planning as well as numerous different purposes. Water tank boundaries incorporate the general plan of tank, and decision of development materials, linings. Different materials are utilized for making a water tank: plastics (polyethylene, polypropylene), fiberglass, cement, and stone, steel (welded or catapulted, carbon, or pure).

3.DESIGN CALCULATION

3.1 Design of Over Head Water Tank

The water tank is designed for 3000 or more people. Based on the per capita demand for institutional buildings the capacity of the water tank is reached as 3.5 Lakh Liter. The salient features of the overhead water tank are as tabulated below.

3.2 Salient features of water tank

Grade of Concrete: M30

Capacity of water Tank: 3.5Lakhs Liter

Staging of overhead tank: 19m

Number of columns: 8

Number of braces:3

Inner diameter of tank:7 m

Height of cylindrical walls :5 m

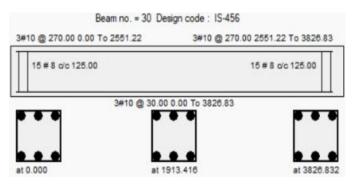
Rise of dome: 1.5 m

Thickness of dome: 0.12 m

Thickness of cylindrical walls: 0.18 m

Dimensions of columns:0.45 x 0.45m

Dimensions of braces:0.40 x 0.35m


Top ring beam size:0.2 x .2 m

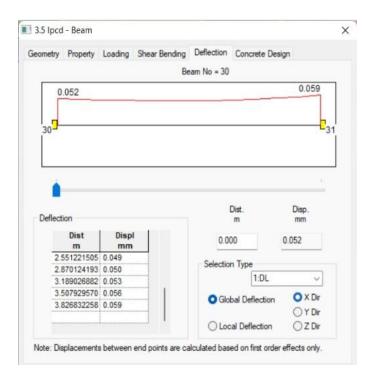
Bottom ring beam size:0.3 x 0.2 m

Thickness of floor slab :0.1 m

SBC of soil:100KN/ M^2

3.3 Result & Analysis

Fig.1: Beam No. 30 Reinforcement Detailing


3.4 Slope & Deflection

3.4.1. Global Deflections

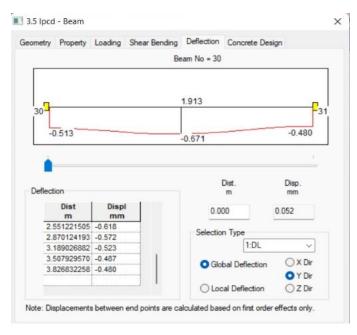

La			Horizontal	Vertical	Horizontal	Resultant		Rotational	
Displacement	Node	L/C	X	Y mm	Z	mm	rX rad	rY rad	rZ rad
a	9	1 DL	-0.060	-0.194	0.001	0.203	0.000	0.000	0.000
s		2 LL	-0.021	-0.039	0.000	0.045	0.000	0.000	0.00
		3 HP	-0.132	-0.236	0.001	0.270	0.000	0.000	0.00
7		4 GENERATE	-0.121	-0.350	0.002	0.370	0.000	0.000	0.00
_		5 GENERATE	-0.097	-0.280	0.002	0.296	0.000	0.000	0.00
us		6 GENERATE	-0.090	-0.291	0.002	0.305	0.000	0.000	0.00
tio		7 GENERATE	-0.054	-0.174	0.001	0.183	0.000	0.000	0.00
Reactions	10	1 DL	-0.017	-0.201	-0.019	0.203	0.000	-0.000	0.00
		2LL	-0.005	-0.042	-0.006	0.043	-0.000	-0.000	0.00
÷		3 HP	-0.034	-0.252	-0.041	0.258	-0.000	-0.000	0.00
-		4 GENERATE	-0.033	-0.365	-0.039	0.369	0.000	-0.000	0.00
x		5 GENERATE	-0.026	-0.292	-0.031	0.295	0.000	-0.000	0.00
Dilit		6 GENERATE	-0.025	-0.302	-0.029	0.304	0.000	-0.000	0.00
stal		7 GENERATE	-0.015	-0.181	-0.017	0.183	0.000	-0.000	0.00
Instability	11	1 DL	0.002	-0.182	-0.069	0.195	-0.000	0.000	-0.00
11		2 LL	0.001	-0.036	-0.022	0.042	-0.000	0.000	-0.00
-		3 HP	0.007	-0.213	-0.142	0.256	-0.000	0.000	-0.00
		4 GENERATE	0.004	-0.327	-0.138	0.355	-0.000	0.000	-0.00
		5 GENERATE	0.004	-0.261	-0.110	0.284	-0.000	0.000	-0.00
		6 GENERATE	0.003	-0.273	-0.104	0.293	-0.000	0.000	-0.00
		7 GENERATE	0.002	-0.164	-0.062	0.176	-0.000	0.000	-0.00
	12	1 DL	0.022	-0.192	-0.014	0.194	0.000	0.000	-0.00
		2 LL	0.009	-0.039	-0.004	0.040	-0.000	0.000	-0.00
		3 HP	0.055	-0.232	-0.025	0.240	-0.000	0.000	-0.00
		4 GENERATE	0.047	-0.346	-0.027	0.350	0.000	0.000	-0.00
		5 GENERATE	0.038	-0.277	-0.021	0.280	0.000	0.000	-0.00
		6 GENERATE	0.034	-0.288	-0.022	0.291	0.000	0.000	-0.00
		7 GENERATE	0.020	-0.173	-0.013	0.174	0.000	0.000	-0.00
	13	1 DL	0.066	-0.203	0.006	0.213	0.000	-0.000	-0.00
		2LL	0.023	-0.043	0.003	0.048	0.000	-0.000	-0.00
		3 HP	0.145	-0.255	0.015	0.294	0.000	-0.000	-0.00
		4 GENERATE	0.132	-0.368	0.013	0.391	0.000	-0.000	-0.00
		5 GENERATE	0.106	-0.295	0.011	0.313	0.000	-0.000	-0.00

Fig.2: Global Deflection along X, Y & Z Direction

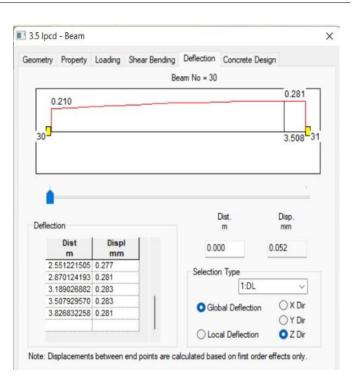



Fig.3: Global Deflection along X-Direction

Fig.4: Global Deflection along Y-Direction

Fig.5: Global Deflection along Z-Direction

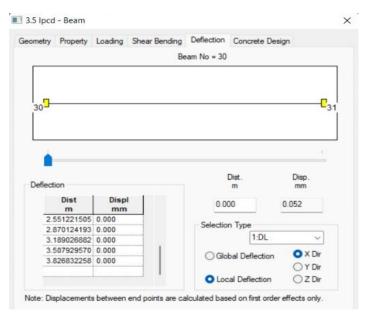


Fig.6: Local Deflection along X-Direction

X

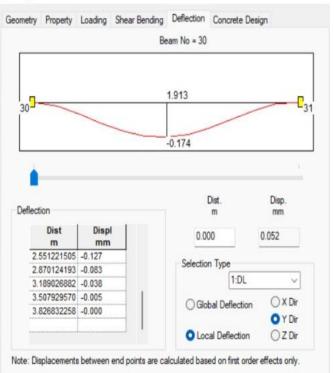
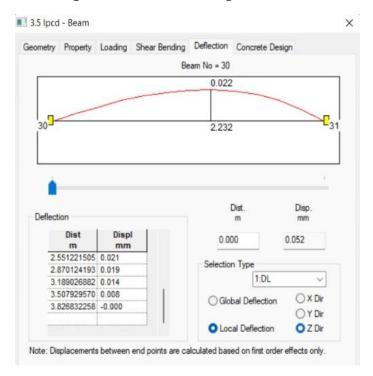
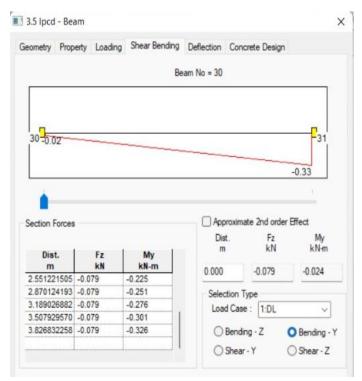
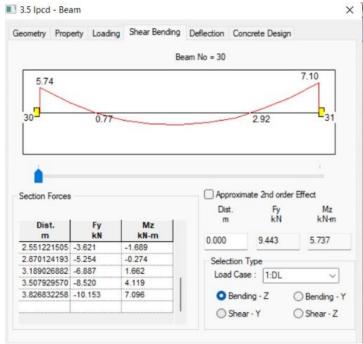
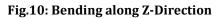




Fig.7: Local Deflection along Y-Direction




Fig.8: Local Deflection along Z-Direction

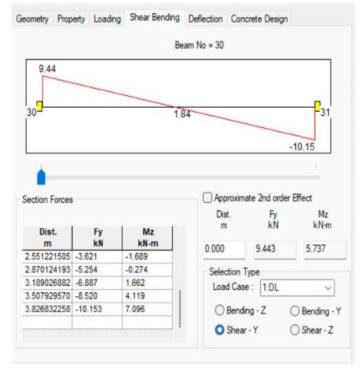
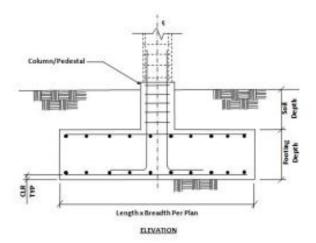
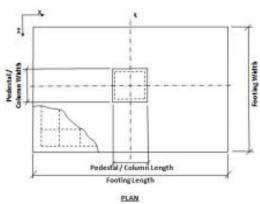


Fig.9: Bending along Y-Direction

3.4.3 Shear




5.Footing Detailing Data

Footing No.	Group ID		Foundation Geome	try
1 () () () () () () () () () (1 () () () () () () () () () (Length	Width	Thickness
1	1	5.350 m	5.350 m	0.711 m
2	2	5.500 m	5.500 m	0.711 m
3	3	5.150 m	5.150 m	0.661 m
4	4	5.350 m	5.350 m	0.711 m
5	5	5.500 m	5.500 m	0.711 m
6	6	5.400 m	5.400 m	0.711 m
7	7	5.200 m	5.200 m	0.661 m
8	8	5.450 m	5.450 m	0.711 m

Footing No.		Footing Reinfor	rcement		Pedestal Re	inforcement
1.1	Bottom Reinforcement(M _z)	Bottom Reinforcement(M _x)	Top Reinforcement(M _z)	Top Reinforcement(M_x)	Main Steel	Trans Steel
1	Ø12 @ 65 mm c/c	Ø12 @ 65 mm c/c	Ø8 @ 50 mm c/c	Ø8 @ 55 mm c/c	N/A	N/A
2	Ø12 @ 60 mm c/c	Ø12 @ 60 mm c/c	Ø10 @ 75 mm c/c	Ø8 @ 55 mm c/c	N/A	N/A
3	Ø12 @ 65 mm c/c	Ø12 @ 65 mm c/c	Ø8 @ 50 mm c/c	Ø8 @ 60 mm c/c	N/A	N/A
4	Ø12 @ 65 mm c/c	Ø12 @ 65 mm c/c	Ø8 @ 50 mm c/c	Ø8 @ 55 mm c/c	N/A	N/A
5	Ø12 @ 60 mm c/c	Ø12 @ 60 mm c/c	Ø10 @ 75 mm c/c	Ø8 @ 55 mm c/c	N/A	N/A
6	Ø12 @ 65 mm c/c	Ø12 @ 65 mm c/c	Ø8 @ 50 mm c/c	Ø8 @ 55 mm c/c	N/A	N/A
7	Ø12 @ 65 mm c/c	Ø12 @ 65 mm c/c	Ø8 @ 50 mm c/c	Ø8 @ 60 mm c/c	N/A	N/A
8	Ø12 @ 65 mm c/c	Ø12 @ 65 mm c/c	Ø8 @ 50 mm c/c	Ø8 @ 55 mm c/c	N/A	N/A

Fig.13: Footing Data

Fig.11: Shear along Y-Direction

4. EARTHQUAKE DETAILING DATA

		Horizontal	Vertical	Horizontal	Resultant		Rotational	
Node	L/C	x	Y	Z	mm	rX rad	rY	rZ rad
1	1 DL	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	2 LL	0.000	0.000	0.000	0.000	0.000	0.000	0.00
	3 HP	0.000	0.000	0.000	0.000	0.000	0.000	0.00
	4 GENERATE	0.000	0.000	0.000	0.000	0.000	0.000	0.00
	5 GENERATE	0.000	0.000	0.000	0.000	0.000	0.000	0.00
	6 GENERATE	0.000	0.000	0.000	0.000	0.000	0.000	0.00
	7 GENERATE	0.000	0.000	0.000	0.000	0.000	0.000	0.00
2	1 DL	0.000	0.000	0.000	0.000	0.000	0.000	0.00
	2 LL	0.000	0.000	0.000	0.000	0.000	0.000	0.00
	3 HP	0.000	0.000	0.000	0.000	0.000	0.000	0.00
-	4 GENERATE	0.000	0.000	0.000	0.000	0.000	0.000	0.00
	lpcd - Beam R						_	
4	All Re	elative Disp	lacement /	(Max Relat				0
					ive Displac z mm	ements / Resultant mm		6
4	All Re	elative Disp Dist	lacement /	(Max Relat y	z	Resultant		10 2
l ∢ Beam	All Re	Dist m	lacement / x mm	(Max Relat y mm	z mm	Resultant mm		0
l ∢ Beam	All Re	Dist m 0.000	lacement / x mm 0.000	(Max Relat y mm 0.000	z mm 0.000	Resultant mm 0.000		
l ∢ Beam	All Re	Dist m 0.000 0.957	lacement / x 0.000 -0.000	(Max Relat y 0.000 -0.115	z mm 0.000 -0.010	Resultant mm 0.000 0.116		
l[∢] Beam	All Re	Dist m 0.000 0.957 1.913	lacement / x 0.000 -0.000 -0.000	(Max Relat y 0.000 -0.115 -0.198	z mm 0.000 -0.010 -0.011	Resultant mm 0.000 0.116 0.198		
l[∢] Beam	All Re	elative Disp Dist m 0.000 0.957 1.913 2.870	lacement / x 0.000 -0.000 -0.000 0.000	(Max Relat y 0.000 -0.115 -0.198 -0.108	z mm 0.000 -0.010 -0.011 -0.008	Resultant mm 0.000 0.116 0.198 0.108		
l[∢] Beam	L/C	elative Disp Dist m 0.000 0.957 1.913 2.870 3.827	lacement / x 0.000 -0.000 -0.000 0.000 0.000 0.000	(Max Relat y 0.000 -0.115 -0.198 -0.108 0.000	z mm -0.000 -0.010 -0.011 -0.008 0.000	Resultant mm 0.000 0.116 0.198 0.108 0.000		<u>π</u> Σ
l[∢] Beam	L/C	elative Disp Dist m 0.000 0.957 1.913 2.870 3.827 0.000	lacement / mm 0.000 -0.000 -0.000 0.000 0.000 0.000	Max Relat y mm 0.000 -0.115 -0.198 -0.108 0.000 0.000	z mm -0.000 -0.010 -0.011 -0.008 0.000 0.000	Resultant mm 0.000 0.116 0.198 0.108 0.000 0.000		
l[∢] Beam	L/C	elative Disp Dist m 0.000 0.957 1.913 2.870 3.827 0.000 0.957	lacement / x mm 0.000 -0.000 0.000 0.000 0.000 0.000 -0.000	(Max Relat y mm 0.000 -0.115 -0.198 -0.108 0.000 0.000 -0.001	z mm 0.000 -0.010 -0.011 -0.008 0.000 0.000 -0.003	Resultant mm 0.000 0.116 0.198 0.108 0.000 0.000 0.000 0.000		
l[∢] Beam	L/C	Dist m 0.000 0.957 1.913 2.870 3.827 0.000 0.957 1.913	lacement / x mm 0.000 -0.000 0.000 0.000 0.000 -0.000 -0.000	(Max Relat y mm 0.000 -0.115 -0.198 -0.108 0.000 0.000 -0.001 -0.000	z mm 0.000 -0.010 -0.011 -0.008 0.000 0.000 -0.003 -0.004	Resultant mm 0.000 0.116 0.198 0.108 0.000 0.000 0.000 0.003 0.004		
l[∢] Beam	L/C	Dist m 0.000 0.957 1.913 2.870 3.827 0.000 0.957 1.913 2.870	lacement / x mm 0.000 -0.000 0.000 0.000 0.000 -0.000 -0.000 -0.000 -0.000	Max Relat y mm 0.000 -0.115 -0.198 -0.108 0.000 0.000 -0.001 -0.000 0.001	z mm 0.000 -0.010 -0.011 -0.008 0.000 0.000 -0.003 -0.004 -0.002	Resultant mm 0.000 0.116 0.198 0.108 0.000 0.000 0.000 0.003 0.004 0.003		
l[∢] Beam	LIC LIC 1 DL 2 LL	Elative Disp Dist m 0.000 0.957 1.913 2.870 3.827 0.000 0.957 1.913 2.870 3.827 0.957 1.913 2.870 3.827 0.957 1.913 2.870 3.827 0.957	lacement / x mm 0.000 -0.000 0.000 0.000 0.000 -0.000 -0.000 0.000 0.000	Max Relat y mm 0.000 -0.115 -0.198 -0.198 0.000 0.000 -0.001 -0.000 0.001 0.000	z mm 0.000 -0.010 -0.011 -0.008 0.000 0.000 0.000 -0.003 -0.004 -0.002 0.000	Resultant mm 0.000 0.116 0.198 0.008 0.000 0.003 0.003 0.004 0.003 0.004		

Fig.12: Earthquake Design Data

5.1 Input Values

Footing Geometry Column Dimensions Pedestal Design Type: Calculate Dimension Footing Thickness (Ft): 305.000 mm Footing Length - X (Fl): 1000.000 mm Footing Width - Z (Fw): 1000.000 mm Eccentricity along X (Oxd): 0.000 mm Eccentricity along Z (Ozd): 0.000 mm

5.1.1Column Dimension Column Shape: Rectangular Column Length - X (Pl): 0.450 m Column Width - Z (Pw): 0.450 m

5.1.2Pedestal Include Pedestal = No Pedestal Shape: N/A Pedestal Height (Ph): N/A Pedestal Length - X (Pl): N/A Pedestal Width - Z (Pw): N/A



Fig.15: 3.5 Lakh Liter Circular ESR using Staad Pro

6.CONCLUSION

It presumes that the effectiveness and dependability of the product in the field of planning is vastly improved to that of them yearly work. It has been seen that these off products created results were more proficient and practical which incorporated the different various circumstances under the planning conditions which are hard to consider when done physically 1) The primary components of water tank are protected in spillage free, flexure and shear. 2) Amount of steel accommodated structure is practical and satisfactory. 3) Proposed sizes of primary components can be utilized in water tank all things considered. 4) The plan of shaft, chunk, section, balance and step case are out of risk in avoidance, bowing, shear and different angles. Water tanks are viewed as profuse; yet they are developed to arrive as of now and coming time populace. They are considered to exceptionally absurd and securely store the versatile water. Water can be dispersed to number of homes, Businesses and public spots which method for an organization of a water circulation framework. Consequently, water tanks are viewed as supporting frameworks and helpful for the local area. As level increments as side wall thickness are to be increments and rooftop chunk and floor section profundity are diminishing. The round water tanks are practical for normal limits. Plan of water tank is an extremely infuriating strategy. Especially plan of underground water tanks is heaps of numerical formulae and computation. It is likewise additional tedious.

7.REFERENCES

- 1. I.S456:2000, "Code of Practice for Plain and Reinforced Concrete", I.S.I., New Delhi.
- 2. I.S875 (PartII):1987, "Code of Practice for Imposed Load", I.S.I., New Delhi
- 3. I.S875 (Part II): 1987, "Code of Practice for Wind Load", I.S.I., New Delhi.
- 4. I.S1893:1984," Criteria for Earthquake Resistant Design of Structures", I.S.I., New Delhi
- 5. I.S3370 (Part IV):1967, "Code of Practice for Concrete Structures for Storage of Liquid", I.S.I., New Delhi
- 6. I.S3370 (Part IV):1967, "Code of Practice for Concrete Structures for Storage of Liquid", I.S.I., New Delhi
- 7. S. Ramamrutham, "Design of Reinforced concrete structures", Dhanpat, Rai Publications