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Abstract - The process of stock price prediction has
gained significant attention in recent years due to the
potential benefits it can offer to investors. This paper
discusses the use of machine learning in stock price
prediction by leveraging historical data to identify
trends and make predictions. The application of
machine learning can automate the trading process by
providing insights and predictions based on statistical
models. By collecting and analyzing large amounts of
structured and unstructured data, suitable algorithms
can be applied to identify patterns and make informed
decisions. However, the volatile nature of the financial
stock market poses a significant challenge in accurately
predicting stock prices. Factors such as current trends,
politics, and the economy can have a profound impact
on stock prices, making it difficult to decide when to
buy, sell, or hold. Despite these risks, machine learning
can help reduce them by providing valuable insights to
investors.
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1. INTRODUCTION

The act of predicting stock prices based on past data is
known as stock price prediction. To identify trends and
comprehend the current market, we employed machine
learning on previous data. Through the use of statistical
models to generate predictions and draw inferences,
machine learning automates the trading process. Both
structured and unstructured data can be gathered and
tested by machine learning. It can use the new data to
apply appropriate algorithms, transform, look for trends,
and make judgements. Because of the nature of the
financial stock market, which involves current trends,
politics, and the economy, it is difficult to predict the value
of stocks with a high degree of accuracy. They have a
significant impact on prices by making it difficult to decide
whether to purchase, sell, or hold the stock. Risks must
therefore be managed due to the fact that they cannot be
eliminated.

This study demonstrates the numerous approaches used
to incorporate machine learning into stock forecasting for
the NSE nifty 50 index. It was built by us using Python
and open-source libraries. We wused pre-processing
techniques to make the stock data relevant after obtaining
it from Yahoo Finance. Additionally, a tuning procedure to
validate the model for building, fitting, and training for

prediction is used along with randomised grid search
cross-validation. Following prediction, error analysis is
essential for evaluating the model's effectiveness and the
precision of the anticipated values.

Prediction is performed using the random forest
regression model. This will forecast the low and high
prices for the forthcoming trading days, along with the
NSE nifty 50 index's predicted prices for the following
month. Based on the expected values, decisions regarding
the purchase, sale, or holding of a stock can be made. The
gathering, processing, and creation of the trading
algorithm for prediction are the main goals of this study.

Fetch and store
the data

Prepare the data for
the ML Model

2. FLOWCHART

Divide the data into
training and testing sets

Train the model on
the training data set

Make predictions on
the testing data set

Predict and calculate
metric performance

Plot predictions
and display

Analyse Output and
take decision
accordingly

Fig -1: Flowchart of the Algorithm
3. IMPLEMENTATION
3.1 Import libraries:

The following libraries are used:

Pandas — a Python module for data analysis that loads
the data file as a pandas data frame.
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Matplotlib— a python module for plotting graphs.

Scikit-learn — an open-source python module used in
data analysis that supports machine learning models, pre-
processing, model evaluation, and training utilities. It also
acts as a sub-module for train_test_split,
RandomForestRegressor, StandardScaler,
RandomizedSearchCV, and metrics.

Numpy— a python module that works with arrays.

Yfinance — a python open-source module used to access
financial data.

[ 1 import yfinance as yf
import datetime as dt
import pandas as pd
import numpy as np
from numpy import arange
import matplotlib.pyplot as plt
from pandas import read_csv
from sklearn import metrics
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestRegressor
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import RandomizedSearchCV

Fig -2: Importing Libraries
3.2 Import Dataset:

The historical data of the market is the information
required for this study. For each trading day, it includes
the date, prices, highest and lowest price, and amount of
trades. These numbers are used by traders to gauge a
stock's volatility.

© sp500_data = yf.download("~NSEI", start="2021-01-01", end="2023-04-01")

[ 1 ]

1 of 1 completed

[ ] sp500_df = pd.DataFrame(sp500_data)
sp500_df.to_csv("sp500_data.csv")

Fig -3: Importing Dataset from Yahoo Finance

A Python script is used to obtain the data. The data is
obtained using yfinance. It will retrieve NSEI stock data for
the period of January 1, 2021, to April 1, 2023. In a data
frame, the downloaded stock data is loaded before being
transformed into a CSV file. so that we can easily feed it
into the algorithm after storing it locally. The data set is
saved as sp500_data.csv.

3.3 Visualize the Data:

[ ] read_df = pd.read_csv("sp500_data.csv")
read_df.set_index("Date", inplace=True)
read_df['Adj Close'].plot()
plt.ylabel("Adjusted Close Prices")
plt.show()
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Fig -4: Plotting a line chart of the adjusted close prices
over time to visualize the data.

3.3 Data pre-processing:

Preparing the data for the machine learning model
involves a number of processes. Pre-processing involves
transforming the raw data's format so that the model can
use it and work with it. The purpose of this processis to
produce a dataset that the model and algorithm can use. A
dataset may have missing values, redundant and pointless
information, or noisy data. Data cleaning is a type of pre-
processing that involves updating the index and
eliminating values that are missing or incorrect.
Additionally, feature selection, hyperparameter tuning,
and data standardisation is also done.

3.3.1 Read the file and set the date as the index:

[ ] df = pd.read_csv("sp500_data.csv")
df.set_index("Date", inplace=True)

df.dropna(inplace=True)

Fig -5: Reading the file and setting index
3.3.2 Feature selection:

The x and y characteristics are chosen at this point in
order to create the model's data set. The training and
testing data sets each have X and Y features defined.

The dataset's columns are called features. One of the
fundamental ideas in machine learning applications,
feature selection greatly affects the performance of the
model. It won't be required to use every column in feature
selection. These chosen features have a bearing and
contribute to the outcome of the prediction. The test set
performs worse overall because of unnecessary features.
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Discovering the most important elements of features is
one approach of choosing futures. Feature selector and
feature importance modules are available in Sklearn and
can be used. Each feature in the data is assigned a score
using the feature significance module. The most pertinent
features are those with the highest scores, and reliable
output variables are always present. Using feature
selection can increase accuracy, decrease overfitting,
shorten training times, and enhance data visualisation.
The likelihood of overfitting increases with the number of
features.

Values for the open, high, low, close, and adj close columns
are stored in the variable x. Y is where the adj-close
column values are stored. Because they won't be required,
the other columns, including the one for volume, weren't
chosen for the procedure. Five features are utilized.

[ 1 x

df.iloc[:, ©0:5].values
df.ilocl[:, 4].values

<
1l

Fig -6: Selecting features
3.3.3 Divide into train and test datasets:

Before modelling, the dataset must be divided into a
training and testing dataset.

A subset of the dataset used to create and fit prediction
models is called the "training set." Building a training
dataset script produces a training set by generating the
features of the training set using the input options and the
raw stock price data. The model is trained using the data.
The model runs on the train set and gains knowledge from
the data.

A testing set is a subset of the dataset used to gauge
how well a model will perform in the future. It is a useful
benchmark for assessing the model. The trained model is
tested using the testing set with regard to the predicted
dataset. This subset of the set has not been viewed by the
model. It serves as an evaluation tool.

[ ] x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=8.26, random_state=0)
Fig -7: Dividing the dataset into training and testing sets
3.3.4 Scaling the features:

We refer to this as data standardisation. The standard
scaler function in Sklearn is used to standardise the
dataset. Standardisation has been proven to speed up
training and increase the model's numerical stability.

[ 1 scale = StandardScaler()
x_train = scale.fit_transform(x_train)
x_test = scale.transform(x_test)

Fig -8: Scaling the train and test sets

Using the standard scaler, we are scaling the x_train and
x_test.

3.4 Apply model and predict:

The model may use the dataset now. Selecting a value
for the random state is the initial step, and then the tree is
constructed using the number of random states. By
randomly selecting subsets of the characteristics and using
these subsets to create smaller trees, random forest
eliminates overfitting. The training of the data is necessary
to construct the random forest. The parameters from the
hyperparameter tuning are also used here.

° model = RandomForestRegressor(n_estimators=508, random_state=42,
hin_samples_splitzz, min_samples_leaf=1, max_depth=18, bootstrap=True)
model.fit(x_train, y_train)
predict = model.predict(x_test)
print(predict)
print(predict.shape)

[16576.60171875 15787.98517012 16242.40283008 17878.64545312
18485.95060156 15688.15098278 14937.26278711 16692.77229687
15695.51912679 18335,98289063 16640.31414453 17117.32357578
17893.92367187 16040.26128516 14495.54954492 17247.09105508
18277.71296914 17653.94935156 14859.45656445 17512.93366016
17822.85985286 17152.83970469 17231.97636589 17233.20161979
17352.71079687 17858.16442578 15741.70980863 15684.73697852
17531.30260053 16215.5139082 15673.18345898 15097.80236523
17762.6686019 17803.37494922 15288.26098828 17236.28309375
16329.85924414 18052.24820218 17942.23618099 14387.45968164
15860.34852344 17202.37213281 17161.82292969 14060.04159961
17106.30331302 17201.22533984 17853.68992188 15559.0603125

1495195543164 17586.3385543 16949.77941406 15941.16767383
17169.49456641 17606.68992904 17171.63051172 18122.59017187
17951.62074349 17516.7895 18077.36880378 17341.74558555
17311.28598398 15902.83012695 15751.02861328 17324.15692181
17356.64633984 14930.8874375 15801.42692766 15066.97867969
17886.40607389 17370.10251562 14638.92469049 14908.57050586
15832.96036751 16396.57664844 18115.11841658 14337.13588672
17625.1779332 17855.8336875 15854.12851172 17218.9263112

15768.7799984 14911.48147852 17925.03396094 15460.21474414
17853.20958301 18436.61702344 17929.75096875 18416.67179688
17308.29202109 17468.87402734 16304.29701367 17523.17154961
17657.42672982 17820.31228906 17278.02978906 17914.22289648
15829.10502663 16498.54126563 17376.94595117 16057.75054492
14133.89479883 18718.08760547 16581.09248047 14511.96299609
17464.40987598 17139.14424219 16524.94800391 17734.4317959

15728.51521973 17892.86165625 14639.28800586 16245.85658789
18115.64136697 17351.14702734 17577.7034332 16925.69660938
16952,24079688 17381.00286367 18000.87725677 15325.29205469
17274.52780469 17218.59277214 17812.01782422 18125.83903145
15814.13156976 16627.299149  14466.00775  18104.48497018
15692. 64686685 16986.48406893 18494.80717960 18003.61029349
14883.98186523 18607.84474609 15870.32163672 16987.51579041
17067.97676087 16796.90647656 17092.99324609 17324.80769806
15858.02959375 17501.23202344 14556.69156836 17150.53333359
17665.32294531 17690.17626953]

(146,)

Fig -9: The projected values are generated

This generates the projected values for the coming 314
trading days.

3.5 Statistical metrics

evaluation:

and performance

Risks are calculated using statistical metrics, which are
error metrics for regression. In order to lower risks and
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improve model performance, model evaluation is
essential.
© print("Mean Absalute Errar:", round(metrics.mean_absolute_error(y_test, predict), 4))
print("Mean Squared Error:", ndimetrics,mean_squared_error(y_test, predict), 4))
print(“Root Mean Squared Error:*, round(np.sqrt{metrics.mean_squared_error(y_test, predict)), 4]}
print("(R"2) Scare:", round(metrics.r2_score(y_test, predict), 4))

print(f'Train Score : {model.score(x_train, y_train] x 180:.2f}% and Test Score : {model.score(x_test,
y_test) = 180:.2f}% using Randon Tree Regressor.')

errors = abs(predict - y_test)

mape = 180 = (errors / y_test)

accuracy = 100 - np.mean(mape)

print('Accuracy: ', round(accuracy, 2), "%.')

Mean Absolute Error: 7.997

Mean Squared Error: 206.2434

Root Mean Squared Error: 14,3612

(R*2) Score: @.9998

Train Score : 108.00% and Test Score : 99.98% using Random Tree Regressor.
Accuracy: 99.95 %.

Fig -10: Performance evaluation on testing

The standard deviation of the prediction mistakes is
known as root mean square error (RMSE). The residuals
estimate the deviation of the data points from the
regression line. The distribution of these residuals is
gauged by the RMSE. It describes how the data is clustered
around the line of greatest fit, to put it another way.
Additionally, it is MSE's square root. The performance
improves with decreasing RMSE values. Given that it
measures more errors than the other metrics, it should be
low. A RMSE score larger than 0.5 indicates that the model
has a poor capacity to reliably forecast the data. When the
RMSE score is between 0.5 and 0.3, the model will forecast
data with a higher degree of accuracy.

Mean absolute error (MEA) quantifies the average size of
errors in a series of predictions without taking into
account their directional component. It is the average
absolute difference between the predicted and the
observed value, where all individual variations are given
equal weight. Most significantly, it calculates the difference
between the actual and projected values. Assume that the
MEA value is 5. The true value is 20, whereas the predicted
value is 25. However, MAE does not penalize prediction
errors. If errors are to be examined, they should be the
mean square error or the root mean squared error. Lower
values are preferable.

The absolute value of each error is added to determine the
mean squared error (MSE). The model performance is also
determined by the mean squared error. Larger mistakes
than those found in the MAE are clearly present in this
instance. The accuracy of the forecast increases as the MSE
value decreases.

In machine learning, performance evaluation is essential
for understanding how well the prediction and model are
performing. R-squared and accuracy were employed in
this study to assess the model. If a model has to be
improved, it will be determined by the output value of the
model evaluation. To test an alternative algorithm, fine-
tune the parameters, add new data, or use feature
engineering, among other options.

R squared is a measure of how well a model fits a certain
dataset. It shows how closely the plotted expected and

actual values match the regression line. The highest
number is 1.0. So, the better the model fits the data, the
higher the values. When the r-squared values fall between
0.6 and 1.0, the regression line adequately matches the
data, and the model performs well. Values over 65% are
regarded as favorable.

3.5 Statistical metrics

evaluation:

and performance

With the expected values for the following year, month,
and five days, we generated data frames. A year of trading
has 252 days, a month has 21, and a week has 5 trading
days. From the expected 341 trade days that actually
occurred, we took the necessary future days. Dates and
prices are converted to CSV files for these subsequent
days.

[ 1 predictions = pd.DataFrame({"Predictions": predict},
index=pd.date_range(start=df.index[-1], periods=len(predict), freq="D"))
predictions.to_csv("Predicted-price-data.csv")

#colllects future days from predicted values
oneyear_df = pd.DataFrame(predictions[:252])
oneyear_df.to_csv("one-year-predictions.csv")
onemonth_df = pd.DataFrame(predictions[:21])
onemonth_df.to_csv("one-month-predictions.csv")
fivedays_df = pd.DataFrame(predictions[:5])
fivedays_df.to_csv("five-days-predictions.csv")

Fig -11: Generating data frames and csv file containing the
predictions

Investors look to profit by selling at the highest price,
buying at the lowest price, and holding price if neither
takes place in order to determine the buy, sell, and hold
prices. The selling price is therefore the highest price in
this situation, whereas the buy price is the minimum.

3. RESULTS

One month prediction result:

@ onemonth_df_pred = pd.read_csv("one-month-predictions.csv")
onemonth_df_pred.set_index("Unnamed: @", inplace=True)
buy_price = min(onemonth_df_pred["Predictions"])
sell_price = max(onemonth_df_pred["Predictions"])
onemonth_buy = onemonth_df_pred.loc[onemonth_df_pred["Predictions"] == buy_price]
onemonth_sell = onemonth_df_pred. loc[onemonth_df_pred["Predictions"] == sell_pricel
print{"Buy price and date")
print{onemonth_buy)
print("Sell price and date")
print{onemonth_sell)
onemonth_df_pred["Predictions"].plot(figsize=(10, 5), title="Forecast for the next
1 month", color="blue")
plt.xlabel("Date")
plt.ylabel("Price")
plt.legend()
plt.show()

Fig -12: Code to displaying the highest and lowest prices
in the upcoming month along with a graph showing the
predicted values
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[» Buy price and date
Predictions
Unnamed: 0
2023-04-14 14495.549545
Sell price and date
Predictions
Unnamed: 0
2023-04-04 1B485.950602

Forecast for the next 1 month

18500 — Predictions

18000

17500

17000

16500

Price

16000

15500

15000

14500

2023-03-31 2023-04-05 2023-04-10 2023-04-15
Date

2023-04-20

Fig -13: The highest and lowest prices in the upcoming
month and their respective dates are displayed along with
a graph showing the predicted values.

[17] print(onemonth_df_pred)

Unnamed: @ Predictions
2023-03-31 16576.601719
2023-04-01 15787.985170
2023-04-02 16242.402830
2023-04-03 17878.645453
2023-04-04 18485.950602
2023-04-05 15688.150983
2023-04-06 14937.262787
2023-04-07 16692.772297
2023-04-08 15695.519127
2023-04-09 18335.982891
10 2023-04-10 16640.314145
11 2023-04-11 17117.323576
12 2023-04-12 17893.923672
13 2023-04-13 16040.261285
14 2023-04-14 14495.549545
15 2023-04-15 17247.091055
16 2023-04-16 18277.712969
17 2023-04-17 17653.949352
18 2023-04-18 14859.456564
19 2023-04-19 17512.933660
20 2023-04-20 17822.859853

WoOoONOOUARWNRLS®

Fig -14: Displaying the predicted values in the csv file in
the form of a table

3. CONCLUSIONS

In order to solve this challenge, various methods can be
used. From sentiment analysis, financial news stories, and
expert reviews to quantitative analysis for prediction,
their performance can vary. However, there are no perfect
or reliable prediction techniques due to how
unpredictable the stock market is. If you need to create a
model rapidly, the algorithm is a fantastic option. It gives a
reasonably accurate indication of how much weight your
attributes are given. The majority of the time, random
forest is quick, easy, and adaptable.
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