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Abstract - Whenever electric devices are exposed to time-
varying electromagnetic field, it brings out two impacts on the 
devices: Firstly, conducting currents appears in the device, 
which ultimately gives rise to Joule’s heat which rises the 
temperature of the device in terms of Eddy current loss, and, 
secondly due to the time lag between magnetization and 
demagnetization of the ferromagnetic plate some amount of 
energy is lost which is termed Hysteresis loss. In this paper, we 
have treated this total loss as the heat source for the problem. 
Based on Maxwell’s equations a three-dimensional 
mathematical model for the magnetic field, temperature field, 
and elastic field in the plate was established. Then the 
governing equations for determining magnetic field intensity, 
temperature, and stresses inside the plate were solved by 
integral transform technique. The results obtained are 
displaced graphically to illustrate the influence of wave 
frequency, skin depth, electrical conductivity, magnetic 
permeability, hysteresis loss, and Eddy current loss of steel 
plate on the various fields considered in the problem.  
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1.INTRODUCTION  
 
In many electromagnetic equipment such as magnetic 
circuits of motors, generators, inductors, magnetically 
levitated high-speed terrestrial vehicles, energy storage 
devices in electromagnetic fields, fusion reactors, and 
devices using electro-magnetic propulsion etc, ferromagnetic 
materials are widely used. Analogous to conventional 
structures which experience mechanical loads, the 
ferromagnetic structures inside the strong magnetic fields 
typically are exposed to the magnetic force arising due to 
mutual interaction between time-varying magnetic fields 
and the magnetization of ferromagnetic materials.  Due to 
this strong magnetic force, the ferromagnetic structures 
undergo deformation which affects their stability drastically 
[1].  

Eddy current induced in conducting mediums (such as 
metallic plates) by time-varying magnetic field and its 
consequences is of great practicable significance due to its 
magnificent role in a vast range of technical and industrial 
applications. Many mechanical structures get activated when 
immersed in the electromagnetic field. Such structures or 
conducting mediums, when moving through the 

electromagnetic field or when exposed to the time-varying 
electromagnetic field, Eddy currents are induced. This eddy 
current creates an internal magnetic field that exactly 
opposes the external magnetic field. This gives rise to a skin 
effect in which the current density near the outside of the 
conducting medium becomes higher than the inside. The 
eddy current creates a kind of power loss in the medium 
known as Eddy current loss. The heat produced by Eddy 
current is used in various applications like heat treatment of 
metal products, induction furnaces, Induction hardening in 
steel parts, induction welding/brazing as a way of 
connecting metal components, or induction annealing which 
can selectively soften a region of a steel portion, etc. [2-5].  
The estimation of Eddy current is also used for one of the 
inspection methods which is non-destructive testing which 
serves for a variety of purposes, including flaw detection, 
measuring material and coating thickness and determining 
and laying out the heat treatment condition for conducting 
materials.  

Magneto-thermoelasticity is a subject where we study the 
interactions between magnetic, thermal, and mechanical 
fields in a thermoelastic solid in the presence of a magnetic 
field. The theories like heat conduction theory, classical 
elasticity theory, and electromagnetic theory which are 
applied to solve the coupling problems of temperature field, 
electromagnetic field, and elastic field of conductive elastic 
solids are also included in Magneto-thermoelasticity. The 
theoretical idea of magneto-thermoelasticity was introduced 
by [6-7] and later on was developed by [8]. Paria [9] 
considered a thermo-elastic solid inside a magnetic field and 
studied the propagation of the plane waves and gave a 
theoretical framework for the advancement of magneto-
thermoelasticity. Wilson [10] studied the propagation of 
magneto–thermoelastic waves in a non-rotating medium. 
The above studies were based on the theory of classical 
coupled thermoelasticity, with interaction among the 
electromagnetic field, the thermal field, and the elastic field, 
as well as the dispersion relation, taken into consideration. 
Nayfeh et al. [11] used the Perturbation technique to study 
the effect of small couplings related to thermoelasticity and 
magneto-elasticity of an unbounded isotropic medium. 
Sherief et al. [12] discussed a one-dimensional thermal shock 
problem of generalized thermoelastic electrically conducting 
half-space permeated by a primary uniform magnetic field 
with thermal relaxation. Biswas et al. [13] exemplify a three-
dimensional electro-magneto-thermoelastic coupled 
problem for homogeneous orthotropic thermally and 
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electrically conducting solid subjected to time-dependent 
thermal shock. Xu et al. [14] proposed an approximate 
analytical solution method to investigate the behavior of 
three-dimensional simply supported rectangular plates with 
variable thickness subjected to thermo-mechanical loads. 
Baksi et al. [15] studied the three-dimensional problems of 
magneto-thermoelasticity in the infinite rotating elastic 
medium with thermal relaxation and heat source. The study 
of the interaction between the magnetic field and the strain 
field in a thermoelastic solid is receiving considerable 
attention in recent years due to its wide range of 
applications in various fields. Especially in nuclear fields, the 
extremely high temperatures and temperature gradients, as 
well as the magnetic field originating inside nuclear reactors, 
influences their design and operations. Roychoudhuri [16] 
studied magnetoelastic plane waves in rotating media with 
uniform angular velocity. Othman et al. [17] developed a 
three-dimensional model of the equations of the generalized 
thermoelasticity to study the effect of magnetic field and 
thermal relaxation for a homogeneous isotropic elastic half-
space solid in the context of Lord-Shulman theory in the 
absence of body forces or heat source. Ezzat et al. [18] 
developed a new mathematical model for the equations of 
the two-temperature magneto-thermoelasticity theory. Das 
et al. [19] investigated the interaction of a homogeneous and 
isotopically perfect conducting half-space with rotation, in 
the context of Lord-Shulman theory. Bawankar et al. [20] 
studied a two-dimensional problem of a thermosensitive 
conducting plate with eddy current loss in the context of 
magneto-thermoelasticity. Higuchi et al. [21] studied the 
stresses aroused due to transient magnetic fields in an 
infinite conducting plate using the theory of magneto-
thermoelasticity. Mitik et al. [22] have obtained Joule’s heat 
as a thermal loading of a thin elastic, isotropic, ferromagnetic 
plate subjected transversally to the homogeneous, time-
varying magnetic field. Mitik [23] has studied the influence 
of plate thickness, wave frequency, and hysteresis factor on 
the temperature field of the thin metallic partially fixed plate 
which is induced by Harmonic Electromagnetic wave. 

The present article is an attempt to study the effect of 
eddy current loss (aroused due to Joule heat generated by 
Eddy current) and Hysteresis loss (aroused due to time lag 
between magnetization and demagnetization) on a three-
dimensional ferromagnetic plate placed in time-varying 
electro-magnetic field as an extension to the research work 
by Bawankar et al. [20]. The various determined expressions 
are obtained numerically for steel material and results are 
introduced graphically. Effects of Eddy current loss along 
with Hysteresis loss and magnetic field quantities are also 
analyzed. The integral transform technique is used to find 
the temperature solution. 

 

2. PROBLEM FORMULATION  

We consider an isotropic, homogeneous, thermally,  and 
perfectly conducting elastic thin rectangular ferromagnetic 
plate with length a  width c  and thickness b occupying the 

space : 0 ,0 ,0D x a y b z c       as shown in figure 1. 

The plate is subjected to time-dependent exponentially 

varying magnetic field 0
tH e uniformly distributed along X- 

and Z-direction and acts on the plate in a positive Y-direction 
as shown in the figure. Here 0H is the magnetic field strength 

at the outer surface of the plate and  is the angular 

frequency given by 2 / 2T f    . Let the magnetic field 

be given by  0, ,0yH H where 0
t

yH H e  and the 

induced electric field vector be given by  ,0, .x zE E E  

Ampere-Maxwell’s equation which states two 
possible ways of generation of magnetic field: one is due to 
electric current and the other is due to changing electric field 
(called the displacement current) is given by: 

 
D

H J
t


  


       

                                                                     
(1) 

The component form (in the absence of displacement 
current) of the Ampere-Maxwell’s equation takes the 
following form: 

,
y y

x z

H H
J J

z x

 
  

                                                            
(2) 

 

 

Fig -1: Geometry of the problem. 
 
The displacement vector u  has the components: 

, ,x y zu u v u w u    
                                                                 

(3) 

Following [24], we considered the modified Ohm’s law which 
outlines the impact of temperature gradient and charge 
density ignoring the seemingly small consequence of 

temperature gradient on the conduction current J as: 

 J E u B  

                                                                          

(4) 

Using (2) the component form of the above equation can be 
written as: 

   ,x x y z z yJ E B w J E B u    

                               

(5) 

Similarly, the component of magnetic flux density is given 
by:   

y yB H
                                                                                        

(6) 
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Solving (1) and (4) we obtain the components of electric 
field intensity as:  

1 1
,

y y

x z

H H
E E

z x 

 
  

                                                    
(7) 

Faraday’s law of electromagnetism which describes how 
time-varying magnetic field induces an electric field gives: 

B
E

t


  


                                                                                  (8) 

Using (6) and (7), the above equation reduces to:  
 

2 2

2 2

y y yH H H

tx z


  
 

 
                                                          (9)  

Equation (9) represents the uncoupled equation of the 

magnetic field. Using 0 0( , , ) ,t
y rH x z t H e      in (9), 

we obtain: 
                                                                      

 
2 2

2 2

2 2
2z x

H H
H

x z
 

 
 

 
                                                           (10)

   

                                                                                                                                                                       
 

where 0 02 / , 2 /z z r x x r         , are the skin 

depth in the z-axis and x-axis directions respectively.
 
In 

particular, for isotropic material x z  , hence 
 

02 /x z r       with this, Eq. (10) modifies to:
 

2 2

2 2 2

2H H
H

x z 

 
 

 
                                                                 (11) 

The pre-requisite boundary conditions are considered as: 

 

0(0, , ) ( , , )H z t H a z t H                                                         (12) 

0( ,0, ) ( ,c, )H x t H x t H                                                         (13) 

 
As a result of a time-varying electromagnetic field 
conducting currents appear in the plate material, referred to 
as Eddy current. Eddy current produces the resistive 
deprivation that converts some form of energy, for example, 
kinetic energy into heat energy which is known as Joule heat. 
Joule heat diminishes the efficiency of the conducting 
material. Joule heat gives rise to the Eddy current loss 

.EddyW For the considered problem the distribution of Joule’s 

heat in terms of Eddy current loss given by [23] 

2 2 21 1

2 2
Eddy x zW J J J

 
   
 

                                            (14)                      

When a magnetization force is applied to a magnetic 
material, the molecules of the magnetic material are aligned 
in one particular direction. Switching of magnetic force in 
the opposite direction causes the internal friction of the 
molecular magnets. This friction, in fact, resists the change in 
the direction of magnetism which finally gives rise to the 
Magnetic Hysteresis. To defeat this resistance caused due to 
internal friction, a part of the magnetizing force is utilized 
which results in the work done by the force. Heat is 

generated when this kind of work done is performed by 
magnetizing force. This extra heat generated results in the 
wastage of energy in the form of heat called as Hysteresis 
loss. It is known that Hysteresis loss HystW  is proportional to 

the square of magnetic field amplitude and frequency [23], 
therefore it is given by  

2( , )Hyst H yW z t k f H                                                               (15) 

Neglecting the coupling term   between the temperature 

and the deformation fields [22], the governing equation of 
the temperature field along with the boundary and initial 
conditions is given by:   

2

0

TotalW C T
T

t



 


  


                                                             (16)

   

   0, , , , , , 0T y z t T a y z t    
           

                                     (17) 

   ,0, , , , , 0T x z t T x b z t                                                     (18) 

0,

0
z c

T

z 

 
 

 
                                                                             (19) 

 , , ,0 0T x y z                                                                            (20) 

The term ( , , , )Total TotalW W x y z t is treated as the heat source 

of the problem. Also, it consists of two parts the hysteresis 
loss and Joule’s Heat (responsible for Eddy Current loss). 
Both are taken within the plate for 0t   subject to the initial 

and boundary conditions prescribed for the problem 
considered. Thus  

 , , ,Total Eddy HystW x y z t W W                                               (21)     

Apart from Eddy current loss and Hysteresis loss the 
metallic plate placed in a time-varying magnetic field also 
suffers the Lorentz force. The components of Lorentz force 
are given by the expressions:  

 
2

2
x yf H

x

 
 


    

                                                                 
(22) 

 
2

2
z yf H

z

 
 


   

                                                                  
(23) 

The constitutive equation for stress-displacement-
temperature relation and strain-displacement relation is 
given by [9]: 

  2 ( e T)ij ij ije         

                                                        

(24) 

u v w
e u

x y z

  
     

  
      

                                                   

(25) 

 , ,

1

2
ij i j j ie u u         

                                                               

(26)

 

Using (24), the components of the stress field are written as: 

2 e Txx

u

x
   


  


                                                              

(27) 
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(28) 

2 e Tzz
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(29)  

xy

u v

y x
 

  
  

  
 

                                                                    

(30)  

xz

u w

z x
 

  
  

                                                                       
(31) 

yz

v w

z y
 

  
  

  
                                                                     (32) 

The displacement equation of the theory of elasticity, 
considering the Lorentz force takes the following form: 

2

2
( )i ik

i
k

u
J B

xt



 

  


                                                           

(33) 

For considered three-dimensional problem, the above 
equations give: 

  
 

2 2 2

2

T
2

u v w
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x y x z xx
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(34)
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(35) 

 
2 2 2

2
2

w u v T
w

z x z y zz
    

     
              

 

                                                                
2

2
yH

z

 



      

 

(36)

  We consider the plate is at rest before 0,t   and we suppose 

that the surfaces are traction free i. e. 
0xx zz      

                                                                            

(37) 

And the mechanical boundary conditions and the initial 
conditions are: 

0, 0,0,
2x a z cy b

u v w
T

x y z



  

        
        

         
               (38) 

     
0 0 0

0
t t t

u v w
  

       

                                                

(39) 

 

3. SOLUTIONS 
 
3.1 Determination of Magnetic field  

To find the solution to the magnetic field described in 
(11), (12) and (13), we need to transform the 
inhomogeneous boundary conditions into homogeneous 
ones. For this, we assume the solution of (11) as 

  0( , , ) ( , )H x z t h x z H 

                                                             

(40)

   

                                                

Using (40) in (11) to (13) we obtain: 

 
2 2

02 2 2

2h h
h H

x z 

 
  

 
  

                                                      

(41)

 
(0, , ) ( , , ) 0h z t h a z t                                                                (42)

 
( ,0, ) ( ,c, ) 0h x t h x t       

                                                         

(43)

 Applying double finite Fourier sine transform [21] to (41) 
we obtain: 

02

2
( , ) mnh m n H 


      

                                                           

(44) 

We now apply the inverse of double finite Fourier sine 

transform to (44) to obtain: 

   1
1 1

( , ) sin sinmn m m
m n

h x z c x z  
 

 

     

                        

(45) 

Using (45) in (40), we obtain the expression for the magnetic 

field as:   

   0 1
1 1

( , ) sin sinmn m m
m n

H x z H c x z  
 

 

  
                 

(46)

                                                                                                                                            

 
Consequently, the magnetic field intensity inside the 

rectangular plate at any time t is given by:  

   0 1
1 1

( , ) sin sin t
mn m m

m n

H x z H c x z e  
 

 

 
  
 

        (47)

                                                                                      
Current density expressions are modified to: 

   2
1 1

( , ) sin cos t
x mn m m

m n

J x z ac n x z e  
 

 

 
  

 
     

      

(48) 

   2
1 1

( , ) cos sin t
z mn m m

m n

J x z c c m x z e  
 

 

 
   

 
       

 

(49)
 

Using (14) and (15), the expressions for Eddy current and 

Hysteresis losses are given by:  

   
2

2
3

1 1

sin cosEddy mn m n
m n

n
W c x z

c
  

 

 

 
  

 
  

                                       
2

2cos sin t
m n

m
x z e

a

 
 

  
  

   (50)
 

   
2

2
0 1

1 1

sin sin t
Hyst H mn m m

m n

W k f H c x z e    
 

 

 
  

 
                                    

        

                                                                                                         (51)
     

where 0 0
1 22 2 2

8 4
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H Hm n
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3.2 Dimensionless Quantities 
 

It is more convenient to introduce the dimensionless 

variables as below: 

2
0

, , , , , ,
y

y

Hx y z c t
x y z c H

b b b b H b



     

2

2 2
0 0 0 0

, , ,x z E H
x z E H

H

bJ bJ b W W
J J W W

H H H k fH




      

 
 

2 2 2
0 0 0

,
, , ,

/ 2

ijx z

x z ij

b f fC T
T f f

H H H




  
                     

(52) 

3.3 Determination of Temperature Field 
The temperature field along with the initial and boundary 

conditions in dimensionless form is expressed as (from here 
onwards we drop the bar notation for the sake of 
convenience):  

2 2 2

4 52 2 2
( , )

T T T T
c W z c

x y z




   
   

  
     

                             

(53)

 
   0, , , 1, , , 0T y z T y z                                                     (54)

 
   ,0, , ,1, , 0T x z T x z                                                     (55) 

0,1

0
z

T

z 

 
 

 
                                                                             (56) 

 , , ,0 0T x y z                                                                            (57)  

where 
2

4 52
0 0

,
a c C

c c
H

 

 
                             

Applying double finite Fourier sine [25] transform to (53), 
we obtain: 

 
2

2 2 2
4 52

ˆ ˆ
ˆ ˆ ( , )

T T
m n T c W z c

z
 



 
    


   

                     

(58) 

We now apply the Finite Fourier cosine transform with 
respect to z,   

 
2

2 2 2 2
4 52

ˆ ˆ
ˆ ˆT T

m n p T c W c
z




 
     


                        (59) 

Applying Laplace Transform to the above equation with 
respect to time co-ordinate, we obtain:  

   
* *

6

1ˆ ˆ( , , , )
2mnp

T m n p s c W
s c s 

 
 
  
                           

(60)   

Applying the inverse Laplace transform, inverse finite 
Fourier cosine and inverse double finite Fourier cosine 
transform to the above equation we obtain: 

 6
1 1 1

( , , , ) 2 cosTotal mn mnp
m n p

T x y z c W I I p z 
  

  

 
   

  
                                                                

                                                             sin sinm x n y         (61) 

Where  

  
2

2 2 2
6 2 2

0 0

, ,mnp

a
c c m n p

CH

 

 
     

, 0[(2 ) 2 ][(2 ) 2 ]

0 0

, mn pmnp c uc u

mnp mnI e du I e du

 
       

    

  

3.4 Determination Displacement and Stresses 
Simplifying (34)-(36) further and dropping the inertia 

term, we obtain: 

  

   
 

2
2
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T

2 2 2
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u
H

x xx
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2 2

v T
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                                                                       (63) 

 
 

2
2

2 2 2 2
y

w T
H
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                             (64) 

The expressions for displacement components are given by:  

 
 

 
2

, , , , ,
2 2 2

xu u T x y z dx H x z dx
 

 
   

  
 

 
             

                          

(65)

  , , ,
2

yv u T x y z dy



 

 


                                              (66) 

 
 

 
2

, , , , ,
2 2 2

zw u T x y z dz H x z dz
 

 
   

  
 

                                           

(67)

                              

 
Following [21], the quasi-static solutions of displacement 

due to temperature change and Lorentz force in terms of its 
thermal and magnetic components are given by:   

 , , , ,
2

Tu T x y z dx



 




                                                   (68) 

 
 

2
, ,

2 2

Mu H x z dx



 




                                             (69) 

 , , ,
2

Mv T x y z dy



 




                                                   (70) 

 , , , ,
2

Tw T x y z dz



 




                                                   (71)
 

 
 

2
, ,

2 2

Mw H x z dz



 




                                              (72) 

Using the above equations along with (25) in (27)-(32), we 
obtain: 

  
2

, , ,
2

T T
xx zz T x y z
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2
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, ,xy xz

u v u w

y x z x
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v w

z y
 

  
  

  
                                                                     (79) 

4. NUMERICAL RESULTS AND DISCUSSION 

To illustrate and compare the theoretical results 
obtained, we now present some numerical results which 
depict the variations of displacement, temperature, and 
stress components. The material chosen for the purpose of 
numerical evaluations is steel, for which we take the 
following values of the different physical constants, using the 
physical data given in [22]. Figure 2, shows the magnetic 
field inside the rectangular plate. It is found that the 
magnetic field intensity is symmetric in both directions. 
Figure 3, shows the variations of specific heat losses with 
frequency. Frequency has a huge impact on both Eddy 
current loss and Hysteresis loss as well as on the general 
properties of ferromagnetic materials. At high frequency, 
eddy current losses are dominating whereas at low 
frequency, hysteresis losses are determining. At low 
frequency, the Hysteresis loss is a bit larger than the eddy 
current loss (see Figure 3), while the magnetic flux density 
remains the same. Meanwhile, when the frequency reaches 
above 110 Hz, eddy current loss is predominant as compared 
to hysteresis loss. Further, as frequency increases slowly, 
both losses also increase. 

Table -1: Material Constants 

Physical Constants Value 

Permeability of vacuum (µ0) 1.26×10-4 H/m 

Lame’s constant (µ) 79.3 GPa 

Electric conductivity (σ)  7.7×106 S/m 

Specific Heat (C)  502.416 J/kg K 

Density (ρ)  7663 kg/m3 

Coefficient of Thermal Intensity (κ)  1.4×10-3m2/sec 

Poisson’s Ratio (ν)  0.28 

Thermal Diffusivity (α)  

Heat conduction coefficient (λ0)  
Electric field intensity (E)  

12×10-6 K-1 
50 W/mK 
205 GPa 

 
Eddy current losses have a powerful impact on total heat 

loss. However, Hysteresis losses are important parts of total 
heat losses at low frequencies. The graph of hysteresis loss is 
linear as it is proportional to the frequency while the eddy 
current losses are proportional to the square of the 

frequency. Figure 4, shows that the total heat losses increase 
when magnetic flux density increases, whereas frequency is 
kept as constant. It also shows that the total heat loss gets 
larger and larger as the frequency of input supply increases, 
meanwhile, the magnetic flux density remains constant. 
Thus, steady growth is observed in total heat loss with an 
increase in magnetic flux density and the frequency 
increases from 50 250 .Hz to Hz This is because as per 

equation (17) the total heat loss term consists of two parts, 
Heat loss due to Eddy current and due to Hysteresis 
phenomenon. And Eddy current loss is directly proportional 
to the frequency of the supply whereas Hysteresis loss is 
proportional to the square of the frequency (see equation 
(14)). Therefore, this will lead to an increase in total heat 
loss with an increase in frequency. Figure 5 shows the effect 
of the resistivity of the material on the variation of Eddy 
current loss. Resistivity is the main factor that affects the 
Eddy current loss of the electrical machines which work 
under the time-varying electromagnetic field. The Eddy 
current loss mainly depends on the resistivity of the thin 
lamination plates of insulation material which are used in 
the machines like transformers where the thermal effect 
produced by the Eddy current loss affects the working 
environment of the machine drastically. 

 
 
Fig -2: Distribution of magnetic field intensity along x and 

z direction 

It is also observed that the higher the resistivity of the 
insulation/lamination material the lesser the Eddy current 
loss produced. Most of the ceramics which are non-metals 
like porcelain have a high tendency to resist the flow of 
electric current. With the use of such high resistivity 
materials for insulation one can reduce the Eddy current loss 
completely. Eddy current loss is greatest on the surface and 
decreases when we go deep inside the plate material. This is 
because of the phenomenon so-called as “Skin Effect”. The 
non-uniform distribution of the Electric current over the 
surface or skin of the material plate carrying the current is 
called the Skin effect.  
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Fig-3: Variation of Specific heat losses versus frequency 

 
Fig-4: Distribution of Total Heat Loss versus flux density 

 
Fig-5: Effect of Resistivity on Eddy Current loss 

 

The skin depth  
 
of the magnetic material defines a 

certain distance to which the strength of the electromagnetic 
field suffers the resistance in the amplitude and it reduces to 
1/ e  of its original amplitude.  

 
Fig-6: Variation of Skin depth with frequency 

 
Fig-7: B-H Curve for Steel, Iron and Air 

 
Fig-8: Time variation of non-dimensional temperature 

along the thickness of the plate 

Or in other words, skin depth defines the distance below 
the surface of the current-carrying conductor where the 
amplitude of the electromagnetic field strength decreases 
to 1/e of its value at the surface.  
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Fig-9: Time variation of non-dimensional temperature for 

different values of frequency 

 
Fig-10: Variation of displacement component u  along the 

thickness of plate for different values of time 
 

 
Fig-11: Variation of displacement component v  along the 

thickness of plate for different values of time 
 

 
Fig-12: Variation of displacement component w  along the 

thickness of plate for different values of time 

 
Fig-13: Variation of stress component along the thickness 

of plate for different values of time 
 

This decrease is referred to as the decay of one Naper 
(0.368). Theoretically, it is given by [23]:

 1

f



                                                                                   (80)

 
At higher frequencies, the electromagnetic waves can 
penetrate only near the surface of the plate material and the 
strength of electromagnetic waves decreases exponentially 
with an increase in the thickness of the plate material. Figure 
6 shows the variation of skin depth with the frequency of 
electromagnetic waves for various values of magnetic 
permeability. It shows that at higher frequencies the skin 
depth becomes much smaller. Therefore, the Eddy current 
loss or heating aroused due to it can be controlled to any 
required depth of the material simply by changing the supply 
of input frequency. Figure 7 represents the variation of 
Magnetic flux density (B) with the Magnetic field strength 
(H) for Steel, Iron, and Air. From the figure, we can notice 
that variation in magnetic field density is proportional to the 
Magnetic field strength until it reaches a certain value from 
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which it does not increase anymore and becomes almost 
constant and steady while the Magnetic field strength 
continues to increase. From the figure, it can be seen that for 
Steel the magnetic flux density increases up to 1.5T and this 
point in the graph is referred to as the Magnetic Saturation. 
Thus, Magnetic Saturation is the point of maximum flux 
density attained by the ferromagnetic material in the B-H 
Curve. Figure 8 shows the time variation of temperature for 
the different values of thickness. It can be observed from the 
figure that temperature first increases and then it becomes 
steady with time. Also, since wave frequency is inversely 
proportional to the skin depth of the plate material, 
therefore as soon as the plate thickness increases the 
temperature of the plate decreases. From the figure, it can be 
observed that for higher plate thickness the temperature is 
lower as compared to that for small plate thicknesses. Figure 
9 shows the time variation of temperature at the middle of 
the plate with different values of frequency. Due to the effect 
of wave frequency the plate heats up gradually to attain the 
maximum temperature then after a few seconds, the 
temperature becomes steady. Figure 10 displays the 
distribution of the displacement component u versus 
distance y . The displacement component always begins 

from zero for the four values of time coordinate and satisfies 
the boundary condition at 0y  as well as the initial 

condition at 0.   For 2,3,4sec  the displacement 

component u decreases for the range 0 0.06x  and 

0.2 0.26x  while it increases in the range 
0.06 0.2x  and 0.26 0.38.x   It can be observed that 

the displacement component u decreases as time increases. 

And it is showing oscillatory behavior and finally converging 
towards zero with the increase of y . In Figure 11 and 12, 

variation of v  and w  with respect to y  is presented for 

various values of time coordinate. It is noticed that v  and w  

decrease with time. Displacement components exhibit 
oscillatory behavior and tend towards zero with the 
increment in y . Figure 13 shows the variation of Stress 

components along the thickness of the plate for different 
values of time. 

5. CONCLUSIONS 

In this paper, a three-dimensional model of Magneto-
thermo-elasticity under the influence of time-varying 
magnetic field is established. Taking Steel plate as an 
example of ferromagnetic material, a series of analyses were 
carried out. According to the results obtained in this paper, 
the following conclusions can be obtained: 
1. The subject of this paper is obtaining Eddy current loss 

and Hysteresis loss as the total heat loss of the 
ferromagnetic plate.  

2. The distribution function of Magnetic field intensity in a 
rectangular plate of steel material is expressed in 
context of Maxwell’s equations using Double finite 
Fourier sine transform. 

3. It is observed that the time-varying electromagnetic 
field is responsible for the generation of Joule heat 
which ultimately gives rise to Eddy current loss.  

4. The influence of the frequency, magnetic field intensity, 
and the plate thickness on the total heat loss is 
discussed. 

5. One of the very suitable methods for solving the 
problem as discussed in this paper is the integral 
transform technique (Finite Fourier cosine transform, 
Double finite Fourier Sine transform and Laplace 
transform). 

6. It is found that the temperature increases with an 
increase in wave frequency and decreases with an 
increase in plate thickness. 

7. The conductivity of the material affects the depth of 
penetration significantly.  
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