
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 10 Issue: 07 | July 2023 www.irjet.net p-ISSN: 2395-0072

© 2023, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page 1205

Benchmarking Techniques for Performance Analysis of Operating

Systems and Programs

Devansh Baid1, Tanmay Mandal2, Nilophar Joglekar3, Akila Victor4

123Student, School of Computer Science and Engineering, VIT University, Tamil Nadu, India
4Associate Professor, School of Computer Science and Engineering, VIT University, Tamil Nadu, India

---***---
Abstract - Benchmarking computer systems is an
important, albeit time-consuming, process that provides
insight into a system's performance, exposes weaknesses, and
permits comparison between systems or versions. Current
UNIX operating system benchmarking programs are heavily
weighted toward CPU and hardware performance. As
operating systems become more complicated, so do the
programs that run on them. The commonly accessible
benchmarks currently do not take this into account, making
them kindly unrealistic and uninformative. We give a
comparison of extensive and widely used operating systems.
Eventually, a detailed and comprehensive conclusion has been
reached based on the results of various tests.

Key Words: Benchmarking; Operating Systems, Process
Management, Task Scheduling, File Management, Computer
Performance, Network Monitor

1. INTRODUCTION

In the early days of computing, the primary purpose of a
programmer was to create a workable program with little
regard for its efficiency. Von Neumann contrasted the speed
with which early computers (including the ENIAC)
conducted multiplication when computing ballistic
trajectories in 1946 [McK88]. Herbst et al. measured the
instruction mix of Maniac computer programs in 1955.

Performance evaluation is of importance to computer
system designers, administrators, and users alike. Designers
analyze several alternative designs to select the finest one.
Administrators compare various systems to determine the
optimal system for a collection of applications. Users
examine many installed systems to determine which system
is best suited for a certain task. The key objective in
computer system design, procurement, and use is to provide
maximum performance at the lowest possible cost.

The evaluation of a computer system's performance is a
challenging task. When people hear the word "performance,"
they may conjure up entirely different images. persons who
work with huge databases tend to think of performance in
terms of transactions per second, but persons in scientific
and technological fields may be interested in the number of
floating-point operations per second. Even with a small
emphasis, evaluating performance is not simple. Assume one

is only interested in scientific computing. For scientific
computing, a wide range of high-performance computers are
available, ranging from vector computers with a small
number of processors sharing common memory to machines
with thousands of processors and distributed memories. The
performance range of these computers can vary significantly,
perhaps by a factor of a thousand or more, depending on
how well the problem and software fit the underlying
architecture and operating system.

2. RELATED WORK

There are numerous existing technologies for performance
evaluation and benchmarking tools. Computer system
designers, administrators, and users are interested in
performance evaluation since their goal is to achieve or
deliver the best performance at the lowest possible cost. As
system performance varies greatly from one application area
to the next, no one statistic can be used to assess computer
system performance across all applications. Loads on various
system components also have a significant impact on
performance.

The performance of a computer system for a specific task can
be measured using a variety of performance assessment and
benchmarking tools. However, very few benchmarks, if any,
examine how a system performs under various system loads.
Most of the benchmarks are intended to run on an 'idle
system'. As a result, they provide a measurement of a
system's "peak efficiency" under a specific category of
workload.

In the world of computing or computer networking, the
benchmarking idea is not new. When one talks about
"benchmarking tools," they typically mean a program or set
of programs that are used to compare one solution's
performance to that of another under specific reference
circumstances. Benchmarking methods have been employed
to rate the efficiency of computers and computer networks
since the 1970s.

In the research projects CREW and OneLab2, Benchmarking
of wired and wireless computer networks is presented as a
study topic and the BonFIRE experiment investigates
benchmarking of applications and virtual machines in an
Infrastructure-as-a-Service (IaaS) setting.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 10 Issue: 07 | July 2023 www.irjet.net p-ISSN: 2395-0072

© 2023, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page 1206

They explained how the term "benchmarking" is used in
these projects and addressed the question of why
benchmarking research is still pertinent today. Following the
presentation of a high-level generic benchmarking design,
Benchmarking cloud services and cognitive radio systems are
two instances that demonstrate the power of benchmarking.

3. PROBLEM STATEMENT

Performance evaluation is of importance to users,
administrators, and designers of computer systems. The
computer system testing program may behave differently
depending on the input data and other settings in different
runs of the application. Another issue is that the majority of
installations are utilized to run different applications, and
relatively few systems are specifically designed to perform
one task. If the tasks that several apps undertake are of a
similar character, test programs can be created to forecast
how well the system will accomplish tasks of that nature.

4. AIM

To effectively measure performance, it is essential to identify
the specific metrics to be evaluated in the design of a
performance evaluation tool or benchmark. Historically,
measuring CPU and disk I/O has been the norm. However,
with the recent shift towards disk-less or data-less
workstations, evaluating the performance of the file server
and network has become critical, increasing the importance
of measuring performance in these areas.

Typically, performance measurement tools are utilized to
forecast the performance of an unfamiliar system on a well-
defined or known task or set of tasks. The output of the
performance evaluation is then utilized to make informed
purchasing decisions when acquiring a new system. These
tools can also serve as monitoring and diagnostic tools.

Running a test program and comparing the results against a
known configuration can potentially identify the root cause of
poor performance. Likewise, running a test program after
making changes can determine whether there has been an
improvement or degradation in performance.

Ideally, the most effective way to test a system's performance
is to use the actual application that will run on the system.
Unfortunately, this is not always feasible as the application
may not be available before the system is purchased.
Additionally, even if the application is available, the
performance of the system can vary across different runs of
the same application due to differences in input data and
other variables.

A challenge arises from the fact that most systems are multi-
purpose, supporting various applications instead of being
dedicated to a specific task. If the applications perform
similar job types, test programs can predict system

performance for those types of jobs. However, educational
institutions often use hybrid environments where the same
resources are utilized for various applications unless an
application is highly specialized.

The performance of various subsystems (such as the CPU,
disc I/O, etc.) is measured, and the results are given as a set of
numbers, rather than a single number, as a result.

5. LITERATURE REVIEW

Several researchers, vendors, and organizations have
conducted theoretical and experimental performance
analyses and studies of various operating systems in recent
years. Professor B. Randell presented the intricate
difficulties in achieving satisfactory levels of performance in
operating systems in his paper (Randall, 1985), emphasizing
the strong relationship and trade-off with reliability. His
research focused on the two issues (performance and
reliability) that designers and implementers face.

Another study conducted by a group of Harvard University
researchers (Ahmed, 2010) compared the performance of
Windows for Workgroups, Windows NT, and NetBSD (a
UNIX variant OS) across a wide range of system functionality
and user requirements. They tracked the performance
differences between the systems and attributed them to the
kernel architecture. Windows employs a microkernel
architecture, whereas NetBSD employs a monolithic kernel
structure. They demonstrated that Windows generated more
overhead when running native applications due to frequent
changes in machine mode and the use of system call hooks.
In another dimension of performance measurement,
Saavedra et al. (1996) in their work used a machine-
independent mathematical model to characterize machine
performance and program execution (as opposed to
measuring experimentally). They used this model to
estimate execution time for arbitrary machine/program
combinations.

In this abstract operation, benchmarks called and programs
were used to measure the execution of a given operation,
and this was used to predict the execution time on a large
spectrum of machines. Although this work is almost 20 years
old, it offers up some interesting observations and
contributes to the field of benchmarking by furthering the
research and discussion to include some answers to the and
behind the better performance or lack thereof, and in
addition, explores the act of predicting execution
performance.

In the experiments associated with this research paper, Java
I/O-intensive, and CPU-intensive benchmarks were designed
and written, and executed concurrently (in parallel) and
their execution times were measured for different sets of
input data.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 10 Issue: 07 | July 2023 www.irjet.net p-ISSN: 2395-0072

© 2023, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page 1207

The benchmarks were run via Linux scripts and Windows
batch files via the command prompt and terminal for the
respective platforms under study.

6. PROPOSED SYSTEM

A. System Design

Fig -1: Block Diagram

Dummy Files are created to test the performance of our
system on various parameters

 Performance measure of CPU - We measure the
number of instructions executed by the CPU system
in a given clock cycle.

 Performance measure of memory - We measure the
performance of the memory by conducting a regular
memory bandwidth test.

 Performance measure of the file system - We
measure the performance of the file system by
conducting two tests-

1. Random reading
2. Sequential reading

 Performance measure of the network - We measure
the performance of the network by conducting
network tests.

B. Benchmarking System Design

Fig -2: Benchmarking System Design

Modifying our benchmarking software so that it can operate
on various operating systems, where it will be put through a
variety of performance tests to verify our system. After
receiving the benchmark findings, we will compare them to
accepted system metrics.

7. METHODOLOGY

A. CPU Benchmarking
 We chose a benchmarking method that can quickly

access memory.
 Wrote a C program that performs the mentioned

benchmarking method. This program should run
the benchmark repeatedly for a specified amount of
time and display the results.

 Analyze and display the results through
visualization techniques that could enable
determining CPU’s performance with ease.

B. Memory Benchmarking
 Allocate a memory block larger than the cache size

of the system.
 Initialize the memory block with a pattern to ensure

full population.
 Perform a read or write operation on the entire

memory block while measuring time.
 Calculate memory bandwidth and display results.

C. Filesystem Benchmarking
 Choose a file operation and create a file larger than

the file system's block size.
 Initialize the file with some data and start a timer.
 Perform the file operation and stop the timer.
 Calculate the file system performance and display

the results in a meaningful way.

D. Network Test
 Choose a network protocol and create a socket

bound to a local IP address and port number.
 Initialize the data to be sent and start a timer.
 Send the data over the network and receive it using

the same socket, then stop the timer.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 10 Issue: 07 | July 2023 www.irjet.net p-ISSN: 2395-0072

© 2023, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page 1208

 Calculate the network performance and display the
results in a meaningful way.

8. IMPLEMENTATION

Fig -3: Outcome of CPU Test

By using multiple processes, we are calculating the time
taken by the CPU to execute an instruction cycle.

Fig -4: Plot for Average Cycles vs Number of Arguments

This plot depicts gives a better understanding on how much
time our CPU is taking to execute an instruction cycle.

Fig -5: Outcome of Memory Latency Test

We are using the concepts of strides with different sizes to
go through the data and then calculating the latency to fetch
the data.

Fig -6: Plot for Memory Latency w.r.t different strides

This plot gives a clear description of the memory latency test
in accordance with the strides we have used.

Fig -7: Outcome of Memory Bandwidth Test

Here, we calculate the time taken to read the data by using
timestamps. These timestamp values are captured before the
process of reading and writing.

Fig 8: Outcome of File System Experiment

For testing the file system, we used dummy test files which
were of different sizes. We then conducted the sequential
reading as well as random reading tests with the assistance
of timestamps.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 10 Issue: 07 | July 2023 www.irjet.net p-ISSN: 2395-0072

© 2023, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page 1209

Fig -9: Plot for the average per block access time for
different file sizes during Random Read Test

This plot clearly depicts the time taken for the random read
test with respect to the size of the file.

Fig -10: Plot for comparing File System Sequential Read
Test & Random Read Test

This plot clearly shows the comparison between the file
system test and the random read test done by the system.

Fig -11: First experiment for network test

We are using the concepts of sockets to visualize the
network performance of the system. The first experiment is
the time taken to setup the connection.

Fig -12: Second experiment for network test

The second experiment is the bandwidth test, in this test, we
calculate the time taken to transfer data.

Fig -13: Third experiment for network test

In this experiment, we calculate the RTT (Round trip time).
It is the time taken for a network request to go from a
starting point and back again to the starting time.

9. CONCLUSIONS

We have successfully developed a benchmarking tool that
has the capability to test the system, irrespective of the OS
the user is using. Since our tool focuses on testing the system
on different aspects individually, it can assist the user by
saving him some time by not looking at the system
holistically and providing him with an analysis of where an
issue is occurring. Moreover, all the testing is done locally on
the system so it showcases the performance of the system
realistically. Future work for this tool would be to enhance
performance metrics, develop a user-friendly interface and
integrate some cloud-based solutions.

REFERENCES

[1] Vetrivel, P., Sivakumar, S., & Babu, K. S. S. A Survey of
Benchmarking Techniques for Real-Time Operating System
Performance Analysis.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 10 Issue: 07 | July 2023 www.irjet.net p-ISSN: 2395-0072

© 2023, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page 1210

[2] Maly, K. J., Gupta, A., & Mynam, S. K. (1996). A
workstation’s communication performance benchmark. In
Testing of Communicating Systems (pp. 61-76). Springer,
Boston, MA.

[3] Boras, M., Balen, J., & Vdovjak, K. (2020, October).
Performance Evaluation of Linux Operating Systems. In 2020
International Conference on Smart Systems and
Technologies (SST) (pp. 115-120). IEEE.

[4] Martinovic, G., Balen, J., & Cukic, B. (2012). Performance
Evaluation of Recent Windows Operating Systems. J. Univers.
Comput. Sci., 18(2), 218-263.

[5] Vdovjak, K., Balen, J., & Nenadić, K. (2020). Experimental
Evaluation of Desktop Operating Systems Networking
Performance. International journal of electrical and
computer engineering systems, 11(2), 67-76.

[6] Shreesha Rao P, Chandan K N, 2014, The Need For
Portable Benchmark to Evaluate The Performance of Real
Time Operating Systems, INTERNATIONAL JOURNAL OF
ENGINEERING RESEARCH & TECHNOLOGY (IJERT) NCRTS –
2014 (Volume 2 – Issue 13)

[7] Kalakech, A., Jarboui, T., Arlat, J., Crouzet, Y., & Kanoun, K.
(2004, March). Benchmarking operating system
dependability: Windows 2000 as a case study. In 10th IEEE
Pacific Rim International Symposium on Dependable
Computing, 2004. Proceedings. (pp. 261-270). IEEE.

[8] Waller, J., & Hasselbring, W. (2013). A benchmark
engineering methodology to measure the overhead of
application-level monitoring. CEUR Workshop Proceedings.

[9] Chen, J. B., Endo, Y., Chan, K., Mazieres, D., Dias, A., Seltzer,
M., & Smith, M. D. (1995). The measured performance of
personal computer operating systems. ACM SIGOPS
Operating Systems Review, 29(5), 299-313.

[10] Marieska, M. D., Hariyanto, P. G., Fauzan, M. F.,
Kistijantoro, A. I., & Manaf, A. (2011, December). On
performance of kernel based and embedded real-time
operating systems: Benchmarking and analysis. In 2011
International Conference on Advanced Computer Science
and Information Systems (pp. 401-406). IEEE.

[11] Maly, K., Gupta, A., Mynam, S., & Khanna, S. (1995). B
(its) T (o the) U (ser): A Communication Benchmark
Proposal. Technical Report. Department of Computer
Science, ODU.

[12] Kanoun, K., Crouzet, Y., Kalakech, A., & Rugina, A. E.
(2008). Windows and linux robustness benchmarks with
respect to application erroneous behavior. Dependability
Benchmarking for Computer Sys, 227-254.

[13] Jeong, T. K. (2006). Evaluation and Benchmarking on
Operating System for Embedded Devices. Journal of the
Korea Institute of Information and Communication
Engineering, 10(1), 156-163.

[14] Hong, P., Hong, S. W., Roh, J. J., & Park, K. (2012).
Evolving benchmarking practices: a review for research
perspectives. Benchmarking: An International Journal.

[15] Kanoun, Karama & Crouzet, Yves Y.. (2006).
Dependability Benchmarks for Operating Systems.
International Journal of Performability Engineering. 2. 277-
289.

[16] Gomez, J., Tran, T. V., & Sadre, R. " Benchmarking
framework for real-time operating system applications:
study and implementation with Contiki and RIOT.

[17] Koopman, P., Sung, J., Dingman, C., Siewiorek, D., & Marz,
T. (1997, October). Comparing operating systems using
robustness benchmarks. In Proceedings of SRDS'97: 16th
IEEE Symposium on Reliable Distributed Systems (pp. 72-
79). IEEE.

[18] Sim, S. E., Easterbrook, S., & Holt, R. C. (2003, May).
Using benchmarking to advance research: A challenge to
software engineering. In the 25th International Conference
on Software Engineering, 2003. Proceedings. (pp. 74-83).
IEEE.

[19] Kalakech, A., Kanoun, K., Crouzet, Y., & Arlat, J. (2004,
June). Benchmarking the Dependability of Windows NT4,
2000 and XP. In International Conference on Dependable
Systems and Networks, 2004 (pp. 681-686). IEEE.

[20] Narayan, S., Shang, P., & Fan, N. (2009, April).
Performance evaluation of ipv4 and ipv6 on windows vista
and linux ubuntu. In 2009 International Conference on
Networks Security, Wireless Communications and Trusted
Computing (Vol. 1, pp. 653-656). IEEE.

