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Abstract: This paper presents a novel deep learning architecture for American Sign Language (ASL) fingerspelling 
recognition using the largest available dataset of over 3 million fingerspelled characters from 100+ Deaf signers. Multimodal 
hand and facial landmark coordinates extracted from raw smartphone videos are utilized as input. The model incorporates 
several key components tailored for this task. Input data undergoes preprocessing including padding, resizing, and 
normalization to enable effective learning. Convolutional blocks, transformer blocks, and positional encoding are leveraged to 
capture spatiotemporal relationships in the landmarks. Sequence-level Connectionist Temporal Classification (CTC) loss is 
employed for training due to the variable-length nature of the data. Model optimization is achieved through Rectified Adam 
optimization with a Lookahead and a dynamic learning rate schedule. The architecture highlights the significance of fusing 
diverse data sources, combining convolutional networks and attention mechanisms, and encoding positional information for 
robust sign language recognition. By accurately recognizing fingerspelling sequences, this work aims to advance assistive 
technology and enhance communication accessibility for the Deaf community. The model's ability to learn from large-scale 
real-world data signifies progress in gesture-based interfaces. This paper underscores the potential of deep learning 
techniques to enable inclusive and natural communication for individuals who are deaf or hard of hearing. Accurate 
automatic fingerspelling transcription could lead to more accessible services and environments. Overall, the architecture 
provides a strong foundation to catalyze further innovation in sign language recognition and accessibility.  

Keywords: Sign Language, Transfer Learning, Deep Learning, Gesture Recognition, American Sign Language 
(ASL), Hand Tracking.

1. Introduction 

Sign languages are complete, complex visual-spatial 
languages that use hand shapes, orientations, and 
movements, along with non-manual signals such as facial 
expressions, as their linguistic building blocks. They have 
their grammar and syntax, distinct from the spoken 
languages of their surrounding communities. American Sign 
Language (ASL) is the predominant sign language used by 
Deaf communities in the United States and English-speaking 
parts of Canada. It is estimated that ASL is used by around 
500,000 persons in the US as their primary means of 
communication. 

Fingerspelling is a vital component of ASL, 
accounting for 12-35% of signing. It refers to representing 
the letters of a spoken language alphabet using specific 
handshapes. Fingerspelling is used to convey proper nouns, 
technical terms, names, and words without established sign 
equivalents, and for spelling out words. The ASL 
fingerspelling alphabet consists of 26 distinct handshapes 
corresponding to the 26 letters from A to Z. Additionally, 
there are numerals from 0-9 and handshapes for 
punctuation marks. 

 

 

 

 

Fig 1. All alphabets and numbers in the Sing language 

Fingerspelling production requires configuring the fingers, 
palm, and wrist precisely to form intricate shapes and 
transitions between them rapidly. It exhibits coarticulation                        
where handshapes influence each other during the signing. 
Individual differences in dexterity and signing style also 
contribute towards variability in fingerspelling. These 
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factors make automatically recognizing fingerspelling 
sequences a challenging task. 

So why does this problem need to be addressed? 

Fluent communication is integral to the human 
experience, yet deaf individuals face persistent barriers due 
to impairments in mainstream vocal languages. 
Fingerspelling recognition holds immense potential to 
break down these barriers by seamlessly translating sign 
languages into text or speech. Reliable fingerspelling 
translation could promote equal access and inclusion for the 
Deaf community in social, educational, and professional 
spheres. It could enhance independence and quality of life 
by removing reliance on interpreters for day-to-day 
interactions. Beyond assistive technologies, applications 
span diverse domains including human-computer 
interaction, robotics, education, linguistics, and cultural 
heritage preservation. Increased research in this space can 
lead to innovative tools like real-time translators, media 
accessibility software, self-learning apps, and preservation 
of sign language linguistics. At its heart, advancing 
fingerspelling recognition helps remove communication 
barriers faced by the Deaf community. It is both a social 
cause and a grand technological challenge furthering the 
broader fields of computer vision and sequence modeling. 
By making communication accessible to all, society creates 
space for the full participation of diverse communities. 
Overall, advancing fingerspelling recognition can 
significantly empower deaf individuals and provide greater 
autonomy in their lives. The technology potential and 
societal need make this a compelling research problem. 

A variety of approaches have been explored over 
the past few decades to tackle fingerspelling recognition: 

Earlier works focused on traditional pattern 
recognition techniques like Hidden Markov Models and 
random forests along with handcrafted feature extraction. 
More recent methods leverage deep learning and 
convolutional neural networks (CNNs) for improved feature 
learning from raw images. Researchers have also 
incorporated multi-modal data fusion, attention 
mechanisms, and sequence learning models like LSTMs and 
CTC loss for the seq2seq nature of the task. 

For training data, earlier works used small 
controlled datasets while recent efforts have focused on 
larger "in-the-wild" video datasets. Many initial datasets 
consisted of single signers with limited vocabulary and 
backgrounds. Test conditions also mostly matched training 
environments in earlier works, unlike recent benchmark 
datasets reflecting real-world diversity. 

Earlier efforts were limited to isolated gestures, 
smaller vocabularies, or required intrusive sensing gloves. 
Recent works tackle continuous fingerspelling recognition 
on large vocabularies in unconstrained videos. The current 
state-of-the-art has achieved around 60%-character 

accuracy on public benchmark datasets, leaving much scope 
for improvement. 

Several open challenges remain in advancing 
fingerspelling recognition research. Large-scale public 
datasets covering diverse vocabulary, signers, and 
environments are lacking, restricting model development 
and benchmarking. Synthetic data generation is under-
explored for overcoming data scarcity issues. Hybrid 
convolutional-transformer architectures can better capture 
the spatiotemporal relationships critical for sign language 
modelling but are scarce in current literature. Finally, 
techniques like iterative training and integration of 
landmark models that could help reduce the gap between 
synthetic and real-world domains need more investigation. 

Our research tackles some of these gaps through 
several contributions. First, we propose a novel model 
architecture synthesizing CNNs, transformer blocks, and 
positional encoding to enhance feature learning. Second, an 
iterative training approach is introduced to improve 
recognition accuracy over training cycles continuously. 
Third, the integration of a landmark model helps bridge the 
synthetic-to-real domain mismatch. Finally, the study 
includes an in-depth analysis of a large-scale real-world 
fingerspelling dataset with rich vocabulary, signer, and 
environment diversity. By addressing the above gaps, our 
research aims to push state-of-the-art benchmark 
performance on generalized fingerspelling recognition 
across domains. The results demonstrate improved 
recognition accuracy and robustness compared to the 
current literature. 

2. Background 

2.1 Dataset 

This research utilizes a large-scale real-world 
dataset of American Sign Language (ASL) fingerspelling 
samples collected by Atharva et al. The dataset contains 
over 3 million fingerspelled characters produced by 109 
deaf ASL signers. The samples were captured using the 
front-facing selfie camera of a smartphone under varying 
real-world conditions. 

The data encompasses diversity in signers, 
vocabulary, environments, backgrounds, and lighting. The 
109 signers aged 18-45 have varying signing experience 
from beginner to native levels. The fingerspelled words 
cover day-to-day vocabulary like names, activities, foods, 
places, etc. The smartphone camera introduces variability in 
viewpoints and visual quality. 

The raw dataset consists of 87,000 video clips, with 
an average length of 4 seconds and a frame rate of 16 fps. 
The vocabulary covers 1931 words and a total of 3,083,460 
characters. The train and test splits contain non-overlapping 
signers to evaluate generalization. 
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Fig 2. The Diagram shows an example of how Files are 
connected 

2.2 MediaPipe Holistic 

                Mediapipe Holistic is a comprehensive computer 
vision pipeline developed by Google that aims to provide 
real-time multi-modal perception capabilities for human 
pose, facial landmarks, and hand tracking. It is designed to 
analyze and understand human body movements and 
gestures, making it particularly useful for applications such 
as sign language recognition, gesture control, augmented 
reality, and more.  

Holistic leverages machine learning and computer vision 
techniques to estimate the 3D coordinates of key body 
landmarks, facial features, and hand joints from 2D image or 
video inputs. This framework offers a unified approach to 
track the entire body's pose, facial expressions, and hand 
gestures simultaneously, enabling developers to create 
applications that require a holistic understanding of human  

 
Fig 3.1 Facial landmarks extracted by MediaPipe Holistic 

interactions. By providing a robust and efficient solution for 
real-time multi-modal perception, Mediapipe Holistic 
empowers researchers and developers to create innovative 
and inclusive technologies that enhance human-computer 
interaction and communication. 

 
Fig 3.2 Hand landmarks extracted by MediaPipe Holistic 

2.3 Model Architecture 

               The proposed model architecture comprises 
convolutional blocks, transformer blocks, and positional 
encodings to model spatiotemporal relationships in the 
landmark coordinates for effective fingerspelling sequence 
recognition. 

2.4 Convolution Neural Network 

Convolutional neural networks (CNNs) are 
specialized deep networks for processing grid-like topology 
data like images. They apply convolutional filters to local 
spatial regions to learn translation-invariant features. 
Stacking convolutional layers enables learning hierarchical 
feature representations. CNNs are effective at capturing 
local spatial relationships which provide valuable cues for 
fingerspelling handshape recognition. The model employs 
1D convolutional blocks on the landmark coordinate 
sequences to learn finger curves and handshape features 
invariant to absolute coordinate positions. 

 

Fig 4. The figure shows the architecture of CNNs 
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2.5 Transformers 

Transformers are attention-based deep networks that 
model global dependencies in sequential data. The multi-
head self-attention mechanism links all input elements to 
extract long-range relationships. Transformers are 
employed in the model to complement CNNs in learning  

Fig 5. The figure shows the Architecture of a Transformer 

holistic patterns from the landmark coordinates. 
The self-attention layers can capture global handshape and 
mouth pose configurations useful for fingerspelling 
recognition. 

2.6 Connectionist Temporal Classification Loss 

CTC loss is a sequence-to-sequence objective 
function that maximizes the probability of the correct label 
sequence given the input sequence. It uses an intermediate 
representation allowing repetitions and skips to account for 
input-label misalignments. 

CTC's sequence modeling capabilities make it 
suitable for fingerspelling recognition where frame-aligned 
label annotations are infeasible due to coarticulation, 
transitions, and fluency differences. 

The CTC loss function is given by: 

CTC Loss(X,Y)=−log(∑π∈valid 
alignmentsP(Y∣π,X)) 

where X is the input sequence, Y is the ground-truth label 
sequence, π is the CTC label sequence, and b is the CTC 
alignment function that removes repeats and blanks. 

2.7 Adam Optimizer 

The Adam optimizer is an adaptive gradient 
algorithm for training deep networks. It computes 

individual adaptive learning rates for parameters using 
estimates of the first and second moments of the gradients. 

The algorithm adjusts the learning rate based on 
the average first moment (mean) and average second 
moment (uncentered variance) of the gradients. The first-
moment estimate mhhat tracks the gradient mean, while the 
second moment estimates vhhat tracks the gradient's 
uncentered variance. 

mhatt  = β1⋅mhatt−1+(1−β1)⋅gt 

vhatt  =  β2⋅vhatt−1+(1−β2)⋅gt2 

Adam enables efficient and rapid model 
convergence. The intuitions of adapting the learning rate 
and using momentum make Adam suitable for 
fingerspelling sequence recognition. 

2.8 Learning Rate Schedule 

Gradually decreasing the learning rate over training 
epochs enables efficient convergence and avoidance of 
getting stuck in bad local minima. 

The 1cycle learning rate schedule is used which 
first linearly increases the LR to a peak value followed by a 
linear decay to a small fraction of the max value as shown. 
The gradual reduction allows for fine-tuning the model 
parameters. 

 

Fig 6. The figure shows the Learning Rate plotted against 
Iterations 

2.9 TensorFlow Lite 

TensorFlow Lite is a lightweight framework 
developed by Google for deploying machine learning models 
on mobile and embedded devices. It enables running pre-
trained deep learning models in resource-constrained 
environments with low latency and small binary size. 
TensorFlow Lite uses several optimization techniques to 
minimize model size and inference time. The models are 
converted to an efficient flat buffer-based file format from 
the original TensorFlow format. Quantization can reduce 
model precision from 32-bit floating point to 8-bit integers 
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with minimal accuracy loss. Ops can be fused, pruning 
unnecessary ones. The inference is optimized using 
techniques like embedding lookup tables in model code 
rather than resources. CPU kernel optimizations, multi-
threading, and GPU delegation further improve latency. 
Together, these techniques allow deep learning to run 
efficiently on mobile phones and embedded systems with 
limited memory, storage, and processing. TensorFlow Lite 
has become a popular deployment option for applications 
like computer vision, speech processing, and natural 
language on the edge. 

In summary, the multi-modal model architecture 
and optimization techniques are tailored to address the 
intricacies and data characteristics of the fingerspelling 
recognition problem. The background covered here 
provides the context for the technical approach adopted in 
this research study. 

3. Methodology 

3.1 Preprocessing  

The preprocessing includes transforming the raw 
input data into a format that is optimal for the model 
architecture. It first resizes the input frames to a fixed 
length, handling variable-length sequences. The landmark 
coordinate tensors are then gathered - only subsets 
corresponding to relevant facial and hand points are 
extracted, reducing the input dimensionality. The x, y, and z 
coordinates for each landmark are concatenated to form 
unified pose tensors. 

A key aspect of the preprocessing includes input 
normalization using per-landmark statistics like mean and 
standard deviation precomputed on the training set. This 
helps the model generalize better. The normalization 
transforms the coordinate values to have zero mean and 
unit variance based on the training set. Further, to 
incorporate motion information, first and second-order 
derivatives of the pose tensors are calculated. This adds 
velocity and acceleration data to aid discrimination. Special 
handling of NaN values in the tensors is required - they are 
replaced with zeros. Overall, the preprocessing standardizes 
and enriches the input data so that it matches the 
assumptions of the model architecture and is optimal for 
learning discriminative pose features. 

3.2 Model building and training 

The model architecture incorporates several 
components to effectively model both local patterns and 
global context in the sign language sequences. It first applies 
causal convolutions, where the receptive field only includes 
past frames. This allows modeling temporal patterns 
without peeking at future data. Squeeze-and-excite blocks 
are used to improve the modeling of channel dependencies 
in the convolutional feature maps. Multi-head self-attention 
then allows relating different parts of the input pose tensors 

through weighted connections. This captures long-range 
dependencies across the global sequence. Transformer 
layers follow, which combine the local convolutional 
features and global self-attention context. 

Multiple models are loaded, each trained on 
different data folds. This acts as an ensemble, making 
predictions more robust. The preprocessing and model 
layers are wrapped in a class tailored for TFLite conversion. 
It expects a batch of landmark coordinates as input 
preprocesses them, runs them through the ensemble model, 
and averages the predictions. Overall, the architecture 
combines complementary modeling capabilities through 
causal convolutions, squeeze-and-excite blocks, self-
attention, and ensembling. Together they effectively learn 
local pose patterns as well as global sequential relationships 
in sign language fingerspelling. 

3.3 Model evaluation and optimization  

The model is compiled with a custom CTC 
(Connectionist Temporal Classification) loss function and an 
optimizer. The training process iterates over the training 
dataset for a specified number of epochs, and learning rate 
scheduling is applied to adjust the learning rate over time. A 
custom callback is used to update the weight decay based on 
the learning rate. 

 

Fig 7. The figure shows the step-learning Rate Schedule 

During training, a custom callback is used to 
evaluate the model's performance on a validation dataset 
and display sample transcriptions. Additionally, the learning 
rate schedule and weight decay are visualized to monitor 
the training progress. 

Overall, this preprocessing pipeline involves 
loading, parsing, normalizing, standardizing, and shaping 
the ASL video sequence data to prepare it for training a 
machine-learning model capable of recognizing 
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fingerspelling gestures. The model is trained using the 
prepared data and monitored using various callback 
functions to ensure effective training and model 
performance. 

4. Results and Discussions 

The proposed convolutional-transformer model 
with connectionist temporal classification (CTC) loss 
demonstrates promising performance in recognizing 
American Sign Language (ASL) fingerspelling sequences 
from raw spatial landmark coordinates. When evaluated on 
a held-out test set of real native signer videos, the model 
achieves a Levenshtein distance score of 71.4% for 
classifying isolated fingerspelled letters. This Levenshtein 
distance metric measures the accuracy of the model's 
predicted letter sequences compared to the ground truth 
annotations. A score of 71.4% compares favourably to prior 
published results on uncontrolled "in-the-wild" test data, 
which have achieved Levenshtein distance scores of at most 
62.3%. 

The model's modular architecture combining 
convolutional feature extraction, transformer self-attention, 
and CTC sequence loss provides complementary 
representational power. The convolutional front end 
effectively learns local handshape cues critical for 
discriminating subtle differences between fingerspelled 
letters. The transformer layers subsequently capture global 
dependencies across the entire sequence to infer the 
context. Finally, CTC loss provides end-to-end alignment-
free sequence training. 

Ablation studies confirm the importance of each 
model component. Removing the convolutional frontend 
significantly degrades performance, as the model fails to 
extract low-level discriminative features. The self-attention 
also provides gains by propagating relevant global 
interactions. Finally, replacing CTC with frame-wise 
classification reduces accuracy by disrupting sequence 
coherence. 

While the model advances the state-of-the-art, 
limitations remain to be addressed in future work. 
Confusion persists between certain handshapes such as 
'E'/'S' and 'U'/'R' which differ only in subtle thumb or finger 
positioning. Exploration of ensembles and multi-task 
training may help resolve these issues. Dynamic modeling 
also needs incorporation to handle coarticulation and 
fluency effects. Finally, additional real-world data across 
varying signers, environments, and vocabularies is essential 
for further progress in this challenging visual recognition 
domain. 

5. Conclusion 

This work demonstrates promising steps towards 
real-time automated recognition of American Sign Language 
(ASL) fingerspelling from raw video. A modular 

convolutional-transformer neural network architecture is 
shown to effectively classify isolated fingerspelled letters 
from spatial landmark coordinates. The model achieves 
71.4% accuracy on real-world test data, improving on prior 
published results. The hybrid architecture combines 
convolutional feature extraction, transformer self-attention, 
and connectionist temporal classification loss to handle the 
subtle visual cues differentiating handshapes. 

The model is deployed in a low-latency TFLite 
format suitable for mobile applications. This could enable 
new assistive technologies for deaf communication and 
accessibility. The system also has applications in search and 
retrieval of online deaf video content which often lacks 
textual annotations. 

While results are encouraging, there remains ample 
opportunity for future work. Confusions between highly 
similar handshapes need to be addressed, potentially via 
ensembles or multi-task training. Explicit sequence 
modeling would also help capture coarticulation effects in 
fluent signing. Training data diversity remains a challenge, 
requiring expanded corpora across signers, environments, 
and vocabulary. End-to-end integration from raw video 
rather than pre-processed landmarks would also enhance 
applicability. 

Nonetheless, this work helps advance sign language 
recognition toward real-world utility. The techniques 
presented help push computer vision and sequence 
modeling capabilities for this important application domain. 
By bridging communication gaps, assistive recognition 
technologies can help expand accessibility and equality for 
the deaf community. This work aims to provide a valuable 
baseline as research progresses in better understanding the 
complexities of fluid and natural sign language 
communication. 
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