
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 10 Issue: 09 | Sep 2023 www.irjet.net p-ISSN: 2395-0072

© 2023, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page 52

A Plagiarism Checker: Analysis of time and space complexity

Mr. Prashanth Kumar HM1 & Dr. Subramanya Bhat S2

1Research Scholar, College of Computer Science, Srinivas University, Mangalore, India
2 Professor, College of Computer Science, Srinivas University, Mangalore, India

---***---
Abstract - In Plagiarism processing, the time and space
complexity are important concepts in software internal
process, that describe the efficiency and resource
requirements of algorithms and programs. The time of the
plagiarism process called time complexity, refers to the
amount of time an algorithm takes to complete its document
execution as a function of the input size. It provides an upper
bound on the number of basic operations (such as searching
data, matching, arithmetic operations, indexing etc.) an
algorithm performs in relation to the input size. Plagiarism
time complexity is usually expressed using big O notation,
which represents the worst-case scenario. Space complexity
refers to the amount of memory space an algorithm or
program uses to solve a problem as a function of the input
size. It includes the memory required for variables, data
structures, recursion call stacks, and other memory
allocations during the algorithm's execution. Like time
complexity, space complexity is often expressed using big O
notation and describes the worst-case scenario. It's
important to note that time and space complexity are
interrelated but distinct concepts. An algorithm that is very
time-efficient might have a higher space complexity, and vice
versa. When designing algorithms or choosing between
different algorithms to solve a problem, you often aim to
strike a balance between time and space complexity based
on the specific requirements and constraints of the problem
and the underlying hardware. Here we expose accuracy and
fast execution of plagiarism document checking is dependent
on two complexity levels.

Key Words: Time Complexity, Space Complexity,
Searching, File Processing, Indexing.

1. INTRODUCTION

In plagiarism, the accuracy refers to the degree to which a
software system produces correct and reliable results that
align with the intended functionality and result expectations.
In the realm of software development, achieving high
accuracy is a fundamental goal, as inaccuracies can lead to
errors, misinformation, financial losses, compromised
security, and user dissatisfaction. Ensuring software
accuracy involves a combination of thorough design,
meticulous testing, continuous validation, and diligent
maintenance. In our process relies heavily on plagiarism to
perform an array of tasks, from basic calculations to complex
data analysis, critical infrastructure management, healthcare

diagnostics, financial transactions, and more. As such, the
accuracy of these systems holds immense.

Significance in various domains. Accuracy starts with clear
and comprehensive requirements gathering. An accurate
understanding of user needs, and system functionality is
essential to building software that meets expectations. A
well-thought-out design phase of plagiarism considers
potential sources of errors and inefficiencies, aiming to
minimize them. Design decisions influence how data is
stored, processed, and communicated within the software,
directly affecting its accuracy. Skilled coding practices and
adherence to design principles are crucial for translating a
design into accurate software. Inaccurate coding can
introduce bugs, security vulnerabilities, and unexpected
behaviors. Rigorous testing is a cornerstone of ensuring
software accuracy. Then testing includes unit tests to
examine individual components, integration tests to assess
interactions between components, and system-level tests to
verify the software. The validation covers whether the
software satisfies user needs, while verification confirms
that the software meets its specified requirements. These
processes involve comparing plagiarism outputs to expected
results and validating its behavior under various input
documents. The result of delay or failure often interacts with
software in ways unforeseen by developers, leading to the
discovery of issues and improvements that enhance
accuracy. Accuracy is an ongoing effort. Regular updates, bug
fixes, and security patches are essential to maintaining
accuracy as the software evolves and new challenges arise.
The challenges and strategies for ensuring plagiarism
accuracy are defined in different levels, but both levels are
dependent on duration of process and memory usage.
Software systems are becoming increasingly complex.
Managing this complexity requires careful design and
modularization to reduce the likelihood of errors and ease
debugging. Inaccurate input data can lead to inaccurate
outputs. Implementing data validation and error-handling
mechanisms can help mitigate this issue. In multi-threaded
or distributed systems, managing concurrency and ensuring
accuracy in shared data access is a significant challenge.
Proper synchronization and coordination mechanisms are
necessary. Security breaches can compromise the accuracy
and integrity of software systems. Implementing strong
security measures, encryption, and authentication helps
maintain accurate data and functionality. Employing a mix of
testing strategies, including automated testing, manual
testing, and exploratory testing, can help uncover different

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 10 Issue: 09 | Sep 2023 www.irjet.net p-ISSN: 2395-0072

© 2023, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page 53

types of issues and improve overall accuracy. Monitoring
software performance and behavior in real-world scenarios
helps identify and address accuracy issues as they arise.
Comprehensive documentation aids in understanding the
software's functionality, inputs, outputs, and potential
limitations, facilitating accurate usage and troubleshooting.
Software accuracy is a critical aspect of software
development that directly impacts its usefulness, reliability,
and user satisfaction. Achieving and maintaining accuracy
involves a holistic approach that encompasses every phase
of the software development lifecycle, from requirements
gathering to maintenance. Through meticulous design,
rigorous testing, continuous validation, and ongoing
improvement efforts, software developers strive to deliver
accurate systems that meet user needs and contribute
positively to various aspects of society. Time complexity is a
fundamental concept in computer science that measures the
efficiency of an algorithm by analyzing the amount of time it
takes to run as a function of the input size. It provides a way
to compare and classify algorithms based on their
performance characteristics. In essence, time complexity
quantifies the relationship between the input size and the
number of basic operations an algorithm performs. These
operations could include comparisons, assignments,
arithmetic computations, and other fundamental actions. By
understanding how an algorithm's execution time scales
with larger inputs, we can make predictions about its
performance in real-world scenarios. Time complexity is
commonly expressed using big O notation, which offers a
simplified representation of an algorithm's upper bound
performance. For instance, an algorithm with O(1) time
complexity exhibits constant time behavior; its execution
time remains consistent, regardless of input size. This is
often seen in operations where a fixed number of steps are
executed. Algorithms with logarithmic time complexity,
denoted as O(log n), are notably efficient for large datasets.
They divide the input into smaller portions with each step,
reducing the problem size significantly. Binary search is a
classic example of such an algorithm, as it divides the search
space in half during each iteration. Linear time complexity
(O(n)) implies that an algorithm's execution time grows
linearly with the input size. For instance, iterating through
an array to find a specific element requires a number of
operations proportional to the array's length. Quadratic time
complexity (O(n^2)) signifies that an algorithm's execution
time increases quadratically with input size. This is often
observed in nested loops, where each iteration of the outer
loop triggers a complete run of the inner loop. Such
algorithms can become inefficient for larger inputs. As time
complexity increases further (e.g., cubic, exponential),
algorithms become progressively less efficient and suitable
for practical use due to their rapid growth in execution time.
Selecting the right algorithm for a specific problem involves
analyzing its time complexity and considering the trade-offs
between different approaches. An algorithm that excels in
time efficiency might require higher memory usage, leading
to increased space complexity. It's a balancing act that

considers the constraints of the problem, available hardware
resources, and the desired performance. In our plagiarism
time complexity provides a valuable framework for
understanding an algorithm's performance characteristics as
the input size changes. It aids in making informed decisions
and updating code about implementation part, design, and
optimization, ultimately contributing to the development of
efficient and effective solutions for respected documents.

2. OBJECTIVES

File Conversion: Converting a document from one word
processing format (like Microsoft Word's .docx) to another
(like Adobe PDF). File conversion can be performed at an
initial level of plagiarism processing step. File conversion is
available where the user can upload a file in any format, and
we have it converted to a single format for plagiarism
similarity matching purpose without installing additional
software using some document converted algorithm. When
performing file conversions, it's important to ensure that the
quality and content of the original file are retained to the
greatest extent possible in the converted file.

Data Extraction: Data extraction refers to the process of
retrieving specific information or data from a larger dataset
or source. This process is commonly used to gather relevant
data for analysis, reporting, transformation, or migration.
Data extraction can involve a wide range of sources, such as
databases, websites, documents, spreadsheets, and more.
There are different methods for data extraction, depending
on the source and the complexity of the data. Some common
methods include querying databases using SQL, using APIs to
retrieve structured data, using web scraping tools to extract
information from websites, and using data integration tools
for more complex extraction tasks.

Internet Search: Internet searching, also called
programmable content searching, refers to the act of using
API search engines and other user defined tools to find
information, resources, websites, and content on the World
Wide Web. It's the process of entering keywords, phrases, or
questions into a search engine and receiving a list of relevant
results that match the query. Internet searching is a
fundamental skill in the digital age, enabling individuals to
access a vast array of information quickly and easily. It's
used for everything from looking up simple facts to
conducting in-depth research on complex topics.

Data Indexing: Data indexing is the process of organizing
and optimizing the structure of data to improve the speed
and efficiency of data retrieval operations. Indexing involves
creating data structures that allow for rapid access to
specific pieces of information within a dataset, making data
retrieval faster and more efficient compared to scanning the
entire dataset. Data indexing is a crucial technique in
database management and other data storage systems to
ensure efficient data retrieval. It involves creating and
managing data structures that provide quick access to

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 10 Issue: 09 | Sep 2023 www.irjet.net p-ISSN: 2395-0072

© 2023, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page 54

specific data entries, contributing to better overall system
performance.

Comparison: Text comparison refers to the process of
comparing two or more pieces of text to identify similarities,
differences, or patterns between them. Text comparison is
often used in various levels in our plagiarism detection and
internal content management. in our Plagiarism comparing
texts at the word level involves identifying similarities and
differences between words. This is common in natural
language processing tasks and document analysis.

Text Highlighting: It’s a process of showing detected
matched content in a same user document and called
overlapping matched text. Highlighted text in document
showing different color system in background. The two
levels of document we are generating here, those html and
pdf colored document. Advantage of this process is user can
easily to navigate the highlighted content which is showed
like similarity content.

Reporting: Reporting in a document refers to the process of
presenting information, data, or findings in a structured and
organized manner. It involves creating written or visual
documents that convey specific information to a particular
audience, often with the purpose of informing, analyzing, or
making decisions based on the presented information.
Effective reporting requires clear and concise
communication, accurate data representation, proper
context, and consideration of the target audience's needs and
expectations. Well-structured reports make it easier for
readers to understand the information presented and make
informed decisions based on that information.

3. ANALYZING TIME

Omega Notation: Omega notation represents the lower
bound of the running time of an algorithm. Thus, it provides
the best-case complexity of an algorithm. The execution time
serves as a lower bound on the algorithm’s time complexity.
It is defined as the condition that allows an algorithm to
complete statement execution in the shortest amount of
time.:

Let C and f be the function from the set of natural numbers to
itself. The function f is said to be Ω(g), if there is a constant c
> 0 and a natural number n0 such that c ≤ f(n) for all n ≥ n0.

In our assumption, all process is done by the strength of CPU
is 4 core and RAM capacity 8 giga byte of virtual server. Here
every load duration time file can be automatically uploaded
concurrently. The load duration was not fixed but it was less
than 10 Sec and increased 100% of File processing load.

Process
Name

File
Process

Load
Duration

Start
ed

Compl
eted

Proces
sing

Avg.
Time

Load 1 10 <10 Sec 10 10 0 10 Sec

Load 2 20 <10 Sec 20 20 0 20 Sec

Load 3 30 <10 Sec 30 30 0 30 Sec

Load 4 40 <10 Sec 40 40 0 40 Sec

Load 5 50 <10 Sec 50 50 0 50 Sec

The outcomes of this experiment expressed by Omega
Notation c1*g(n) <= f(n), hence c1 value is minimum of load
value. So, value expressed by mathematically called 10 <=50
<= f(n), so average outcome is Ω (g)=f(n), so Ω (g)=31, here
31 is file process, finally we can say according to our virtual
system assumption, every less than 10 Sec we can process 31
files (best Case) concurrently (1 file=20 pages, or 4,500
words).

Theta Notation: Theta notation encloses the function from
above and below. Since it represents the upper and the lower
bound of the running time of an algorithm, it is used for
analyzing the average-case complexity of an algorithm. Theta
(Average Case) You add the running times for each possible
input combination and take the average in the average case.
Here we are analyzing ‘theta’ notation of overall time
consumption between upload file from user end and until
result of similarity of the document.

The above expression can be described as if f(n) is theta of
g(n), then the value f(n) is always between c1 * g(n) and c2 *
g(n) for large values of n (n ≥ n0). The definition of theta also
requires that f(n) must be non-negative for values of n
greater than n0. In our assumption, all process is done by the
strength of CPU is 4 core and RAM capacity 8 giga byte of
virtual server. Here every load duration time file can be
automatically uploaded concurrently. The load duration
fixed every 10 Sec and increased 100% of File processing
load.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 10 Issue: 09 | Sep 2023 www.irjet.net p-ISSN: 2395-0072

© 2023, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page 55

Proces
s Name

File
Process

Load
Duration

Start
ed

Compl
eted

Proces
sing

Avg. Time

Load 1 10 10 Sec 10 10 0 10 Sec

Load 2 20 10 Sec 20 18 2 26 Sec

Load 3 30 10 Sec 32 26 6 20 Sec

Load 4 40 10 Sec 46 37 9 36 Sec

Load 5 50 10 Sec 59 48 11 50 Sec

The outcomes of this experiment expressed by Theta
Notation c1*g(n) <= f(n) <= c2*g(n), hence c1 value is
minimum of load value and c2 value is maximum of load
value. So, value expressed by mathematically called 10 <=
f(n) <= 50, so average outcome is Θ(g)=f(n), so Θ(g)=20, here
20 is file process, finally we can say according to our virtual
system assumption every 10 Sec we can process 20 files
concurrently (1 file=20 pages, or 4,500 words).

Big O Notation: Big-O notation represents the upper bound
of the running time of an algorithm. Therefore, it gives the
worst-case complexity of an algorithm. It is the most widely
used notation for Asymptotic analysis. It specifies the upper
bound of a function. The maximum time required by an
algorithm or the worst-case time complexity. It returns the
highest possible output value(big-O) for a given input. Big-O
(Worst Case) It is defined as the condition that allows an
algorithm to complete statement execution in the longest
amount of time possible.

If f(n) describes the running time of an algorithm, f(n) is
O(g(n)) if there exist a positive constant C and n such that, 0
≤ f(n) ≤ cg(n) for all n ≥ n0. It returns the highest possible
output value (big-O) for a given input. The execution time
serves as an upper bound on the algorithm’s time
complexity. According to our above virtual server
assumption, we processed files with below values.

Proces
s Name

File
Process

Load
Duration

Star
ted

Complet
ed

Proces
sing

Avg.
Time

Load 1 10 10 Sec 10 10 0 10 Sec

Load 2 20 10 Sec 25 12 13 25 Sec

Load 3 30 10 Sec 48 33 15 48 Sec

Load 4 40 10 Sec 55 30 25 55 Sec

Load 5 50 10 Sec 75 40 35 75 Sec

The outcomes of this experiment expressed by Big O
Notation f(n) <= c*g(n), hence c value is minimum of load
value. So, value expressed by mathematically called 0 <= f(n)
<= 50, so average outcome is O(g)=f(n), so O(g)=30, here 30
is pending or processing file after load duration.

4. ANALYZING SPACE/MEMORY

Constant: We consider constant space complexity when the
program doesn’t contain any loop, recursive function, or call
to any other functions. It’s also called O (1) Complexity and
auxiliary space is the extra/temporary space used by an
algorithm.

In our plagiarism checking software we are categorized at
different levels of the process. Every process has a different
looping and recursive stages, some stages execute a
completed loop execution and some others just memory
allocation using complier. In constant space complexity we
summarize three main levels called data indexing, reporting
and variable allocation. Those operations are observed
during similarity check operation, and allocation thread is 1.

Linear: We consider Linear space complexity when the
program contains only a single iterative loop or single
recursive function which is not over more than 5 levels (Ex:
factorial of n, where n=4 means, 4!=4*3*2*1 operation). It’s
also called O (n) where n means number of looping levels.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 10 Issue: 09 | Sep 2023 www.irjet.net p-ISSN: 2395-0072

© 2023, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page 56

The complexity and auxiliary space are the extra/temporary
space used by an algorithm. In linear space complexity we
summarize three main levels called data extraction, index
searching and sequence allocation or sequencing. Those
operations are observed during similarity check operation,
and allocation thread is 5 with respect to file size is 5 with
delay of 0.5 millisecond.

Quadratic: We consider quadratic space complexity when
the program contains an infinite iterative loop or multilevel
recursive function which is over more than 5 level (Ex:
complex operation). It’s also called O (n^2) where n means
multiple of looping levels.

The complexity and auxiliary space are the extra/temporary
space used by an algorithm. In quadratic space complexity
we summarize three main levels called file conversion which
is having text with complex images, graphs or special
symbols, file downloading and matching process. Those
operations are observed during similarity check operation,
and allocation thread is 5 with respect to file size is 25 with
delay of 1 millisecond.

5. CONCLUSION

Time and space complexity are essential concepts in the field
of plagiarism checker analysis. These measures help us
understand the efficiency and resource requirements of
algorithms and programs. Time complexity allows us to
estimate how plagiarism algorithm's execution time grows
with input size. It helps us make informed decisions about

selecting the most efficient algorithm for a given problem
and predicts how well an algorithm will perform as data
scales. Space complexity, on the other hand, helps us
evaluate an algorithm's memory usage, which is crucial in
resource-constrained environments. Understanding an
algorithm's space complexity can lead to optimized memory
management and more efficient program execution.
Balancing time and space complexity is often a trade-off, as
reducing one may increase the other. Therefore, it's essential
to consider both aspects when designing and analyzing
algorithms.

REFERENCES

1]. Aho Alfred, V. and John E. Hopcroft, "The design and
analysis of computer algorithms", Pearson Education, 1974.

2]. Wikipedia article: Counting sort, [online] Available:
http://en.wikipedia.org/wiki/Counting_sort.

3]. Cederman Daniel and Philippas Tsigas, "Gpu-quicksort: A
practical quicksort algorithm for graphics processors", Journal
of Experimental Algorithmics (JEA), vol. 14, 2009.

4]. Geeksforgeeks article: Sorting Algorithms Code, [online]
Available: https://www.geeksforgeeks.org/sorting-
algorithms.

5]. W. Sun and Z. Ma, "Count Sort for GPU Computing", 2009
15th International Conference on Parallel and Distributed
Systems, pp. 919-924, 2009.

6]. Faujdar Neetu and Satya Prakash Ghrera, "Performance
evaluation of parallel count sort using GPU computing with
CUDA", Indian Journal of Science and Technology, vol. 9,
2016.

7]. T. Umeda and S. Oya, "Performance Comparison of Open-
Source Parallel Sorting with OpenMP", 2015 Third
International Symposium on Computing and Networking
(CANDAR), pp. 334-340, 2015.

8]. Han Yijie, "Deterministic sorting in O (n log log n) time and
linear space", Proceedings of the thiry-fourth annual ACM
symposium on Theory of computing, pp. 602-608, 2002.

9]. Wikipedia article: Integers, [online] Available:
https://en.wikipedia.org/wiki/.

10]. Y. Li, F. Sha, S. Wang and T. Hu, "The improvement of
page sorting algorithm for music users in Nutch", 2016
IEEE/ACIS 15th International Conference on Computer and
Information Science (ICIS), pp. 1-4, 2016.

11]. Yao Yuan, Virtual Memory Streaming and Sorting in
MapReduce Applications, 2018.

http://en.wikipedia.org/wiki/Counting_sort
https://www.geeksforgeeks.org/sorting-algorithms
https://www.geeksforgeeks.org/sorting-algorithms
https://en.wikipedia.org/wiki/

