
International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

Volume: 10 Issue: 09 | Sept 2023 www.irjet.net p-ISSN: 2395-0072

Development and performance comparison of modified RSA algorithm
with other cryptographic algorithms

Deepesh Suranjandass1, Rahul Gowlapalli2,

1School of Computer Science and Engineering, Vellore Institute of Technology, Vellore, 632014, India

2School of Electronics Engineering, Vellore Institute of Technology, Vellore, 632014, India
---***---

Abstract - Cryptography has become an integral layer of

defence to secure communications, safeguard personally
identifiable information, prevent document tampering and
establish trust between servers. A weak cryptographic
algorithm can expose critical assets to vulnerabilities, so it is
equally important to keep investing in unique and advanced
solutions. This paper aims to analyse existing methods in use
and provide an empirical solution that consumes fewer
resources but is also equally or more reliable. After critically
analysing famous cryptographic solutions we will create a
new algorithm that aims to perform better than previously
existing algorithm

Key Words: Cryptography, encryption, decryption,
modified RSA, symmetric algorithm, asymmetric
algorithm, hashing.

1.INTRODUCTION

Our project's goal is to examine available encryption-
decryption methods and build a new, more robust
and reliable technique. Then you can compare the
two. algorithm with previous algorithms to
demonstrate how it is superior. AES stands for
Advanced Encryption Standard. The American
Encryption Standard (AES) is a symmetric square
code that the US government has chosen to monitor
described information. AES is utilised in both
programming and equipment to encode touchy
information all through the world. The Data
Encryption Standard (DES) is a norm for encoding
information. The National Institute of Standards
(NIST) distributed DES, symmetric-key square
encryption as well as innovation (NIST). DES is a
Feistel Cipher execution. It utilises a 16-round
construction of Feistel. The squares are 64 pieces in
size. DES has a viable key length of 56 pieces,

notwithstanding the way that the key length is 64
pieces. This is on the grounds that 8 of the 64 pieces
of the key are not used by the encryption calculation.
RSA-The concept of RSA is predicated on the fact that
factoring a large number is difficult. The public is
calculated by taking the product of two
quintessentially large prime numbers. The same two
prime numbers are also used to create a private key.
As a result, if the huge number can be factored in, the
private key is compromised. Accordingly, encryption
strength is altogether reliant upon the key size, and
as key size is multiplied or significantly increased,
encryption strength increments dramatically. The
length of a RSA key is normally 1024 or 2048 pieces.
Instead of checking raw data to ensure that two sets
of data are equal, MD5 generates a checksum for each
set and compares the checksums to ensure that they
are identical. Our goal is to discover the most
efficient algorithm by calculating the execution time
for each one separately. This is the calculation with
the briefest execution time. These are a couple of the
current calculations that we're assessing. We've
moreover made a more secure transformation of the
RSA computation. It adds an additional a level of
safety by altering general society and private keys
prior to involving them in the encryption and
unscrambling processes. This makes the algorithm
difficult to decipher

2. RelatedWorks

2.1 Sheba Diamond Thabah, Mridupawan Sonowal, Rekib

Uddin Ahmed, Prabir Saha, Fast and Area Efficient
Implementation of RSA Algorithm, Procedia Computer
Science, Volume 165,2019, Pages 525-531, ISSN
1877-0509.

© 2023, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page 568

International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

Volume: 10 Issue: 09 | Sept 2023 www.irjet.net p-ISSN: 2395-0072

Abstract:

The implementation strategy has been altered to achieve
high-frequency operation. The key time-consuming
aspects of the RSA cryptosystem, such as modulo
multiplication and modulo exponentiation, are proposed
in this paper. The greatest frequency attained for
performing the RSA cryptosystem on 8-bits and 64-bits is
545 MHz and 298 MHz, respectively, which is faster than
prior implementations.

2.2 Shakya, Aman & Karna, Nitesh. (2019). Enhancing
MD5 hash algorithm using symmetric key encryption.
ICCSP '19: Proceedings of the 3rd International Conference
on Cryptography, Security and Privacy. 18-22.
10.1145/3309074.3309087.

Abstract:

Message genuineness and honesty are fundamental in this
day and age of organizational correspondence.
Cryptographic hash capacities are the main part of
message honesty. Hash capacities are accessible in a wide
scope of shapes and sizes. Another keyed hash work is
presented and depicted in this review. No matter what the
length of the information, this suggested technique creates
a 128-cycle hash code. The capacity hashes a message with
a key so an interloper who doesn't have the foggiest idea
about the key can't translate it, and it conforms to the
organization's security, validation, and trustworthiness
necessities. This paper talks about the capacity plan
procedure, as well as the security and specialized elements
of such hash capacities.

2.3 A. Mohammed Ali and A. Kadhim Farhan, "A Novel
Improvement With an Effective Expansion to Enhance the
MD5 Hash Function for Verification of a Secure E-
Document," in IEEE Access, vol. 8, pp. 80290-80304, 2020,
doi: 10.1109/ACCESS.2020.2989050.

Abstract:

The technique suggested in this paper improves the MD5
algorithm by incorporating a versatile different length and
a highly efficient that replicates the highest security
currently offered. While the logistic method was used to
encrypt RNA using a new key established utilising the
preliminary permutation (IP) tables used for the data
encryption standard (DES) with linear-feedback lfsr
(LFSR), the study suggests a number of structures to
enhance the MD5 hash function.

2.4 Amorado, Ryndel & Sison, Ariel & Medina, Ruji. (2019).
Enhanced Data Encryption Standard (DES) Algorithm
based on Filtering and Striding Techniques. ICISS 2019:
Proceedings of the 2019 2nd International Conference on
Information Science and Systems. 252-256.
10.1145/3322645.3322671.

Abstract:

Quite possibly the most broadly utilized encryption
strategy is the DES calculation. Be that as it may, it is
helpless against animal power and cryptanalysis assaults
because of its minuscule key size and simple and steady
XOR activities. Instead of only executing the XOR
operation, this work seeks to address the problem by
employing an extension of the f- function that includes
striding techniques. The new approach's key will be
produced as a binary, then shifted into two halves and
rotated, resulting in a subkey that will be permuted and
enlarged to meet the size. In comparison to AES and other
algorithms, this strategy increased the complexity of the
encryption algorithm while preserving speed,
performance, and efficiency.

2.5 V. S. Aparna, A. Rajan, I. Jairaj, B. Nandita, P.
Madhusoodanan and A. A. S. Remya, "Implementation of
AES Algorithm on Text And Image using MATLAB," 2019
3rd International Conference on Trends in Electronics and
Informatics (ICOEI), 2019, pp. 1279-1283, doi:
10.1109/ICOEI.2019.8862703.

Abstract:

This article uses text and a picture as inputs to the AES
algorithm, which produces encrypted output. The AES
decryption procedure uses this encrypted output to create
decrypted data. The method is implemented using
MATLAB software. AES encryption and decryption are
used to provide a secure communication channel for data
transit. A 128-bit key is used to encrypt both the text and
picture input. The complete technique is created with
MATLAB software, and the simulation is then exhibited.
The communication is encoded (ciphered) in such a way
that it cannot be decoded by an unauthorized user.
Because the decrypted output is identical to the input,
there is no distortion. This highlights the AES algorithm's
efficiency since it is able to retrieve the original message
as the decryption result with no data leakage during the
transmission. The algorithm may be used in a variety of
fields, including military, finance, and intelligence.

© 2023, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page 569

International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

Volume: 10 Issue: 09 | Sept 2023 www.irjet.net p-ISSN: 2395-0072

2.6 Abid, R., Iwendi, C., Javed, A.R. et al. An optimised
homomorphic CRT-RSA algorithm for secure and efficient
communication. Pers Ubiquit Comput (2021).
https://doi.org/10.1007/s00779-021-01607-3

Abstract:

In today's digital age, the secure and reliable interchange
of information between devices is critical for any network.
This data is kept on storage devices, routing devices, and
via cloud communication. Cryptographic techniques are
used to provide secure data transfer while also protecting
the user's privacy by storing and delivering data in a
certain manner. Only the intended person who has the key
to the encryption may access the content. The channel
should be safeguarded during data or critical transmission
by employing strong encryption methods. In the past,
homomorphic encryption (HE) algorithms were utilized
for this purpose.

2.7 Lin C-H, Hu G-H, Chan C-Y, Yan J-J. Chaos-Based
Synchronized Dynamic Keys and Their Application to
Image Encryption with an Improved AES Algorithm.
Applied Sciences. 2021; 11(3):1329.
https://doi.org/10.3390/app11031329

Abstract:

The goal of this research was to create chaos-based
synchronized dynamic keys and an enhanced chaos-based
advanced encryption standard (AES) algorithm using the
suggested synchronized random keys. First, a ripple
control method based on sliding mode control (SMC)
technology was proposed to ensure synchronization
between master- slave discrete chaotic systems. The same
dynamic random chaotic signals might be obtained at the
transmitter and receiver in communication systems under
synchronization. Then, based on chaotic synchronization,
a unique modified AES cryptosystem with dynamic
random keys was introduced. A static key is used in a
classical AES cryptosystem, and it must be exchanged and
validated in advance to be preserved safely. However, in
the suggested architecture, by using chaotic system
synchronization technology, the static key becomes
dynamic and unpredictable, and it no longer has to be
retained or broadcast via open channels. As a result, the
disadvantage of key storage might be avoided, and
encryption security may be increased. Finally, the newly
created chaos-based AES (CAES) algorithm was used to
build a unique picture encryption technique. Through
simulation tests, the statistical analysis, histogram,
information entropy, and correlation indices were

produced and studied in order to illustrate the capacity

and improvement of the proposed CAES cryptosystem.

3. ProposedWork and Methodology

3.1 Modules Description

3.1.1 Home Page :

The Home Page will consist of a simple landing page
wherein the user will be allowed to choose amongst
AES,DES,MD5,MRSA, and RSA Options for testing out the
Algorithms with all the comparison parameters.

3.1.2 Algorithms Testing Module:

Each of the proposed 5 algorithms will have an individual
page, wherein the user can enter a message, key and
additional information based on the algorithm and then on
submission of the options the Algorithm will be run in the
background and the results will be displayed. The user has
an option to encrypt, decrypt or both based on the
algorithm

3.1.3 Virtualisation of Results :

The user will be able to virtualise all the results of the 5
algorithms based on the various comparison parameters
mentioned earlier. Each algorithm will produce individual
results for each of the 7 comparison parameters.

3.2 Methodology

The diagram below indicates the methodology of the
project, wherein we will be building a web-based
application. On reaching the Landing Page, the user will be
able to initially choose amongst the 4 algorithms(MRSA is
a variation of RSA, hence only 1 option for that(RSA)). On
choosing the Algorithm, the user will be able to choose
whether to Encrypt, Decrypt or do Both, and on clicking
the submit button, they will be able to see the visualised
results of the Analysis of that particular algorithm based
on the Comparison Parameters.

© 2023, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page 570

https://doi.org/10.1007/s00779-021-01607-3
https://doi.org/10.3390/app11031329

International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

Volume: 10 Issue: 09 | Sept 2023 www.irjet.net p-ISSN: 2395-0072

Fig 1: Web Application Structure

3.2.1 Modified Algorithm Explanation

The RSA (Rivest–Shamir–Adleman) algorithm is a widely
used public-key cryptosystem for secure communication
and data encryption. It relies on the mathematical
properties of large prime numbers for its security. A
modified RSA algorithm refers to a variant of the
traditional RSA algorithm with specific changes or
improvements to enhance its security, efficiency, or
functionality. Here's a detailed explanation of a modified
RSA algorithm:

3.2.1.1 Key Generation

In the modified RSA algorithm, key generation follows
similar steps as the traditional RSA algorithm:
• Step 1: Select Two Large Primes (p and q):

Choose two large, distinct prime numbers, p and
q. These primes should be randomly generated
to ensure security.

• Step 2: Calculate n: Compute n as the product of
p and q, i.e., n = p * q. This is the modulus used
for both encryption and decryption.

• Step 3: Calculate φ(n): Calculate φ(n), Euler's
totient function of n, which is the count of
positive integers less than n that are coprime to
n. For two distinct primes p and q, φ(n) =
(p-1)(q-1).

• Step 4: Select Encryption Key (e): Choose an
encryption key, e, such that 1 < e < φ(n) and e is
coprime to φ(n). Common choices include 3, 17,
or any other small prime number.

• Step 5: Calculate Decryption Key (d): Compute
the modular multiplicative inverse of e modulo
φ(n). In other words, find d such that (d * e) %
φ(n) = 1. This is the private decryption key.

3.2.1.2 Encryption

3.2.1.3 Decryption

To decrypt the ciphertext (C), the recipient uses their
private key (d). Compute the plaintext message (M) as M =
C^d % n.

3.2.1.4 Security Enhancements

Fig 2: Modified RSA Algorithm

To encrypt a plaintext message (M), the modified RSA
algorithm uses the recipient's public key (n, e). Compute
the ciphertext (C) as C = M^e % n, where ^ denotes
exponentiation and % represents the modulo operation.
The recipient can decrypt this ciphertext using their
private key.

Padding Schemes: Padding the plaintext before
encryption (e.g., PKCS#1 or OAEP padding) helps prevent
certain attacks, like padding oracle attacks.
Key Management: Securely managing key pairs, including
key storage, rotation, and revocation, is crucial for overall
system security.
Randomness: Ensure that the prime numbers (p and q)
and key generation parameters are generated with high
entropy to resist attacks based on predictable inputs.
Key Length: Use longer key lengths (e.g., 2048 bits or
4096 bits) to resist brute-force attacks.
Secure Hardware: Implement the algorithm on secure
hardware to protect against physical attacks.
Key Exchange: RSA can be combined with other
cryptographic techniques, like Diffie-Hellman key
exchange, to provide secure key exchange protocols.
Monitoring and Logging: Implement monitoring and
logging mechanisms to detect and respond to any unusual
activities related to RSA key usage.

© 2023, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page 571

International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

Volume: 10 Issue: 09 | Sept 2023 www.irjet.net p-ISSN: 2395-0072

4. Pseudo Code for the various algorithms

4.1 Modified RSA Algorithm

MRSA.py

from math import sqrt, gcd

from itertools import count, islice

class MRSA:

@staticmethod

def is_prime(n):

return n > 1 and all(n % i for i in islice(count(2),
int(sqrt(n) - 1)))

@staticmethod

def is_relatively_prime(a, b):

return gcd(a, b) == 1

@staticmethod

def q_inv(q, p):

x = 0

Do while xq%p is not equal to 1:

while x * q % p != 1:

Increment x by one:

x += 1

return x

def pow_es(self, base, power):

Raise to power by using exponentiation by squaring

If power is equal to 1...

if power == 1:

return base value (stop recursion cycle)

return base

If power is even...

if power % 2 == 0:

call the same function with squared base and half
power

return self.pow_es(base * base, power / 2)

If power is odd...

else:

multiply base by the value of the same function
with

squared base and half of (power - 1) as arguments

return base * self.pow_es(base * base, (power - 1))

def chinese_remainder(self, c, p, q, d):

dp = (d - 1) / 2 % (p - 1)

dq = (d - 1) / 2 % (q - 1)

qinv = self.q_inv(q, p)

m1 = self.pow_es(c, dp) % p

m2 = self.pow_es(c, dq) % q

h = qinv * (m1 - m2) % p

return m2 + h * q

def chinese_remainder2(self, c, p, q, d):

dp = d % (p - 1)

dq = d % (q - 1)

qinv = self.q_inv(q, p)

m1 = self.pow_es(c, dp) % p

m2 = self.pow_es(c, dq) % q

h = qinv * (m1 - m2) % p

return m2 + h * q

def do_mrsa(self, message, p, q, e, action):

if self.is_prime(p) and self.is_prime(q):

if self.is_relatively_prime(e, (p - 1) * (q - 1)):

© 2023, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page 572

International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

Volume: 10 Issue: 09 | Sept 2023 www.irjet.net p-ISSN: 2395-0072

f = (e * 2) + 1

if action == 'encrypt':

return {'cipher':

self.chinese_remainder(message, p, q, f), 'f ': f}

elif action == 'decrypt':

d = self.q_inv(e, (p - 1) * (q - 1))

return {'message':
self.chinese_remainder2(message, p, q, d), 'D': d, 'f ': f}

elif action == 'both':

d = self.q_inv(e, (p - 1) * (q - 1))

cipher = self.chinese_remainder(message, p, q, f)

return {'cipher': cipher, 'message':
self.chinese_remainder2(cipher, p, q, d), 'd': d, 'f ': f}

else:

raise ValueError('Non-available action
selected')

else:

raise ValueError(f'{e} is not relatively prime to {p}
and {q}')

else:

raise ValueError('{0} and {1} have to be prime
numbers!'.format(p, q))

def test_mrsa():

text = 1314

e = 343

p = 397

q = 401

mrsa = MRSA()

print(rsa.do_mrsa(text, p, q, e, ‘both'))

Fig 3: Web Application

5. Results and Discussion

5.1 AES Algorithm

Fig 4: AES Algorithm Input Function

Fig 5: AES Algorithm Output Function

© 2023, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page 573

International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

Volume: 10 Issue: 09 | Sept 2023 www.irjet.net p-ISSN: 2395-0072

5.1.1 Input Data Size

Fig 6: AES Algorithm Input Data Size

5.1.2 Time

Fig 7: AES Algorithm Time Taken

5.1.3 Throughput

Fig 8: AES Algorithm Throughput

5.1.4 CPU Consumption

Taking identical data input sizes across all experiments is
crucial to ensure the minimisation of experimental bias.
Maintaining consistent data input sizes not only helps in
achieving reliable and comparable results but also
enhances the overall validity and reproducibility of the
experimental outcomes.

Ensuring an insignificant difference in the computational
time required to process identical data input sizes is a
fundamental aspect of evaluating the performance of the
AES (Advanced Encryption Standard) algorithm. When
computational times remain consistent across
experiments with identical input sizes, it signifies stability
and reliability in the algorithm's execution. This
uniformity in execution time not only aids in drawing
meaningful comparisons between different AES
configurations but also underscores the algorithm's
robustness and efficiency.

The variation in throughput observed in the AES
(Advanced Encryption Standard) algorithm when applied
to identical data input sizes is not insignificant. Analyzing
the throughput under these conditions reveals that there
are discernible differences in how the algorithm performs
with consistent input sizes. This variability in throughput
metrics highlights the importance of conducting
comprehensive performance evaluations and may suggest
potential areas for optimization or further investigation to
achieve more consistent results.

Fig 9: AES CPU Consumption

The DES (Data Encryption Standard) algorithm exhibits a
significant and, at times, drastic variation in CPU
consumption when subjected to identical data input sizes.
This fluctuation in CPU usage underscores the sensitivity
of the algorithm's computational demands to the input
data, which can lead to non-trivial deviations in resource
utilization. Such fluctuations highlight the need for
thorough performance analysis and may warrant further
investigation into the algorithm's efficiency and resource
management strategies.

© 2023, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page 574

International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

Volume: 10 Issue: 09 | Sept 2023 www.irjet.net p-ISSN: 2395-0072

5.2 DES Algorithm

Fig 10: DES Input Function

Fig 11: DES Output Function

5.2.1 Input Data Size

Fig 12: DES Input Data Size

Utilizing identical data input sizes across all experimental
scenarios is a fundamental practice aimed at mitigating
the potential sources of experimental bias. By maintaining
uniform data input sizes throughout the experimentation
process, researchers seek to achieve the highest level of
experimental integrity and reliability. This consistency in
data input sizes not only promotes fair and unbiased
comparisons but also contributes to the overall robustness
and validity of the experimental outcomes, ensuring that observed effects are more likely to be attributed to the manipulated variables rather than disparities in data sizes.
5.2.2 Time

Fig 13: DES Time

The variation in time taken to compute by DES algorithm
on identical data input sizes is not insignificant.

© 2023, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page 575

International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

Volume: 10 Issue: 09 | Sept 2023 www.irjet.net p-ISSN: 2395-0072

5.2.3 Throughput

Fig 14: DES Throughput

5.2.4 CPU Consumption

Fig 15: DES CPU Consumption

5.3 RSA Algorithm

Fig 16: RSA Input and Output Function

The variation in throughput taken to compute by DES
algorithm on identical data input sizes is not insignificant.

Drastic variation in CPU consumption shown by DES
algorithm over identical data input sizes.

5.3.1 Input Data Size

Fig 17: RSA Input Data Size

Ensuring uniform data input sizes across all experiments

is imperative to minimize experimental bias effectively.
The use of identical data input sizes serves as a critical
control factor in research, significantly reducing the
potential for experimental bias. Consistency in data input
sizes not only promotes the generation of reliable and

© 2023, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page 576

International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

Volume: 10 Issue: 09 | Sept 2023 www.irjet.net p-ISSN: 2395-0072

5.3.2 Time

Fig 18: RSA Time

5.3.3 Throughput

Fig 19: RSA Throughput

5.3.4 CPU Consumption

Fig 20: RSA CPU Consumption

unbiased results but also enhances the overall validity and
reproducibility of the experimental findings. By adhering
to a standardized input size, researchers can confidently
compare and draw meaningful conclusions from their
experiments, bolstering the integrity of their research
outcomes.

The variation in Throughput taken to compute by RSA
algorithm on identical data input sizes is significant.

The variation in time taken to compute by RSA algorithm
on identical data input sizes is significant.

The RSA (Rivest–Shamir–Adleman) algorithm exhibits a
highly noticeable and substantial difference in CPU
consumption when applied to identical input sizes. This
significant variation in CPU resource utilization highlights
the algorithm's sensitivity to input data, leading to
pronounced discrepancies in computational demands. The
magnitude of this disparity underscores the importance of
comprehensive performance analysis and raises questions
about the algorithm's efficiency and resource management
strategies, necessitating further investigation to better
understand and optimize its computational behavior.

5.4 MD5 Algorithm

Fig 21: MD5 Input and Output Functions

© 2023, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page 577

International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

Volume: 10 Issue: 09 | Sept 2023 www.irjet.net p-ISSN: 2395-0072

The input data sizes are almost identical which helps to
reduce experimental bias

5.4.2 Time

Fig 23: MD5 Time

The variation in time taken to compute by MD5 algorithm
on identical data input sizes is significant.

5.4.3 Throughput

Fig 24: MD5 Throughput

Similar throughput is provided by MD5 algorithm
over identical input data sizes

5.4.4 CPU Consumption

5.4.1 Input Data Size

Fig 22: MD5 Input Data Size
Fig 25: MD5 CPU Consumption

There is a drastic difference between the CPU
consumption of identical input data sizes with the MD5
algorithm.

5.5 Modified RSA Algorithm

Fig 26: Modified RSA Algorithm Input and Output
Function

© 2023, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page 578

International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

Volume: 10 Issue: 09 | Sept 2023 www.irjet.net p-ISSN: 2395-0072

5.5.1 Input Data Size

Fig 27: MRSA Input Data Size

5.5.2 Time

Fig 28: MRSA Time

5.5.3 Throughput

The variation in time taken by MRSA algorithm on
identical data input sizes is not insignificant.

Identical input sizes taken to get least experimental
bias

Fig 29: MRSA Throughput

The variation in throughput given by MRSA algorithm on
identical data input sizes is not insignificant.

5.5.4 CPU Consumption

Fig 30: MRSA CPU Consumption

Drastic variation in CPU consumption shown by MRSA
over identical input data sizes.

5.6 Discussion

Features DES AES RSA Modified
RSA

Key Used Same key
is used for
encryptio
n and
decryptio
n
purposes

Same key
is used for
encryption
and
decryption
purposes

Different
keys are
used for
encryption
and
decryption
purposes

Different
keys are
used for
encryptio
n and
decryptio
n
purposes

Scalability It is
scalable,
due to
varying
key and
block size

It is
scalable,
due to
varying
key and
block size

 No
Scalability
is feasible

We can
modify
the
integer to
ensure
scalabilit
y

Avalanche

Effect

Not
affected
as such

Highly
affected

 Highly
affected

Highly
affected

© 2023, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page 579

International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

Volume: 10 Issue: 09 | Sept 2023 www.irjet.net p-ISSN: 2395-0072

Power

Consumpti
on

Low High High High

Time High Low
Very High High

Very High Low
Low Low

Confidenti
ality

High High
Low High

Table 1: Comparison of Results

6. CONCLUSIONS

With data leaks and personal chats of people happening all
the time, security has become a highly vital part of
modern- day technology. The primitive form of the RSA
algorithm has been shown to be a good and efficient
security algorithm. It does, however, have some
disadvantages. The public key and private key are both
susceptible, and if someone obtains a person's private key,
that person's whole data is at risk. As a result, in this
project, we presented a method for making the RSA
algorithm more secure and overcoming its flaws, so that
even if a person's private key is released, a hacker will not
be able to access private information. Because of this
element of our project, it is extremely important in the
field of data security.

REFERENCE

[1] Sheba Diamond Thabah, Mridupawan Sonowal, Rekib
Uddin Ahmed, Prabir Saha,Fast and Area Efficient
Implementation of RSA Algorithm,Procedia Computer
Science, Volume 165,2019, Pages 525- 531, ISSN
1877-0509, doi: 10.1016/j.procs.2020.01.024

[2] Shakya, Aman & Karna, Nitesh. (2019). Enhancing MD5
hash algorithm using symmetric key encryption. ICCSP
'19: Proceedings of the 3rd International Conference on
Cryptography, Security and Privacy. 18-22. doi:
10.1145/3309074.3309087.

[3] A. Mohammed Ali and A. Kadhim Farhan, "A Novel
Improvement With an Effective Expansion to Enhance the
MD5 Hash Function for Verification of a Secure
E-Document," in IEEE Access, vol. 8, pp. 80290-80304,
2020, doi: 10.1109/ACCESS.2020.2989050.

Throughpu
t

[4] Amorado, Ryndel & Sison, Ariel & Medina, Ruji. (2019).
Enhanced Data Encryption Standard (DES) Algorithm
based on Filtering and Striding Techniques. ICISS 2019:
Proceedings of the 2019 2nd International Conference on
Information Science and Systems. 252-256. doi:
10.1145/3322645.3322671.

[5] V. S. Aparna, A. Rajan, I. Jairaj, B. Nandita, P.
Madhusoodanan and A. A. S. Remya, "Implementation of
AES Algorithm on Text And Image using MATLAB," 2019
3rd International Conference on Trends in Electronics and
Informatics (ICOEI), 2019, pp. 1279-1283, doi:
10.1109/ICOEI.2019.8862703.

[6] Abid, R., Iwendi, C., Javed, A.R. et al. An optimised
homomorphic CRT-RSA algorithm for secure and efficient
communication. Pers Ubiquit Comput (2021).
https://doi.org/10.1007/s00779-021-01607-3

[7] Lin C-H, Hu G-H, Chan C-Y, Yan J-J. Chaos-Based
Synchronized Dynamic Keys and Their Application to
Image Encryption with an Improved AES Algorithm.
Applied Sciences. 2021; 11(3):1329.
https://doi.org/10.3390/app11031329

[8] Li, Y., HeLu, X., Li, M., Sun, Y., Wang, L. (2019).
Implementation of MD5 Collision Attack in Program. In:
Sun, X., Pan, Z., Bertino, E. (eds) Artificial Intelligence and
Security. ICAIS 2019. Lecture Notes in Computer Science(),
vol 11632. Springer, Cham.
https://doi.org/10.1007/978-3-030-24274-9_54

© 2023, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page 580

