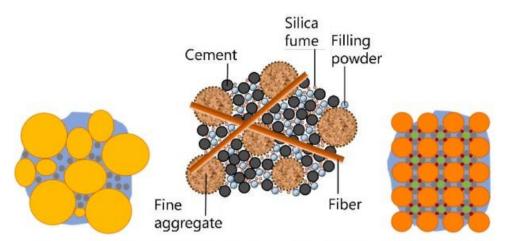



# Experimental Analysis Of High Performance Concrete With Different Case Of Silica Fume

Rishav Mourya<sup>1</sup>, Prof. Kuldeep Pathak<sup>2</sup>, Prof. Gaurav Shrivastava<sup>3</sup>

<sup>1</sup>M.Tech. Student - Department of Civil Engineering, Vikrant Institute of Technology & Management, Gwalior (M.P.), India <sup>2</sup>Professor, <sup>3</sup>Professor, - Department of Civil Engineering, Vikrant Institute of Technology & Management, Gwalior (M.P.), India

\*\*\*


Abstract: The modern concept of HPC has been broadened to include strength and durability. Applications for highperformance concrete (HPC) in civil engineering are quite diverse and include everything from thin pavements to large constructions like bridges and high-rise skyscrapers. When better mechanical and/or durability qualities are required, HPC is frequently selected. In this research, three cases taken, one is normal case without any change in concrete design, which named HPC and remaining two cases the steel fiber percentage taken 0.7% and percentage of silica fume are added 10 and 20 percentage which named HPC1 and HPC2 respectively. then compare their results in term of compressive strength for 7th day, 14th day and 28th day for M45 grade.

*Keywords :- Steel fiber, silica fume, concrete design and compressive strength etc.* 

# I. INTRODUCTION

The use of High Strength concrete is used in the construction of Earth-quake resistant structures, long-span bridges, offshore structures and other mega structures will result in lighter sections, leading to cost effectiveness of structures. The above benefits of HSC has been used more widely in the recent years for the construction of important structures like tall buildings, bridges, viaducts, etc.

"High Performance Concrete is concrete that has been specifically chosen to meet its intended use." It's not mysterious, doesn't require strange substances, and doesn't require the usage of specialized equipment. To create a concrete mix within strictly regulated tolerances, all we need is an awareness of the behavior of the concrete.



a) Low particle packing of NSC, b) Details of composition of UHPC, c) Higher particle packing of UHPC

## **Figure 1 Composition**

International Research Journal of Engineering and Technology (IRJET)

www.irjet.net

## **II. METHODOLOGY**

The step by step procedure of mix proportioning is as follows:  $F_t = F_{CK} + K.S$  The target mean strength is determined is as follows

Where

 $F_t$  = Target mean compressive strength at 28 days

Volume: 11 Issue: 01 | Jan 2024

 $F_{CK}$  = Characteristic compressive strength at 28 days

S =Standard deviation, upon the accepted proportion of low result

And the no. of tests (see table 4.1)

K = A statically value depending upon the accepted proportion of low results and

The no. of tests (see table 4.2)

Note- As per IS: 456- 1978, the characteristic strength defined as that value below

Which is not more than 1 in 5 of the test results is expected to fall. In such case, k=1.28

## Table: 1 Assumed standard deviation

| Grade of concrete | Assumed standard deviation N/Sq.mm |  |  |
|-------------------|------------------------------------|--|--|
| M 10              | 4.0                                |  |  |
| M 15              | 4.0                                |  |  |
| M 20              | 3.5                                |  |  |
| M 25              | 4.5                                |  |  |
| M 30              | 4.5                                |  |  |

## **Table 2 VALUE OF K**

| Accepted proportion of low results | К    |
|------------------------------------|------|
| 1 in 5                             | 0.79 |
| 1 in 10                            | 1.15 |
| 1 in 15                            | 1.58 |
| 1 in 20                            | 1.74 |
| 1 in 40                            | 1.89 |
| 1 in 100                           | 2.11 |

## MIX DESIGN IN ACCORDANCE WITH IS: 10262-1982

#### Step 1

**Design Stipulations** 

1. Characteristic compressive strength required

in the field at 28 days 2. Maximum size of aggregate

2. Maximum size of aggregate

3. Degree of workability

4. Degree of quality control

5. Type of exposure

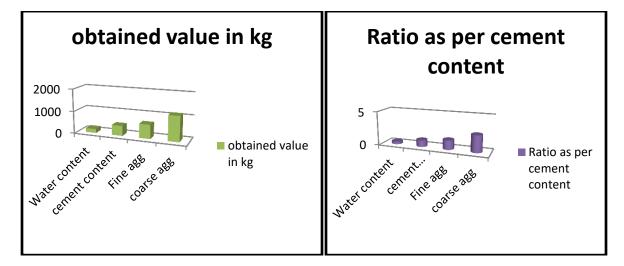
6.Minimum Cement (As per contract)

7. Maximum water cement ratio (As per contract)

= 0.9(compacting factor) = very good

= 20mm

= mild


 $=450 \text{kg/m}^{3}$ 

= 45 N/mm2

= 0.45



| Details                        | Water<br>cement<br>ratio | Cement content | Fine aggregate<br>content | Coarse<br>aggregate<br>content |  |
|--------------------------------|--------------------------|----------------|---------------------------|--------------------------------|--|
| Obtained values                | 180 lit                  | 450 kg         | 630 kg                    | 1133 kg                        |  |
| Ratio as per cement<br>content | 0.4                      | 1              | 1.4                       | 2.51                           |  |



## **Figure 2 Results values**

#### **Table 4 Casting of Specimens**

| S.No | Туре | % of silica fume<br>added in F.A added in C.A |      | % of super<br>plasticizers added<br>in water |
|------|------|-----------------------------------------------|------|----------------------------------------------|
| 1    | НРС  | NIL                                           | NIL  | NIL                                          |
| 2    | HPC1 | 10                                            | 0.75 | 1                                            |
| 3    | HPC2 | 20                                            | 0.75 | 1                                            |

# **III. RESULT AND DISCUSSION**

The design concrete mix involves the determinate of the most rational proportion of ingredients of concrete to achieve a cone which is workable in its plastic state and will developed the rare qualities when hardened. A properly designed concrete mix should have minimum possible cement content without sacrificing the concrete quality in order to make it concrete mix.

| S .No | Specimen | Applied<br>load (kN) | Average<br>Load (kN) | c/s area<br>sq.mm | Stress<br>N/sq.mm | % increase<br>Strength |
|-------|----------|----------------------|----------------------|-------------------|-------------------|------------------------|
|       | 1        | 310                  |                      |                   |                   |                        |
| HPC   | 2        | 320                  | 318.33               | 10000             | 31.83             |                        |
|       | 3        | 325                  | 510.55               | 10000             | 51.05             |                        |
|       | 1        | 330                  |                      |                   |                   |                        |
| HPC1  | 2        | 335                  | 335                  | 10000             | 33.5              | 5.14                   |
|       | 3        | 340                  | 333                  | 10000             | 55.5              |                        |
|       | 1        | 345                  |                      |                   |                   |                        |
| HPC2  | 2        | 350                  | 351.66               | 10000             | 35.16             | 10.09                  |
|       | 3        | 360                  | 551.00               | 10000             | 55.10             | 10.09                  |

 Table: 5
 7 Days Compressive Strength Of Concrete Cubes

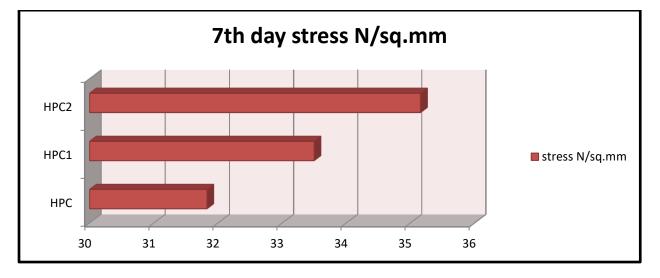
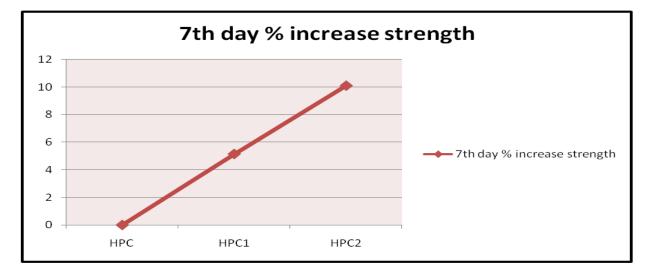
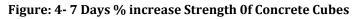





Figure 3-7 Days Compressive Strength Of Concrete Cubes





| SI.No | Specimen | Applied<br>load (kN) | Average<br>Load (kN) | c/s area<br>sq.mm | Stress<br>N/sq.mm | %strength<br>increase |
|-------|----------|----------------------|----------------------|-------------------|-------------------|-----------------------|
|       | 1        | 370                  |                      |                   |                   |                       |
| HPC   | 2        | 380                  | 380                  | 10000             | 38                |                       |
|       | 3        | 390                  |                      |                   |                   |                       |
|       | 1        | 400                  |                      |                   |                   |                       |
| HPC1  | 2        | 410                  | 410                  | 10000             | 41                | 7.89                  |
|       | 3        | 420                  |                      |                   |                   |                       |
|       | 1        | 430                  |                      |                   |                   |                       |
| HPC2  | 2        | 440                  | 440                  | 10000             | 44                | 14.61                 |
|       | 3        | 450                  |                      |                   |                   |                       |

Table: 6- 14-Days Compressive Strength Of Concrete Cubes

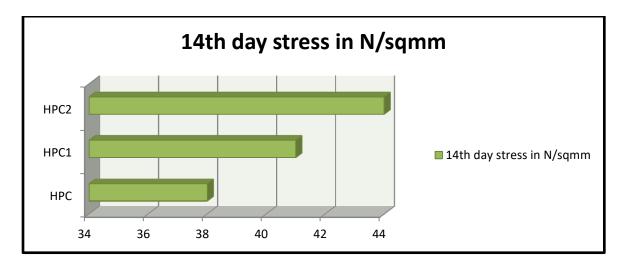
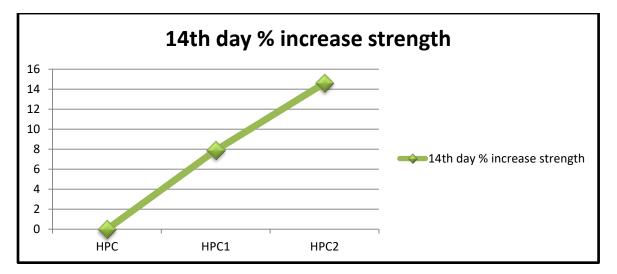
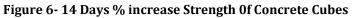





Figure: 5- 14-Days Compressive Strength Of Concrete Cubes





| SI.No | Specimen    | Applied load (kN) | Average<br>Load (kN) | c/s area<br>sq.mm | Stress<br>N/sq.mm | % strength<br>increase |
|-------|-------------|-------------------|----------------------|-------------------|-------------------|------------------------|
| НРС   | 1<br>2<br>3 | 435<br>440<br>445 | 440                  | 10000             | 44                |                        |
| HPC1  | 1<br>2<br>3 | 450<br>455<br>460 | 455                  | 10000             | 45.5              | 3.40                   |
| HPC2  | 1<br>2<br>3 | 465<br>470<br>480 | 471.66               | 10000             | 47.16             | 7.04                   |

Table 7- 28-Days Compressive Strength Of Concrete Cubes

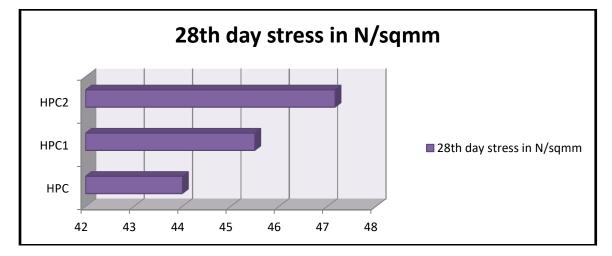
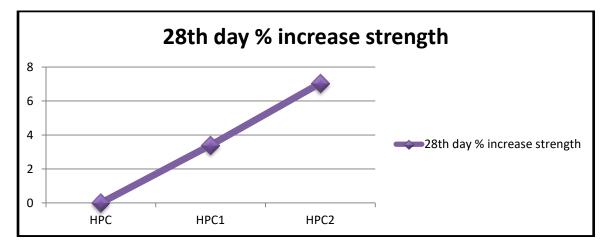





Figure: 7 28-Days Compressive Strength of Concrete Cubes





International Research Journal of Engineering and Technology (IRJET) Volume: 11 Issue: 01 | Jan 2024 www.irjet.net

## **IV. CONCLUSION**

The experimental research lead to the following conclusions.

• Adding fiber and silica fume to concrete increases its compressive strength; however, adding only 0.75% and 20% of silica fume to the concrete shows some improvement in strength.

• Super plasticizer increases the concrete's strength, workability, and resistance to chlorides.

• There is no doubt that adding fibers to concrete increases its capacity to arrest cracks. • Concrete cubes' compressive strength also rises in response to fiber addition. 19.07% more compressive strength is obtained after 28 days of adding 20% silica fume and 0.75% fiber.

## REFERENCES

- [1] S. Parameswaran, T. S. Krishnamoorthy, And K. Balasubramanian (1999)- "Current Research and Applications of Fiber Reinforced Concrete Composites in India" Structural Engineering Research Centre, Madras.
- [2] Nguyen Van CHANH (2002) -" Steel Fiber Reinforced Concrete" Ho Chi Minh City University of Technology
- [3] Hamid Behbahani (2011)-"Steel Fiber Reinforced Concrete: А Review" https://www.researchgate.net/publication/266174465
- [4] A.M. Shende, A.M. Pande and M. Gulfam Pathan (2012)- "Experimental Study on Steel Fiber Reinforced Concrete for M-40 Grade International Refereed Journal of Engineering and Science (IRJES) ISSN (Online) 2319-183X, (Print) 2319-1821 Volume 1, Issue 1
- [5] Patil Shweta and Rupali Kavilkar (2014) " Study of Flexural Strength in Steel Fibre Reinforced Concrete" International Journal of Recent Development in Engineering and Technology Website: www.ijrdet.com (ISSN 2347 - 6435 (Online) Volume 2, Issue 5
- [6] Tomasz Błaszczyński (2015) -" Steel fibre reinforced concrete as a structural material" Operational Research in Sustainable Development and Civil Engineering
- [7] Ahmad Bazgir (2016) -"The Behaviour of Steel Fibre Reinforced Concrete Material and its Effect on Impact Resistance of Slabs" City University London School of Mathematics, Computer Science & Engineering.
- [8] Avinash Joshi , Pradeep reddy , Punith kumar and Pramod hatker (2016) "Experimental Work On Steel Fibre Reinforced Concrete" International Journal of Scientific & Engineering Research, Volume 7, Issue 10
- [9] Y. Gündüz (2016) "Using hooked-end fibres on high performance steel fibre reinforced concrete High Performance and Optimum Design of Structures and Materials (HPSM 2016) www.witconferences.com
- [10] Mohd. Gulfam Pathan and Ajay Swarup (2017) "A Review on Steel Fiber Reinforced Concrete" IJARSE.
- [11] Satyashiva prasad nannuta, Rashmi B R, Usha K and E Balakrishna (2017) " Experimental Study On The Behaviour Of Steel Fibre Reinforced Concrete" International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
- [12] Volume: 04 Issue: 10
- [13] Majid Jaral and Er Suhaib Firdous (2018) "A Review Study On The Steel Fiber Reinforced Concrete Pavement" International Journal of Scientific Development and Research (IJSDR) www.ijsdr.org
- [14] Nithin Dsouza (2018) " Strength And Durability Aspects Of Steel Fibre Reinforced Concrete" International Journal of Civil Engineering and Technology (IJCIET)



- [15] Shashank Shubham and Shashikant Shrivastava (2020) "Review on Steel Fiber Enriched Reinforced Concrete" Shashank Shubham, et. al. International Journal of Engineering Research and Applications www.ijera.com ISSN: 2248-9622, Vol. 10, Issue 6
- [16] Arivalagan S, Dinesh Kumar K S A and Paul Makesh A (2022) "Experimental Study on Steel Fiber Reinforced Concrete" International Journal for Research in Applied Science & Engineering Technology (IJRASET)
- [17] Inayat Ullah Khan \*, Akhtar Gul, Khalid Khan and Saeed Akbar and Irfanullah (2022) "Mechanical Properties of Steel-Fiber-Reinforced Concrete" https://www.mdpi.com/journal/engproc
- [18] Muhammad Nasir Amin (2022) "Steel Fiber-Reinforced Concrete: A Systematic Review of the Research Progress and Knowledge Mapping" https://doi.org/10.3390/ma15176155