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Abstract: Research on the creation and use of nanomaterials has been done for a long time. Because of the contrasts between 
the two chemical elements-Sulphur, an oxygen family element, and molybdenum, the base element—they have a range of 
desirable qualities. There are still a number of obstacles to overcome despite significant advancements in our understanding 
of the mechanisms underlying the biological characteristics and catalytic activity of molybdenum disulphide nanoparticles, as 
well as the procedures involved in their nucleation, development, and structure. The evolution of nano-materials has made it 
possible to modify a material's structure and form at the nano-scale level to achieve specific uses. To discriminate between 
metallic phases and  semiconducting, also layered transition metal chalcogenides (TMDs), such as molybdenum disulfide 
(MoS2), and quasi two-dimensional (2D) materials like graphene and 2D honeycomb silicon were developed.. Because it can 
display a broad variety of properties as it moves from the bulk to the nano-scale. Among these, molybdenum disulfide (MoS2) 
is an intriguing multifunctional substance. MoS2 is a great material for post-silicon electronics on a single sheet because of its 
straight band-gap value of 1.9 eV. Its mobility is around 200cm2(Vs-1) at room temperature, and it has high on/off current 
ratio. MoS2's structure also contributes to two of its properties. It is a useful instrument for gas sensing because of its 
hexagonal structure, covalent connections between S-Mo-S atomic layers, and Van der Waals interactions between 
neighboring MoS2 layers. 

Because of its promising characteristics, MoS2 can be used in a variety of practical applications. Our goal in this work is to talk 
about the most recent synthesis techniques and how they can be used to create 2D MoS2 materials. Photocatalytic materials 
that react to visible light have numerous significant uses, from energy storage and conversion to the processing of industrial 
waste. For all photocatalytic applications, molybdenum disulfide (MoS2) and its derivatives are ideal because they have good 
stability and recyclability, when exposed to visible light it has more photocatalytic activity. Because of their superior 
physicochemical characteristics, MoS2-based materials have found extensive application in a variety of sectors, including 
organic transformation processes, environmental remediation, and wastewater treatment. This review centres on the basic 
characteristics of molybdenum Disulphide (MoS2), its current applications and unresolved issues, as well as important 
approaches to address problems pertaining to MoS2 use in photo catalysis. There is also a critical discussion of the use of MoS2 

-based materials in visible-light-induced catalytic processes for the treatment of various pollutants, such as industrial, 
pharmaceutical, environmental, and agricultural waste. The review concludes by outlining MoS2's potential applications in 
both established and developing photo catalysis fields. 
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1. Introduction 

Due to population expansion and the fast industrialization of developing countries, there is an increasing demand for energy 
worldwide, which is driving up the usage of fossil fuels and perhaps causing irreversible anthropogenic climate change. 
Photocatalytic technologies have shown a lot of promise in recent years for reducing environmental pollution and the energy 
issue [1]. The capacity of visible-light driven photo catalysis to efficiently harness the vast energy of solar radiation as a clean, 
inexpensive, and renewable driving force[2] is one of its primary advantages. Visible-light-active photo catalysts have 
attracted a lot of interest because they are very easy to create and recycle using fundamental chemical processes [3]. 
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Figure 1: Benefits of utilizing photo catalysts to remove contaminants 

A few advantages of employing photo catalysts for pollutant removal are illustrated in Figure 1. These photo catalysts' band 
gap energy determines how much light they can absorb. Among those used as photo catalysts, semiconductors referred to as 
metal oxides and metal chalcogenides have piqued the most attention. Since metal oxides are stable, environmentally benign, 
and readily available, they have been used in photo catalysis. Nevertheless, the majority of the only light that metal oxide 
photo catalysts can detect is ultraviolet (UV) light that makes up approximately 8% of the solar spectrum's energy, compared 
to 43% for visible light [4]. On the other hand, metal chalcogenides, having higher visible light sensitivity, smaller band gaps 
than metal oxides, and the ability to function as visible light-active photo catalysts [5]. The use of metal chalcogenides in 
photocatalytic systems is becoming more and more common due to their among other advantageous features, large surface 
area, configurable form, and band gap energies [6-7]. Molybdenum disulfide (MoS2) is one of the chalcogenides that has drawn 
the attention of scientists due to its remarkable properties,[8-9] that includes, and more of locations that are catalytically have 
hardness, high stability and, active strong oxidizing activity, and non-toxicity[10]. Among the principal uses for MoS2.[11-12] 
are the oxidative desulfurization ,photocatalytic evolution of hydrogen, and the photocatalytic destruction of organic 
contaminants. One- or few-layered MoS2 has been compared to graphene due to its hexagonal Mo and S atom 
arrangement;[13] but MoS2 With a smaller band gap than graphene, MoS2  is a good option for photo catalysis driven by visible 
light because it can produce electron/hole pairs (e−/h+) when excited by light. MoS2's superior light absorption capacity and 
strong chemical stability have garnered a lot of interest in photo catalysis. Previous studies have demonstrated that doping 
MoS2 with metal or nonmetal elements or modifying it with a second semiconductor or metal are efficient methods for 
increasing its photocatalytic activity. A C3N4/1%Ni2P/MoS2 hetero junction, for example, demonstrated a high H2 generation 
of 532.41 μ mol g−1 h−1, according to Lu et al.[14]. In comparison with the g-C3N4/ 1.5% MoS2 and g-C3N4/1% Ni2P, 
respectively, this was 2.47 and 5.15 times higher.  

Using several sulfur sources and molybdenum precursors, such as elemental sulfur powder [15], thiourea[16], 
thioacetamide[17], and L-cysteine[18], there are several approaches to manufacture MoS2. By varying the reaction solvent, 
temperature, pH, length of the reaction, and the addition of ligands or surfactants—all of which are essential for controlling 
the synthesis to yield the intended chalcogenide—a variety of intriguing morphologies can be created. A review of the 
literature demonstrates the many techniques employed in the synthesis of MoS2 materials as well as their uses. The most 
popular techniques are hybrid, solvothermal, hydrothermal, solid-state [20-23].  

The structure, characteristics, and synthetic techniques pertaining to MoS2 and MoS2-based materials are the main topics of 
this review. A succinct summary of the challenges addressed by researchers in the field is still missing, despite an exponential 
growth in publications over the previous five years pertaining to the photo-catalytic uses of MoS2-based materials. Therefore, 
the purpose of this study is to provide an overview of the major issues and essential tactics for resolving the issues that have 
been discovered. Furthermore discussed will be the most current advancements in the agricultural waste and photocatalytic 
degradation of pharmaceutical, environmental, industrial using materials based on molybdenum disulfide (MoS2). Lastly, the 
prospects for this quickly developing topic will be discussed, along with some specific recommendations for future research. 
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2. Challenges Facing Chalcogenide-Based Photo- catalysis:  
 

The majority of metal oxides have broad band gaps, which restricts their use as photocatalysts in visible light. Since most 
metal chalcogenides have band gap energies than metal oxides, they are more suitable for photocatalysis triggered by visible 
light. Although, as will be discussed in more detail below, some adjustments are needed to enhance their photocatalytic 
activity. Another difficulty confronted by researchers is the stability of chalcogenides that have been synthesized in 
photocatalytic settings. The photocatalytic efficacy of chalcogenides has been demonstrated to be impacted by challenging 
conditions such as photocorrosion and a brief excited-state lifespan [39]. For example, Cai et al. showed that photo corrosion 
produced significant levels of Cd2+ in solution40 when pure CdS was used for photocatalytic rhodamine B degradation [40].  

Because of its exceptional photo stability in solution, MoS2 does not suffer from photo corrosion. This is because the 
interaction between the sulfur pz and molybdenum dz2 orbitals at the top of the valence band (VB) leads to the development 
of the antibonding state [41]. In addition, there may be issues with the photo catalyst’s recovery following the conclusion of 
the photocatalytic activity. Finally, but just as importantly, a major problem with the majority of metal chalcogenides is their 
limited ability to transfer and segregate the photo generated charge carriers to active catalytic sites. This can be attributed to 
low carrier mobility, short carrier lifetimes, or a mix of the two [42].  

2.1 Realistic Approaches to Address the Difficulties in Chalcogenide-Based Photocatalysis: 

Although MoS2 is a visible light-responsive photocatalyst, its wide applicability to photocatalysis is restricted due to a common 
restriction shared by narrow band gap photocatalysts: e−/h+ pairs' high recombination efficiency. Consequently, a variety of 
materials, including metals[43], metal oxides[11], and carbon-based compounds, have been doped and combined with MoS2, in 
order to increase charge carrier separation[44]. Ag@MoS2's increased H2 evolution activity under visible light irradiation was 
demonstrated by Cheah et al.[45].  

The authors discovered that the e− and h+ separation was aided by the deposition of Ag onto MoS2, It also enhanced the total 
photocatalytic efficacy by preventing charge recombination. Additionally, the SPR effect of the nanosized Ag particles 
enhanced the photocatalyst's ability to harvest light. These findings showed that MoS2 has higher photocatalytic activity than 
pure MoS2.suggesting that material modification through composite creation represents a viable tactic for enhancing MoS2's 
photocatalytic efficacy. 

2.2 MoS2's optical and structural characteristics: 

Attractive van der Waals forces hold MoS2's layered S-Mo-S atomic layers a multilayer transition metal dichalcogenide, 
together [51]. The characteristics of MoS2 change dramatically as it goes from bulk to nanoscale, which makes it a material 
with multiple functions. Two aspects of MoS2's structure are: 1) a S−Mo−S atomic layer configuration arranged hexagonally, 
with the Mo and S atoms having strong covalent connections 2) Van der Waals forces hold together the constituent layers 
[35,36].  

 

 

Figure 2: MoS2 three different phases' crystal structures and metal coordination. 
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Figure 2 , MoS2 shows many phases. We can see 1T, 2H, and 3R. 2H-MoS2 or 3R-MoS2, H- hexagonal and R- rhombohedral 
symmetries, In nature MoS2 is present in Crystalline form. Each Mo atom is bound covalently with six S2 is in centre in a 
trigonal prismatic coordination sphere , A new trigonal symmetry metastable metallic phase known as 1T Figure 2 shows the 
distinct phases of MoS2, specifically 1T, 2H, and 3R. Natural forms of crystalline MoS2 are 2H-MoS2 or 3R-MoS2, where the 
letters "H" and "R" denote, respectively, rhombohedral and hexagonal symmetry. In these figures, every Mo atom is covalently 
connected to six S2− ions and centered in a each S atom has coordination which is pyramidal and is connected to three Mo 
atoms [26]. A brand-new, trigonal symmetry metastable metallic phase known as 1T -MoS2 is produced when alkali metals are 
intercalated with 2H-MoS2. This phase is not found in the natural world [29].  

2.3The Use of MoS2 and MoS2-Based Materials as Photocatalysts: 

MoS2 has garnered a lot of interest, and a number of advantageous photocatalytic characteristics, including low toxicity and 
cost, have been documented. These characteristics include good optical absorptivity, a small band gap energy and strong 
charge carrier mobility. However, photocorrosion, edge activity effect, and photogenerated e−/h+ recombination limit the 
performance of MoS2. Controlling the morphology, doping to modulate energy bands, band alignment via carbon 
nanostructure alteration, heterojunction creation, and conjunction with surface plasmon resonance-exhibiting metal particles 
have all been tried in the past to improve the photocatalytic properties of MoS2. The generation charge carrier pairs 
photoexcited (e−/h+) is the first step in the photocatalytic redox reactions.  

2.4 Using MoS2 and MoS2-based materials, photocatalytic treatment of microorganisms, organic pollutants, and 
inorganic pollutants:  

Inadequate wastewater treatment, coupled maintaining both human health and the natural ecology, remain major global 
issues as a result of industrialization's impact on the environment. Water bodies are contaminated by both organic and 
inorganic pollutants, such as wastes from industry, the environment, pharmaceuticals, and agriculture, making the efficient 
treatment of wastewater essential. Figure 3 illustrates the uses of MoS2 and MoS2-based materials under visible-light 
irradiation. 

 

 

 

 

 

 

 

 

 

Figure 3. MoS2 and MoS2-based materials exposed to visible light [courtesy from google] 

3. Photocatalytic Treatment of Industrial Waste: 

One of the main causes of environmentally dangerous water contamination is industrial waste effluents. Wastewater 
pollutants have been removed via coagulation, adsorption, precipitation, and biodegradation, among other treatment 
methods. An additional potentially effective technique for eliminating contaminants that are incapable of being broken down 
by physical or biological processes is photocatalysis. Even at low quantities, dyes containing coloured pigments that are not 
biodegradable are hazardous to living organisms and present in water. Therefore, it is essential to remove colours from 
waste water. Using hydrothermally produced flowerlike MoS2, In just ninety minutes, Sheng et al. were able to demonstrate 
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the photocatalytic breakdown of dye methylene blue with a degradation activity of 95.6% when exposed to visible light [31]. 
In a different study, Zhang et al. used a hydrothermal technique using CTAB as the surfactant to effectively construct MoS2 
nanosheet petals with 2.05 eV band gap energy [34]. 

3.1Photocatalytic Treatment of Environmental Waste:  

One well-known way to prevent environmental problems brought by releasing of industrial effluents directly or indirectly 
into the environment is to remove heavy metals from the ecosystem. The precipitation method, membrane separation, 
activated carbon adsorption, and activated carbon adsorption are some of the commonly utilized heavy metal removal 
techniques25. In addition to these more well-established techniques, photocatalysis is becoming more significant as a heavy 
metal pollution cleanup strategy. Growing concern is being expressed about the expanding usage of chromium in modern 
civilization, which can contaminate land and water. There are various oxidation states in which Cr can exist. Cr(VI) is 
dangerous due to its high mobility, while Cr(III) is less toxic due to its lower mobility28. Using a MoS2/ZnS/ZnO composite, 
Zhao et al. effectively demonstrated photocatalytic Cr(VI) reduction with a 98.7% reduction in 90 minutes30. In order to 
create high efficiency of Mo-based photocatalysts and the capacity to optimise the heavy metal treatment effect, various 
methods for enhancing the photocatalytic activity of MoS2 materials should be further researched. Moreover, additional 
procedures, including electrocatalysis and photocatalysis, adsorption and photocatalysis, etc., might be combined to remove 
heavy metals more effectively. 

4. Prospects for the future: 

Many studies have addressed the synthesis of MoS2 and MoS2-based nanomaterials as well as their many uses nevertheless; a 
number of obstacles still need to be overcome. 

1) Because of their exceptional physical and chemical properties, materials based on molybdenum will find extensive 
application in a various fields and may even become commercially viable in the future. This will make it possible to apply 
MoS2 on different types of media and release it into the environment, which could have an impact on human health and 
environmental safety. As such, a thorough assessment of the toxicity of MoS2-based materials is needed.  

2) Up until now, the application of MoS2-based photocatalysts has only been possible in laboratory settings. Real-world 
environmental applications for MoS2 have not yet been investigated, and there is currently no perfect photocatalyst that 
can be utilized commercially or on a large scale. 

3)  Major issues still include the short life of charge carriers, rapid recombination, and catalyst recovery after use. Because of 
these inherent issues with MoS2, it is imperative to find a new class of materials to improve its photocatalytic properties. 

4) Because of its exceptional optical characteristics, the photocatalytic activity of MoS2 in a variety of model systems has been 
thoroughly investigated. Nevertheless, a key goal continues to be the creation of reasonably priced MoS2-based products 
that can specifically target the pollutants found in wastewater. 

5) When exposed to visible light Some MoS2 composites become unstable. Thus, additional research is needed to create 
photostable MoS2-based material. 

6) Information on the variables that influence photocatalytic activity, such as temperature, pH, and the presence of many 
pollutants, is scarce. Thus, a greater variety of experimental circumstances should be used to study photo-catalytic 
degradation. 

7) One of the main challenges is coming up with workable ways to prepare MoS2 in large enough amounts for industrial use. 
Therefore, additional study is required to determine how to scale up synthetic processes for large-scale production. 

5. Conclusion: 

A lot of research is now being done on MoS2 and MoS2-based nanomaterials as possible photocatalysts for the destruction of 
organic and inorganic contaminants and the eradication and/or inactivation of microorganisms. Due to their exceptional 
physicochemical characteristics, MoS2 and MoS2-based materials can be prepared using a variety of synthetic techniques, and 
they find use in a wide range of industries. This paper examined the latest developments in MoS2 modification, such as the use 
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of carbon-based supports, coupling with other semiconductors or metals, and doping with metals and nonmetals. Additionally, 
a summary of the synthesised materials' photocatalytic capabilities towards the breakdown of particular contaminants was 
provided. Lastly, the prospects for employing MoS2-based materials for effective visible-light-induced photocatalysis were 
explored. 
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