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Abstract - Generative Adversarial Networks (GANs) and 
Variational Autoencoders (VAEs) are two of the most often 
employed methods in the field of generative models, which is 
a growing area of research in machine learning. In order to 
examine the advantages, disadvantages, and prospective 
uses of GANs and VAEs on the MNIST dataset, we give a 
thorough comparison in this paper. We put these methods 
into practice using TensorFlow and Python and assess how 
well they perform using a variety of measures, including 
network size, training duration, and the caliber of the 
output data. In addition, we go into the underlying 
mathematics and connect our findings to the theoretical 
underpinnings of GANs and VAEs. The findings indicate that 
both methods can provide high-quality data, with GANs 
being particularly good at capturing the high-level aspects 
of the input data and VAEs being more suited to modeling 
the underlying probability distribution.  
 

1.INTRODUCTION  
 
This study focuses on generative models, which are 
machine learning algorithms that can generate new data 
based on a given dataset. Generative models have a wide 
range of applications in areas such as natural language 
processing, image synthesis, and anomaly detection. The 
two most commonly used generative models are 
Variational Autoencoders (VAEs) and Generative 
Adversarial Networks (GANs). GANs were introduced by 
Goodfellow et al. in 2014 and involve training two neural 
networks, a generator and a discriminator, to compete 
against each other in a minimax game. The generator tries 
to produce data that can fool the discriminator, while the 
discriminator tries to distinguish between real and fake 
data. VAEs were introduced by Kingma and Welling in 
2013 and involve training a neural network to learn a 
probability distribution over the input data by modeling 
the distribution of a latent variable that captures the 
underlying structure of the data. The focus of this study is 
to compare the performance of GANs and VAEs on the 
MNIST dataset, a benchmark dataset of handwritten digits 
that has been widely used in the literature on generative 
models. The goal is to explore the strengths, limitations, 
and potential applications of both techniques, and to 
identify the key factors that influence their performance. 
The study implements both techniques using TensorFlow 
and Python, and evaluates their performance based on 

metrics such as network size, training time, and the quality 
of the generated data. Additionally, the underlying 
mathematics are investigated and related to the 
theoretical foundations of GANs and VAEs. 
 

2. RELATED WORK 
 
Generative models have been the subject of significant 
research in the field of machine learning in recent years, 
with Generative Adversarial Networks (GANs) and 
Variational Autoencoders (VAEs) being two of the most 
widely used techniques. Several studies have compared 
the performance of GANs and VAEs on different datasets 
and applications, with some reporting better results for 
GANs (Karras et al., 2019) while others reporting better 
results for VAEs (Bowman et al., 2019). 
 
Some of the most influential papers in this area include 
Goodfellow et al.’s (2014) introduction of the GAN 
framework, and Kingma and Welling’s (2014) introduction 
of the VAE framework, which have been extensively cited 
in subsequent works. Salimans et al.’s (2016) paper 
proposed techniques for stabilizing the training of GANs, 
such as using different learning rates for the generator and 
discriminator, while Chen et al. (2016) proposed a 
modification to the GAN framework that allows for 
learning of interpretable representations. 
 
Mescheder et al.’s (2017) paper proposed a hybrid model 
that combines the strengths of VAEs and GANs, and 
Arjovsky et al.’s (2017) paper proposed a modification to 
the GAN framework that uses Wasserstein distance as the 
objective function, leading to more stable training. Kumar 
et al.’s (2019) paper proposed a modification to the GAN 
framework that introduces a bottleneck in the 
discriminator, leading to improved performance, while 
Shen et al.’s (2020) paper proposed a method for 
discovering interpretable directions in the latent space of 
GANs, allowing for control over specific attributes of 
generated images. 
 

3. METHODOLOGY 
3.1 DATASET 
 
We applied the 60,000 training photos and 10,000 test 
images of handwritten digits from the MNIST dataset. Each 
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picture is grayscale and has a 28x28 pixel resolution. The 
photos were preprocessed by scaling the pixel values to lie 
between [-1, 1]. 
 

3.2 MODEL ARCHITECTURE 
 

3.2.1. GENERATIVE ADVERSARIAL NETWORK (GAN) 
 
A Generative Adversarial Network (GAN) has been 
developed with two networks: a generator and a 
discriminator. The generator takes a random noise vector 
with a size of 100 as input and outputs a grayscale image 
of size 28x28. The discriminator takes a grayscale image of 
size 28x28 as input and returns a scalar value that 
represents the probability of the input being real, rather 
than being generated by the generator. 
 
The generator network comprises two dense layers 
followed by two transpose convolutional layers. The first 
dense layer has 7x7x128 neurons, and the second dense 
layer has 14x14x64 neurons. The transpose convolutional 
layers have 64 and 1 filters, respectively, a kernel size of 
5x5, a stride of 2, and padding set to ’same’. LeakyReLU is 
the activation function used throughout the generator 
network with a slope of 0.2. 
 
On the other hand, the discriminator network consists of 
four convolutional layers followed by a dense layer. The 
convolutional layers have 64, 128, 256, and 512 filters, 
respectively, a kernel size of 5x5, a stride of 2, and padding 
set to ’same’. The last convolutional layer is followed by a 
flatten layer, and then a dense layer with a single neuron 
that outputs the probability of the input being real. The 
activation function used throughout the discriminator 
network is also LeakyReLU, with a slope of 0.2. 

 
3.2.2. VARIATIONAL AUTOENCODER (VAE) 
 
An autoencoder based on the Variational Autoencoder 
(VAE) architecture has been developed with two 
networks: an encoder and a decoder. The encoder 
network takes a grayscale image of size 28x28 as input 
and returns two vectors: a mean vector and a standard 
deviation vector, which are then used to sample a latent 
vector of size 10. The decoder network receives the latent 
vector as input and outputs a grayscale image of size 
28x28, which is a reconstruction of the original input. 
 
The encoder network consists of two convolutional layers 
followed by two dense layers. The first convolutional layer 
has 32 filters, and the second has 64 filters, with a kernel 
size of 3x3, a stride of 2, and padding set to ’same’. The 
dense layers have 512 and 256 neurons, respectively, and 
the LeakyReLU activation function is used throughout the 
encoder network. 
 

The decoder network includes two dense layers followed 
by two transpose convolutional layers. The first dense 
layer has 256 neurons, and the second dense layer has 512 
neurons. The transpose convolutional layers have 64 and 
1 filters, respectively, with a kernel size of 3x3, a stride of 
2, and padding set to ’same’. Similarly, the activation 
function used throughout the decoder network is also 
LeakyReLU, with a slope of 0.2. 
 

3.3 TRAINING 
 
With a learning rate of 0.0002, we used the Adam 
optimizer to train both the GAN and VAE models. Binary 
cross-entropy served as the loss function for the GAN. We 
calculated the loss function for the VAE as the product of 
the reconstruction loss and the KL divergence. Each model 
was trained for 100 iterations. 
 
To produce fresh images from the GAN and VAE models, 
we randomly sampled from the latent space during 
training. Every 10 epochs, we also preserved checkpoints 
of the models for future analysis. 
 

3.4 EVALUATION 
 
By creating fresh images from random samples in the 
latent space and contrasting them with the original MNIST 
dataset, we were able to assess the performance of both 
models. As a further indicator of resemblance, we 
calculated the Frechet Inception Distance (FID) between 
the produced and original images. 
 
We experimented with changing the generator and 
discriminator architectures of the GAN and the encoder 
and decoder architectures of the VAE to show that we can 
adapt these techniques. For both models, we also tried out 
various latent vector sizes. 
 

3.5 ALGORITHMS 
 
3.5.1. GENERATIVE ADVERSARIAL NETWORK (GAN) 
ALGORITHM 
 
Create random weights for the neural networks acting as 
the generator and discriminator. 
 
Train the discriminator network to distinguish between 
true and fraudulent data. 
 
Train the generator network to produce fictitious data that 
the discriminator network can use to fall for. 
 
Alternately training the generator and discriminator 
networks to improve each objective function. 
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By putting random noise via the generator network, create 
fresh data samples. 
 
Utilize measures like inception score or FID to assess the 
generated data’s quality. 
 

 
Algorithm 1 Generative Adversarial Network 

 
Input : Number of discriminator steps num discriminator 
steps, number of generator steps num generator step 
Output : Generated data samples and Inception score 
inception score 
 
generator ← initialize generator()  
 
for i ← 1 to num discriminator steps do 
real data ← get real data() 
 
fake data ← generate fake data(generator) 
 
discriminator loss ← 
train discriminator(discriminator, real data, 
fake data) 
end 
 
for i ← 1 to num generator steps do 
noise ← generate noise() 
 
generator loss ← train generator(generator, 
discriminator, noise) 
end 
 
generated data ← generate fake data(generator) 
inception score ← compute inception score(generated 
data) 

 
 
 

3.5.2. VARIATIONAL AUTOENCODER (VAE) 
ALGORITHM 
 
Create random weights for the neural networks used for 
the encoder and decoder. 
 
Create a latent space map for real data using the encoder 
network. 
 
To produce actual data from the latent space, train the 
decoder network.  
To make sure that the latent distribution complies with a 
selected prior distribution, define the variational loss 
function that include a KL divergence term.  
 
Encoder and decoder networks are alternately trained 
with the goal of maximizing the variational loss function. 
 

By taking a sample from the latent space and putting it 
through the decoder network, you can create fresh data 
samples.  
 
Utilize measures such as reconstruction error or 
likelihood to assess the data’s quality 
 

 
Algorithm 2 Variational Autoencoder 

 
Input : Number of encoder steps num encoder steps, 
number of decoder steps num decoder steps. 
Output : Generated data samples and reconstruction error 
reconstruction error. 
 
decoder ← initialize decoder() 
 
for i ← 1 to num encoder steps do 
real data ← get real data() 
 
z mean, z log var ← encode data(encoder, real data) 
 
encoder loss ← compute encoder loss(real data, z mean, z 
log var) 
end 
 
for i ← 1 to num decoder steps do 
noise ← generate noise() 
 
reconstructed data ← decode data(decoder, noise) 
 
decoder loss ← compute decoder loss(noise, reconstructed 
data) 
end 
 
variational loss ← compute variational loss(z mean, z log 
var) 

 
 

3.6 RESULTS 
 
The GAN model had a generator network with two 
dense layers and two transpose convolutional layers, 
while the discriminator network had four 
convolutional layers followed by a dense layer. The 
latent vector input size was 100. The GAN model 
achieved a FID score of 18.24 when compared to the 
original MNIST dataset. 
 
On the other hand, the VAE model had an encoder network 
with two convolutional layers and two dense layers, and a 
decoder network with two dense layers and two transpose 
convolutional layers. The latent vector size was 10. The 
VAE model achieved a FID score of 28.56 when compared 
to the original MNIST dataset. 
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The GAN model produced more realistic-looking images 
than the VAE model, as evidenced by its lower FID score. 
However, both models were able to generate images that 
were recognizably digits, demonstrating the effectiveness 
of both approaches. Additionally, the models were able to 
adapt to changes in architecture and latent vector size, 
further highlighting their versatility 
 

3.6.1. GENERATIVE ADVERSARIAL NETWORK (GAN) 
RESULTS 
 
Additional data samples were created by using the trained 
generator network after the GAN model had been trained 
on the MNIST dataset. 

 
The forms of the digits and the distribution of the pixels, 
for example, are two important aspects of the MNIST 
dataset that the GAN model was able to accurately 
represent in the generated images 

 
The Inception Score was calculated, a metric that 
quantifies the diversity and excellence of generated 
images, to assess the quality of the photos. In comparison 
to modern GAN models trained on MNIST, the GAN 
model’s Inception Score of 2.76 is a comparatively low 
score. 
 

3.6.2. VARIATIONAL AUTOENCODER (VAE) RESULTS 
 
Using samples from the learnt latent space and the trained 
decoder network, we created new data samples after 
training the VAE model on the MNIST dataset.  
 
The forms of the digits and the distribution of the pixels, 
for example, are two important aspects of the MNIST 
dataset that the VAE model was able to accurately depict 
in the generated images. In contrast to the GAN-generated 
photos, the generated images appear to be less clear and 
more fuzzy. 
 
We calculated the reconstruction error, which evaluates 
the quality of the rebuilt images in comparison to the 
original images, to assess the quality of the created images. 
Reconstruction error for the VAE model was 0.092, which 
is a rather high error when compared to modern VAE 
models trained on MNIST.  
 

3.6.3. COMPARISON 
 
Due to its use of both a generator and a discriminator 
network, whereas VAEs only use an encoder and a 
decoder network, Generative Adversarial Networks 
(GANs) frequently have larger and more complex 
networks than Variational Autoencoders (VAEs). Due to 
the adversarial nature of GANs, training them may take 
longer than training VAEs since the generator and 

discriminator networks of GANs must learn to balance and 
reach a Nash equilibrium, which takes more time.  
 
A potential benefit of VAEs is that they make sampling 
from the latent space simple. Simple sampling is used to 
create new images thanks to the encoder network in VAEs, 
which translates the input image to a latent space 
distribution. GANs, on the other hand, don’t directly map 
input images to the latent space, which complicates 
sampling from the latent space. 
 
Mode collapse, where the generator network generates 
fewer distinct modes of the data distribution than a 
variety of images, is a prevalent problem with GANs. The 
resulting photos may be monotonous or of poor quality. 
However, since their reconstruction loss does not 
expressly penalize sharpness, VAEs may experience hazy 
reconstructions. 
 
In conclusion, while both GANs and VAEs are generative 
models capable of producing new data, they differ in terms 
of network size, training time, sampling from the latent 
space, and the caliber of the images produced. To decide 
whether an approach is best for a given task, it’s critical to 
carefully assess both approaches on a specific dataset.  
 

 
Figure 1. Output of GAN with 10 epochs 
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Figure 2. Output of GAN with 20 epochs 
 

 
Figure 3. Output of GAN with 50 epochs 

 

 
Figure 4. VAE latent space cluster across classes, epochs-

10 
 

 
Figure 5. VAE latent space cluster across classes, epochs-

20 
 

 
Figure 6. VAE latent space cluster across classes, epochs-

50 
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4. CONCLUSION 
 
In this study, we investigated the usage of two well-known 
generative models for creating fresh data samples: 
generative adversarial networks (GANs) and variational 
autoencoders (VAEs). On the MNIST dataset, we used both 
models to train them, and we assessed how well they 
produced high-quality photos.  
 
After the GAN model had been trained, we used the 
trained generator network to produce fresh data samples 
and calculated the Inception Score to assess the quality of 
the resulting images. The GAN model was successful in 
capturing some of the MNIST dataset’s salient features, 
although it had a comparatively low Inception Score when 
compared to other GAN models that had also been trained 
on MNIST. 
 
We created new data samples after training the VAE model 
by selecting random samples from the learnt latent space, 
which were then decoded by the trained decoder network. 
To assess the quality of the generated images, we 
calculated the reconstruction error, which was relatively 
high when compared to cutting-edge VAE models trained 
on MNIST. Even though the VAE model was able to capture 
some of the essential elements of the MNIST dataset, the 
images it produced lacked the sharpness and clarity of 
those produced by the GAN. 
 
In conclusion, new data samples generated using the 
MNIST dataset using the GAN and VAE models both 
demonstrated encouraging results. However, there is still 
opportunity for development in terms of producing 
images with greater sharpness and diversity. Future 
research might concentrate on investigating various 
model architectures and objective functions as well as 
training the models on larger and more complicated 
datasets to test their generalizability. Overall, this project 
offered insightful knowledge about the operation of two 
well-known generative models and their prospective use 
in producing fresh data samples for various purposes.  
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