

© 2024, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page 579

Firmware implementation of UART using Bare metal programming

Pavithra K1, Manjunath HV2

1Student, M.Tech, Electronics and Communication Engineering, Dayananda Sagar College of Engineering
2Professor, Department of Electronics and Communication Engineering, Dayananda Sagar College of Engineering

--***---
Abstract - The development of real time applications
requires various peripheral interfaces and communication
channels. UART is standardized protocol used to establish
communication with different hardware. The paper proposes
to implement UART protocol at firmware level using bare
metal programming model on STM32 CortexM4
microcontroller. The communication is established between
two ports of board to demonstrate the implementation and
the status and message is displayed on LCD for UI. The
implementation provides in depth analysis and reliability of
data transfer.

Key Words: UART, STM32, Cortex M4, bare metal
programming, firmware

1. INTRODUCTION

STM32Fxx series of microcontroller supports 2 USART ports
that is configured to operate in asynchronous mode. The
pins allocated are multiplexed, hence the configuration
registers are used to indicate the required operation. Liquid
Cristal Display (LCD) is specifically interfaced to indicate
different operations being performed during
communication. The success and failure of the
communication can also be indicated on the panel in real
time.

 Cube IDE (Integrated Development Environment) is
configured for STM32F4xx Cortex M4 microcontroller to
facilitate programming. Bare metal programming method is
used to improve the code efficiency and reduces executable
file size. The UART communication is programmed to work
in loopback mode and display the status of communication
on LCD interfaced. The coding is done in C language to make
the code microcontroller architecture independent.

 (As UART is hardware for asynchronous serial
communication, with configurable data format and
transmission speeds, data bits are sent one by one from LSB
to MSB. For precise timing by communication channel start
and stop bits are framed. By cross connection of Tx and Rx
pins of two devices using RS232 protocol, bidirectional
communication is established.)

 A universal asynchronous receiver-transmitter is a
computer hardware device for asynchronous serial
communication in which the data format and transmission
speeds are configurable. It sends data bits one by one, from
the least significant to the most significant, framed by start

and stop bits so that precise timing is handled by the
communication channel. The bidirectional communication is
established by cross connection of Tx and Rx pins of two
devices using RS232 protocol.

The pins are multiplexed with more than one operation, by
default all port act as input output pins. Therefore, when the
transmitter is disabled, the output pin returns to its I/O port
configuration. When the transmitter is enabled and nothing is
to be transmitted, the Tx pin is at high level. When a
transmission is taking place, a write instruction stores the
data in the data register and which is copied in the shift
register at the end of the current transmission [1]. When no
transmission is taking place, a write instruction places the
data directly in the shift register, the data transmission starts,
and the transmission bit is immediately set. After writing the
last data into the data register, it is mandatory to wait for
transmission completion bit to set before disabling the UART
or causing the microcontroller to enter the low-power mode.

 During an UART reception, data shifts in least significant
bit first through the Rx pin. In this mode, the data register
consists of a buffer between the internal bus and the received
shift register. When a character is received, the receive
completion bit is set which indicates that the content of the
shift register is transferred to the receiver data register.

 The data transmitted should be sampled at the
appropriate moment, otherwise there may be a data loss or
data may get erroneous. The transmitter and receiver must
be compatible on the baud rate to receive data accurately.
The different control registers are configured to set
appropriate baud rate and establish successful
communication which is also verified and validated using
status bits. The data word length is 8 bits with NRZ standard
format and also includes a parity bit for validation [2]. Data
registers available consists a buffer between the internal bus
and the transmit shift register.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 11 Issue: 01 | Jan 2024 www.irjet.net p-ISSN: 2395-0072

© 2024, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page 580

2. UART FRAME STRUCTURE

Figure 1: Timing Signal

Start bit: The start bit (indicates to the receiver that a new
character is being transmitted) is used to signals the
receiver that a new character is being transmitted.

Data bit: These bits represent the character in ASCII
standard.

Parity bit: It is placed after all of the data bits whenever
used. The parity bit detects if there is any error in data.

Stop bit: The next bit is always in the mark (logic high, i.e.,
'1') condition and called the stop bit(s). This signal to the
receiver that the character is completely received. Since the
start bit is logic low (0) and the stop bit is logic high (1)
there are always at least two guaranteed signal changes
between characters.

3. UART TRANS-RECEIVER:

The STM32 ARM Cortex M4 provides multiple UART ports.
In this firmware development, we are using port 2 & 3 for
establishing communication.

Figure 2: UART

If the line is held in the logic low condition for longer than
a character time, this is a break condition that can be
detected by the UART.

Transmission procedure on STM32:

● Enable the USART by writing the UE bit in USART_CR1
register to 1.

● Program the M bit to ‘0’ in USART_CR1 to define the
word length of 8 bits.

● Program the number of stop bits as ‘00’ in USART_CR2 for
1 stop bit.

● Select the desired baud rate of 9600 using the USART_BRR
register, 0x683 is loaded.

● Set the TE bit in USART_CR1 to send an idle frame as first
transmission.

● Write the data to send in the USART_DR register (this
clears the TXE bit). Repeat this for each data to be
transmitted in case of single buffer.

After writing the last data into the USART_DR register, wait
until TC=1.This indicates that the transmission of the last
frame is completed. This request for instance when the
USART is disabled or enters the Halt mode to avoid
corrupting the last transmission.

Receiver procedure on STM32:

● Enable the USART by writing the UE bit in USART_CR1
register to 1.

● Program the M bit to ‘0’ in USART_CR1 to define the word
length of 8 bits.

● Program the number of stop bits as ‘00’ in USART_CR2 for
1 stop bit.

● Select the desired baud rate of 9600 using the
USART_BRR register, 0x683 is loaded.

● Set the RE bit USART_CR1. This enables the receiver
which begins searching for a start bit.

When a character is received:

● The RXNE bit is set. It indicates that the content of the
shift register is transferred to the

● RDR. In other words, data has been received and can be
read (as well as its associated error flags).

● The error flags can be set if a frame error, noise or an
overrun error has been detected during reception.

● In multibuffer, RXNE is set after every byte received and is
cleared by the DMA read to the Data Register.

● In single buffer mode, clearing the RXNE bit is performed
by a software read to the

● USART_DR register. The RXNE flag can also be cleared by
writing a zero to it. The

● RXNE bit must be cleared before the end of the reception
of the next character to avoid an overrun error.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 11 Issue: 01 | Jan 2024 www.irjet.net p-ISSN: 2395-0072

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 11 Issue: 01 | Jan 2024 www.irjet.net p-ISSN: 2395-0072

© 2024, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page 581

● The baud rate for the receiver and transmitter (Rx and
Tx) are both set to the same value as programmed in the
Mantissa and Fraction values of USARTDIV.

 A 16x2 LCD is used to display the operations being
performed my microcontroller. It can display 16 characters
per line and there are 2 such lines. In this LCD each
character is displayed in 5x7 pixel matrix. The 16 x 2
intelligent alphanumeric dot matrix display is capable of
displaying 224 different characters and symbols. This LCD
has two registers, namely, Command and Data

The connections for UART is shown in Figure 1, the
communication is established between UART2 (Tx-PA2 &
Rx-PA3) and 3(Tx-PC10 & Rx-PC11) ports of STM32F405
microcontroller. The baud rate is set to 9600 and
configuration of both transmission and reception is shown
step below..

Figure 3: LCD connections

LCD interfacing is shown in figure 2 and respective pin
mapping is illustrated in table 1. The obtained result is
shown in figure 3, in which the status as well as the actual
data communicated are displayed. The connections shown
using jumper wires can be directly printed on PCB (Printed
Circuit Board) once the design is finished.

Table 1: LCD interfacing pin mapping

SL No STM32-Pin No LCD Pin Remarks

1 PA0 RS Register Select

2 PA1 EN Enable

3 GND RW Ground

4 PC4,PC5,PB0,PB1,
PB1
2,PB
13,P
B14,
PB1
5

D0,D1,D2,D3,D4,
D5,D6
,D7

Respective-
order to be
maintained

5 +5V A, Vdd Backlight
Anode,

Power supply
(+)

6

GND

K, Vss, Vd

Backlight
Cathode,
power supply,

Vd,(contrast)

4. ALGORITHM:

Initialization and configuration of UART port.

● UART is connected to AHB1 bus, hence clock is to be
enabled using AHB1ENR register. Bit number 18 is enable
(HIGH) bit for UART3.

● The clock is also enabled to GPIO port C which is used to
exchange the data using AHB1ENR register, bit number 2.

● Pin number 10 (Bit 19 & 20) of port C is configured to
operate in alternate function (AFR) mode by setting Bit19 to
LOW and Bit 20 to HIGH, for UART operation using moder
register.

● Bit number 12, 13 and 14 of 1st AFR register is set to
HIGH for UART functionality.

● Baud rate of communication is set to 9600 kbps using
BRR register.

● Clock frequency is 16 MHz

● BRR value is 1667.

● Baud rate calculation: Clock frequency / BRR (Baud Rate
Register) register value.

● Bits 2 & 3 of Control register1 (CR1) are set HIGH to
activate Receive Enable (RE) & Transmit Enable (TE).

● Bits 12 & 13 Control Register2 (CR2) are set LOW to
configure 1 bit stop indicator.

● 13th bit of CR1 is used to enable / disable UART.

Implementation of “write” function.

● The character is loaded to transmit buffer through
parameter passed to function.

● Enable to UART transmission using 13th bit of CR1
register.

● Wait till status 7th bit of Status Register (SR) is reset,
which indicate transmission buffer empty.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 11 Issue: 01 | Jan 2024 www.irjet.net p-ISSN: 2395-0072

© 2024, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page 582

● Then write new character to Data register (DR)
.Implementation of “read” function.

● Wait till status 7th bit of Status Register (SR) is reset,
which indicate transmission buffer empty.

● Function returns ASCII value of character received.

Figure 4: Connections and result

5. RESULTS AND CONCLUSION

In this work, designing and implementation of bare-metal
coding is used for establishment of UART communication.
The UART communication is established successfully at
9600 baud rate using bare-metal programming model. The
firmware implementation using bare metal programming
provides very fine control of operations. This also reduced
code length as it avoids linking library function during
compilation process. String of characters are sent over the
channel and displayed on LCD display, which also indicates
the status of operation. Once the transmission begins then
system enters wait state till RXNE bit is set indicating
successful transmission and reception of data.

 REFERENCES:

1) Ashok Kumar Gupta, Ashish Raman, Naveen Kumar,
and Ravi Ranjan, “Design and Implementation of
High-Speed Universal Asynchronous Receiver and
Transmitter (UART)” 2020 7th International
Conference on Signal Processing and Integrated
Networks (SPIN) ©2020 IEEE

2) U. Nanda and S. K. Pattnaik, "Universal
Asynchronous Receiver and Transmitter (UART)"
2016 3rd International Conference on Advanced
Computing and Communication Systems (ICACCS),
Coimbatore, 2016, pp. 1-5. DOI:
10.1109/ICACCS.2016.7586376

3) Shahu, K., “ASIC Design Implementation of UART
using Synopsys EDA tools” 2019 (Doctoral
dissertation, California State University,
Northridge).

4) Teerth Patel, Usha Mehta, “Design and Simulation of
UART Communication Module using Different
Approach”, International Journals Digital
Communication and Analog Signals

5) Jiayu Hu, Xiaoen Yan, “STM32-Based Design of Race
car Running Status Monitoring System and
Instrument Display”, 2022 4th International
Conference on Artificial Intelligence and Advanced
Manufacturing (AIAM), IEEE

6) QL. Cui and X. Chen, "Research on STM32 internal
temperature sensor and realization of temperature
measurement system", Digital technology and
application, vol. 2011, no. 10, pp. 61-62, 2011

7) R. Zhai and J.L. Zhou, "Design of USB serial
communication port based on STM32", Foreign
electronic measurement technology, vol. 40, no. 1, pp.
92-95, 2021

8) Shihua Tong, "Design and simulation analysis of
UART IP Core," 2011 Second International
Conference on Mechanic Automation and Control
Engineering, Inner Mongolia, China, 2011, pp. 5685-
5688, doi: 10.1109/MACE.2011.5988319.

9) Liu Xiaoyue and Li Xing, "Serial Communication
System of Mobile Devices and Embedded Computer
Based on C/S Structure", Future Computer Science
and Education (ICFCSE) 2011 International
Conference, pp. 598-600, 20-21 Aug. 2011.

10) J. Ducloux, P. Petrashin, W. Lancioni and L. Toledo,
"Embedded USB dual-role system for communication
with mobile devices", Argentine School of Micro-
Nanoelectronics Technology and Applications
(EAMTA) 2011, pp. 1-7, Aug. 2011.

11) M. Sharma, N. Agarwal and S. R. N. Reddy, "Design
and development of daughter board for USB-UART
communication between Raspberry Pi and
PC," International Conference on Computing,
Communication & Automation, Greater Noida, India,
2015, pp.944-948,10.1109/CCAA.2015.7148532.

12) J. Ducloux, P. Petrashin, W. Lancioni and L. Toledo,
"Embedded USB dual-role system for communication
with mobile devices", Argentine School of Micro-
Nanoelectronics Technology and Applications
(EAMTA) 2011, pp. 1-7, Aug. 2011.

https://ieeexplore.ieee.org/author/37089783604
https://ieeexplore.ieee.org/author/37089782245

