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Abstract - Landslide susceptibility modeling plays a crucial 
role in sustainable development and hazard mitigation 
strategies. Despite the presence of numerous landslide-prone 
areas in Kenya, previous research has failed to address them 
adequately. This study aims to fill this research gap by 
developing a comprehensive methodology for assessing 
landslide susceptibility in Kenya, employing a weighted 
Geographic Information System (GIS) and a fuzzy logic model. 
The major causative factors influencing landslides, including 
lithology, slope, elevation, soil type, land-cover, precipitation, 
distance to fault lines, distance to major drainages, distance to 
roads, and distance to earthquake-occurrence locations, were 
carefully investigated and weighted using the Analytical 
Hierarchy Process (AHP). The findings reveal that 
approximately 26% of Kenya's total area is susceptible to 
landslides. Through the integration of the weighted overlay 
and fuzzy logic models, four distinct landslide-vulnerability 
zones were identified: low, medium, high, and very high. To 
validate the models, a dataset of 130 historical landslides was 
employed. Remarkably, the highest zone of landslide 
vulnerability identified by the weighted overlay and fuzzy logic 
models coincided with about 97% and 85% of the past 
landslide events, respectively. These results attest to the 
reliability of the developed models and their potential to 
contribute to future planning and the mitigation of landslide 
hazards in Kenya. 

 
Key Words:  Landslide susceptibility, GIS, Kenya, weighted 
overlay, fuzzy logic 
 

1.INTRODUCTION  
 
Landslides pose significant threats worldwide, resulting in 
substantial economic losses, environmental damage, and 
societal impacts. With the expanding population and the 
encroachment of settlements into hazardous areas, the risks 
associated with landslides have intensified [1] [2] (Mugagga 
et al., 2012; Marshak, 2019). Geologists define landslides as 
the downslope movement of rocks or regolith (loose 
unconsolidated rock and soil) due to the force of gravity. 
These mass movements exhibit various characteristics, 
including composition, rate of movement, coherence, and the 
environment in which they occur, such as subaerial or 
submarine settings. 

The occurrence of landslides is not limited to mountainous 
regions; they can happen in areas with low relief as well. 
Weather and climate patterns play a crucial role in landslide 
occurrence. Landslides are influenced by a combination of 
external triggering factors, such as over-steepened slopes, 
heavy rainfall, earthquakes, or volcanic eruptions, and 
internal inherent factors, including geological and 
morphological conditions. Geological factors comprise weak 
and weathered bedrock, jointed materials, fault lines, and 
variations in permeability. Human activities, such as 
improper land use, deforestation, excavation, and changes in 
groundwater systems, also contribute to landslides [2] [3] 
(Marshak, 2019, Varnes, 1978). 

Kenya has experienced significant landslide incidents, 
primarily in the central highlands and southwestern regions 
(Figure 1). Heavy rainfall-induced landslides are common in 
the country [4] (Davies and Nyambok, 1993). The 
relationship between landslides and precipitation rates is 
evident, with notable events occurring during years with 
heavy rains. Anthropogenic factors, driven by population 
growth, have led to land degradation and an increase in 
landslide-prone areas [5] [6] (Larsson, 1989; Rob, 2011). 
Deforestation, particularly in districts bordering 
mountainous regions, exacerbates the problem [7] (Maina-
Gichaba et al., 2013). While seismic and volcanic activities 
have not recently triggered landslides in Kenya, historical 
records indicate past occurrences associated with a 6.9 M 
earthquake in Subukia in 1928 [7] [8] (Maina-Gichaba et al., 
2013; Mulwa et al., 2013). 

The rise in landslide activities since the 1980s has resulted 
in severe social, economic, and environmental consequences, 
including loss of life, damage to agriculture, infrastructure, 
and property [9] [10] (Davies, 1996; Rowntree, 1989). 
Although available records indicate approximately 233 
fatalities from landslides between 1986 and 2018, the actual 
number is likely much higher. Unfortunately, there is a lack 
of comprehensive data on the economic losses caused by 
landslides in Kenya, despite significant destruction to 
buildings, roads, railways, and waterways [11] (Ngecu and 
Mathu, 1999). The urgent need for reconstruction and 
assistance following landslides in western Kenya was 
estimated at $18 million in 2013. Landslides also have 
detrimental environmental effects, with debris flows 
polluting rivers and impacting domestic livestock. 
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Fig -1: Location map of Kenya showing the documented 
landslides (black triangles). The hillshade is used as a base 

map. 
 
To address these challenges, this study aims to assess 
landslide susceptibility in Kenya by integrating remote 
sensing and Geographic Information System (GIS) 
technologies. The specific objectives include (1) creating a 
landslide inventory map for the entire country, (2) acquiring 
and preparing necessary inputs for GIS modeling, (3) 
modeling landslide susceptibility, (4) validating outcomes 
through statistical analysis, and exploring the correlation 
between landslide cells and landslide events. By leveraging 
these tools and methods, a comprehensive understanding of 
landslide-prone areas can be achieved, aiding in effective 
hazard mitigation and informed decision-making for 
sustainable development in Kenya. 

 

2. STUDY AREA AND PREVIOUS WORK 
 
Situated in eastern Africa, the Republic of Kenya spans 
latitudes 5°30’N to 4°30’S and longitudes 34°00’E to 42°00’E 
(Figure 1). The country is divided by the equator into 
northern and southern regions, covering a land area of 
581,61 km2. Kenya's equatorial location determines its 
climate, characterized by hot and humid conditions along the 
coast, temperate climates in the west and southwest, and hot 
and dry climates in the north and east [12] (Climates to 
Travel, 2019). The country experiences two rainy seasons: 
the long rains from March to May and the short rains from 
October to December. However, even between June and 

September, the western highlands receive significant rainfall. 
Precipitation levels range from 800 to 2,000 mm annually in 
the southwestern part and coastal areas, while the arid zone 
receives less than 500 mm. Notably, the El Niño weather 
phenomenon, occurring between May 1997 and February 
1998, brought prolonged heavy rainfall, resulting in 
numerous landslides across the country [11] (Ngecu and 
Mathu, 1999). Temperature variations range from 12°C to 
36°C, with coastal regions experiencing average annual 
temperatures ranging from 22°C to 31°C and cooler 
temperatures of 12°C to 26°C in plateau areas. In 2018, 
Kenya's estimated population reached 51 million, 
representing a significant increase of 537% since 1960 when 
the population was 8 million [13] (The World Bank, 2019). 
The population is concentrated in high rainfall areas with 
fertile soil, and approximately 90% of the population resides 
in rural areas, relying on agriculture for their livelihoods 
[10] [14] (Rowntree, 1989; Ngecu and Ichang'i, 1999). 

Kenya's topography can be classified into four major zones: 
the Coastal and Eastern Plains, the Central and Western 
Highlands, the Rift Valley Basin, and the Lake Victoria Basin. 
The Coastal and Eastern Plains cover approximately one-
third of the country and have elevations ranging from sea 
level to 500 m. The Central and Western Highlands, 
separated by the Rift Valley Basin, encompass altitudes 
ranging from 1,500 to 5,200 m. The Rift Valley, a segment of 
the East African Rift System (EARS), runs predominantly in a 
north-south direction, with a maximum elevation of 500 m. 
The Lake Victoria Basin, including Lake Victoria itself, ranges 
in elevation from 500 to 1,000 m [14] (Ngecu and Mathu, 
1999). 

While numerous studies have explored landslides 
worldwide, limited research has focused specifically on 
landslides in Kenya [9] [14] [15] (Davies, 1996; Ngecu and 
Ichang'i, 1999 Kamau, 1981;). Early investigations in the 
1980s by Kamau (1981) and Rowntree (1989) examined 
mass movements in Kangema, Murang'a District, and 
conducted geographical assessments of landslides based on 
rational inference, respectively. Larsson (1986), Westerberg 
(1989), and Larsson (1989) studied landslides in the Central 
Kenya highlands, with the latter assessing the increase of 
landslides in relation to land-use changes on the slopes of 
Nyandarua [16] [17] [5]. Davies and Nyambok (1993) 
examined the Murang'a landslide that claimed eight lives on 
May 15, 1991, in Gacharage Village. Other studies explored 
landslides in Ol Kalou [18] (Johansson, 1993) and conducted 
multidisciplinary assessments encompassing geology, 
hydrology, landscape evaluation, agro-ecology, engineering, 
land use, and socioeconomics [19] (Christiansson et al., 
1993). Ngecu and Ichang'i (1999) investigated a landslide 
event in Maringa village on April 30, 1997, along with its 
socioeconomic impact. Additionally, a few studies 
documented landslides triggered by the El Niño weather 
phenomenon during 1997-1998 [11] (Ngecu and Mathu, 
1999). Subsequent studies explored landslide significance, 
distribution, and mitigation measures in Kenya and Uganda 
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[20] (Ngecu et al., 2004), rainfall-induced landslide 
probability in the central province [21] (Mwaniki et al., 
2011), and the socioeconomic and environmental impacts of 
landslides in Kenya [7] (Maina-Gichaba et al., 2013). Remote 
sensing techniques were utilized to visualize and map past 
landslides in the central region of Kenya [22] [23] (Mwaniki 
et al., 2015a, 2015b), while GIS was employed to determine 
landslide potential in the western province [24] (Nyaberi, 
2016). A study compared satellite image enhancement 
techniques for landslide identification and mapping in the 
central region using synthetic aperture radar and Landsat 8 
imagery [25] (Mwaniki et al., 2017). 

Existing studies have highlighted the socioeconomic impacts 
of landslides in Kenya and identified heavy rainfall in 
conjunction with natural geological and geomorphological 
conditions as primary causes of slope instability. Human 
activities, including road construction, excavation, and 
changes in land use, have also contributed to slope failures in 
the country. Despite these investigations, there is a lack of 
comprehensive publications assessing landslide hazards 
using GIS and remote sensing techniques for the entire 
country. 
 

3. COMPILING THE DATASETS AND ESTABLISH THE 
LANDSIDE INVENTORY 
 
The accuracy and reliability of landslide modeling rely on the 
quantity and quality of data obtained through scientific 
methods and appropriate scaling [26] (Baeza and 
Corominas, 2001). However, in the case of Kenya, the 
availability and quality of geospatial data pose significant 
challenges. This research faced the daunting task of data 
acquisition and preparation, ensuring that only reliable and 
trustworthy data were utilized. Table 1 provides an 
overview of the raster and vector data obtained and created 
from various sources. Through meticulous data acquisition 
and preparation, this study ensures the utilization of reliable 
and comprehensive datasets to enhance the accuracy and 
effectiveness of landslide modeling in Kenya. 

The vector boundary of Kenya was sourced from the World 
Resources Institute [27] (Ndeng'e et al., 2003). To construct 
a comprehensive landslide inventory for the entire country, 
landslide events from multiple sources were combined. 
Forty-six events were retrieved from the Open Data Portal - 
Global Landslide Catalog-NASA [28] (Kirschbaum et al., 
2010), two events were obtained from Fatal Landslides [29] 
(Froude and Petley, 2018), and 82 events were derived from 
the landslide map of Kenya provided by the Mines and 
Geology Department (2012) [30]. Seismic records were 
downloaded from the United States Geological Survey 
(USGS) through the Earthquake Hazards Program [31]. 
Kenya experiences a low to moderate level of seismic 
activity, with most earthquakes ranging from 3.4 to 7 in 
magnitude and depths of 10 to 34 meters. Fault traces were 
obtained from the Global Faults layer accessible via ArcAtlas 
through Esri [32] (Finko, 2014). Stream and road data were 

acquired from DIVA-GIS [33] (Hijmans et al., 2001). The soil 
map was extracted from the 2015 global soil map obtained 
from the United States Department of Agriculture–Natural 
Resources Conservation Service (USDA-NRCS) [34]. 
 
Table -1: Summary of the GIS datasets used in this study. 
 

GIS layer Type or resolution Source 

Administrative 
boundaries 

Polygon 
World Resources 
Institute 

Landslide 
occurrences 

Point NASA & literature 

Earthquakes Point USGS 
Faults Line Esri 
Drainages Line DIVA-GIS 
Roads Line DIVA-GIS 
Soil Polygon USDA-NRC 
Lithology 200 m USGS 
Land cover 30 m RCMRD 

Rainfall 800 m 
World Resources 
Institute 

DEM 30 m USGS 
Slope 30 m This study 

 
Raster data, including lithological units, were extracted from 
the World ELU 2015 geological map obtained from the USGS, 
which was developed through a collaborative partnership 
between the USGS and Esri [35] (Global Ecosystems). The 
main rock types encompass volcanic and metamorphic 
rocks, as well as unconsolidated sediments, with smaller 
extents of carbonate sedimentary rocks and evaporites. The 
land cover map of 2014 was generated through the Land 
Cover Change Mapping program in collaboration with the 
Department of Resource Surveys and Remote Sensing 
(DRSRS), the lead government organization, supported by 
the Regional Centre of Mapping of Resources for 
Development (RCMRD), Kenya Forest Service (KFS), and 
Survey of Kenya (SOK) (DRSRS, KFS, SOK & RCMRD, 2016) 
[36]. This map includes 11 different land cover types, such as 
grassland, cropland, vegetated wetland, forest, and others. 
Wooded and open grassland dominate the country's land 
cover. Precipitation records were obtained from the World 
Resources Institute [37] (Hijmans et al., 2005). The elevation 
map was derived from the 1 arc-sec Shuttle Radar 
Topographic Mission (SRTM) Digital Elevation Model (DEM) 
obtained from the USGS' EarthExplorer [38]. The slope map 
was generated from the 30-meter spatial resolution DEM, 
representing slope gradients ranging from 0% to 81%. 

4. MODELING METHODOLOGY 
 

The flowchart depicted in Figure 2 outlines the key steps and 
methodologies employed in this study, including the 
application of weighted overlay and fuzzy logic models. Due 
to the complex interactions among various causative factors, 
no single model can serve as the optimal solution for all 
landslide assessments. Empirical analysis methods, which 
examine past landslides to predict future occurrences under 
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similar triggering conditions, are suitable for local scales 
rather than global scales, as landslide causative factors vary 
by location [39] [40] [41] [42] (Guzzetti et al., 2008; 
Reichenbach et al., 1998; Sidle and Ochiai, 2006; Vennari et 
al., 2014). In this study, a multi-criteria decision-making 
method was employed to consider the relative contributions 
of each landslide causative factor, as it is well-suited and 
reliable for medium to regional scales [43] [44] [45] (Akgun, 
2012; Ayalew and Yamagishi, 2005; Guzzetti et al., 1999). 

 

 
 

Fig -2: Flowchart showing the detailed steps of the 
modeling procedure. 

 
4.1 Determining and Reclassifying the Landslide 
Causative Factors 
 
To identify which cells in each thematic factor layer have 
experienced landslides, a GIS tool for extracting multiple 
values was utilized. Through literature review and statistical 
analysis of the causative factors and the compiled landslide 
inventory map, ten factors were identified for landslide 
susceptibility assessment. As an example, the annual 
precipitation rate was chosen. The analysis revealed that 
only 1 landslide event (0.8%) occurred in areas with less 
than 600 mm/yr, 3 events (2.2%) in areas with precipitation 
rates between 600-700 mm/yr, 34 events (26.4%) in areas 
with rates between 700-1000 mm/yr, and 92 events 
(approximately 71% of the total) in areas with rates 
exceeding 1000 mm/yr. Based on this analysis, the latter 
class was considered the most susceptible to landslide 
occurrence. Accordingly, the precipitation rate layer was 
reclassified into four classes: <600, 600-700, 700-1000, and 
>1000 mm/yr, corresponding to low, medium, high, and very 
high susceptibility, respectively. Table 2 and Figures 3 and 4 

display the documented landslides and their relationship 
with the assigned classes. 

Factors that did not exhibit a discernible influence on 
landslide occurrence were excluded from further analysis. 
For instance, the distribution of landslides across the entire 
country with respect to aspect indicated that past landslides 
occurred on slopes with various orientations. Therefore, the 
slope aspect was not considered as a causative factor in this 
study. 

To ensure consistency and compatibility, all thematic maps 
were clipped to the administrative boundaries of Kenya and 
projected into a common geographic coordinate system. The 
feature proximity (buffering) was applied, followed by the 
conversion of polygons to raster format and resampling to 
match the spatial resolution of the SRTM-DEM (30 m). 
Finally, the thematic maps were standardized into four 
linear classes and utilized in the weighted overlay model 
(Figure 3 and 4). Different classifications were considered 
for the fuzzy logic model, as explained in the fuzzy modeling 
section. 

 

4.2 Weighted Overlay Modeling 
 
The weighted overlay model employed in this study 
incorporates the Analytic Hierarchy Process (AHP) for 
weighting the identified factors, followed by a weighted 
linear combination. AHP is a reliable method for assigning 
weights to multiple factors using a pairwise comparison 
matrix. It has been widely utilized in various fields to 
address real-world problems [46] [47] 48] [44] [49] 
(Guzzetti et al., 1999; Saaty, 1977, 1980; Saaty and Vargas, 
1991; Ayalew and Yamagishi, 2005; Aly et al., 2005). 

The pairwise comparison matrix involves comparing each 
factor with others based on its relative importance in 
relation to the problem at hand. Table 3 presents the scale 
ranging from 1 to 9, which is used for weighting the 
variables. The pairwise comparison matrix for the selected 
causative landslide factors is displayed in Table 4, where 
each cell represents the relative importance of the row factor 
in comparison to the corresponding column factor. Notably, 
the diagonal cells contain a value of 1 since they represent 
the comparison of each factor to itself. Solving the matrix 
and calculating the eigenvector yields weights that indicate 
the relative importance of each landslide factor. 

To assess the matrix’s consistency, the consistency ratio (CR) 
is computed, which reflects the likelihood that the ratings in 
the matrix were randomly assigned. The ratings are deemed 
acceptable when the consistency ratio is below 0.1. 
Consequently, the consistency index (CI) is calculated 
according to Equation 1, and CR is determined using  
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Table -2: Causative factors and corresponding classes with their relationship to the past landslides. 

Causative factor Corresponding class # of landslides  Landslide (%) Assigned class 

Precipitation 
(mm/yr) 

< 600 
600 – 700 
700 – 1000 
>1000 

1 
3 
34 
92 

0.8 
2.2 
26.4 
70.6 

low  
medium 
high 
very high 

Lithology 

Sedimentary rocks 
Unconsolidated 
Metamorphic rocks 
Basaltic Volcanic rocks  

0 
1 
51 
78 

0 
0.8 
39.2 
60 

low 
medium 
high 
very high 

Elevation  
(m) 

<800 
800-1200  
1200-1700 
>1700 

0 
15 
34 
81 

0 
11.5 
26.2 
62.3 

low  
medium 
high 
very high 

Slope (%) 

<2 
2-5 
5-15 
>15 

7 
22 
56 
45 

5.4 
16.9 
43.1 
34.6 

low  
medium 
high 
very high 

Soil Type 

Aridisols (1) 
Shifting sand (0) 
Alfisols (7) 
Vetisols (1) 
Entisola (10) 
Oxisols (18) 
Andisols (9) 
Inceptisols (39) 
Ultisols (45) 

1 
0 
7 
1 
10 
18 
9 
39 
45 

0.8 
0 
5.4 
0.8 
7.7 
13.8 
6.9 
30 
34.6 

low 
low 
medium 
medium 
high 
high 
high 
very high 
very high 

Land Cover 

Vegetated wetland 
Open water 
Urban 
Open forest 
Moderate forest 
Dense forest 
Open grassland 
Perennial cropland 
Wooded grassland 
Annual cropland 

0 
0 
3 
1 
4 
16 
8 
8 
41 
49 

0 
0 
2.3 
0.8 
3 
12.3 
6.2 
6.2 
31.5 
37.7 

low 
low 
medium 
medium 
medium 
high 
high 
high 
very high 
very high 

Fault Proximity 
(km) 

>30  
20-30  
10-20  
<10  

29 
11 
34 
56 

22.3 
8.5 
26.2 
43 

low  
medium 
high 
very high 

Earthquake 
Proximity (km) 

>300 
200-300 
100-200 
<100  

0 
0 
32 
98 

0 
0 
24.6 
75.4 

low  
medium 
high 
very high 

Drainages 
Proximity (m) 

>300 
200-300 
100-200 
<100 

120 
2 
6 
4 

92 
1 
4 
3 

low  
medium 
high 
very high 

Road Proximity 
(m) 

>300 
200-300 
100-200 
<100 

76 
7 
18 
29 

58.4% 
5.3% 
14% 
22.3% 

low  
medium 
high 
very high 
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Fig -3: Factors used for the landslide susceptibility 
assessment, including elevation (a), precipitation (b), 

lithology (c), land cover (d), and soil (e). 

Equation 2. In this study, a CR value of 0.0034 was achieved 
[46] [47] (Saaty, 1977, 1980). 

                                         (1) 

where λ_max represents the principle of the largest 
eigenvalue in the matrix, and n indicates the number of 
landslide factors. 

                                              (2) 

where RI is the random index determined based on the 
matrix order as specified by Saaty (1977, 1980). 

Factors that significantly contribute to landslide occurrence 
in Kenya, such as precipitation, lithology, and slope, were 
assigned the highest weights (as depicted in Table 4). Finally, 
a weighted linear combination was performed using the ten 
input data layers outlined in the flowchart to generate the 
landslide susceptibility index. In this process, each input 
raster layer is multiplied by its respective weight and then 
summed, resulting in the output value denoted by S in 
Equation 3 [50] (e.g., Eastman et al., 1995). 

                              
(3) 

where S represents the landslide susceptibility, W denotes 
the weight of factor i, and R indicates the rank of factor i. 

 

 
 

Fig -4: Factors used for the landslide susceptibility 
assessment, including earthquakes (a), faults (b), drainages 

(c), roads (d), and slope (e). 
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Table -3: Pairwise comparison scale (Saaty and Vargas 
1991). 

 
Scale Definition 

1 Equal importance  

3 Moderate importance of one over another 

5 Strong or essential importance 

7 Very strong or demonstrated importance 

9 Extreme importance 

2, 4, 6, 8 Intermediate values 

Reciprocals For inverse comparison 

 
4.3 Fuzzy Logic Modeling 
 
Fuzzy logic is a distribution-free approach designed to 
overcome the limitations of data-dependent approaches [51] 
(Kanungo et al., 2009). It was introduced by Zadeh (1965) as 
an alternative to the conventional Boolean set theory, which 
assigns objects binary values of 0 or 1. In contrast, fuzzy 
logic allows for the assignment of continuous values. A fuzzy 
set represents a class of objects with a continuum of 
membership ranks, characterized by a membership function 
that assigns values between 0 and 1 to each object. Fuzzy 
membership transforms input raster data into a layer with 
values ranging from 0 to 1, reflecting the probability of 
membership within a specific set. Fuzzy members within a 
set are assigned values > 0 and ≤ 1, while those outside the 
set are assigned 0. Various concepts can be applied to fuzzy 
sets, including inclusion, union, intersection, complement, 
relation, convexity, and other relationships, implemented 
using logical operators such as AND, OR, NOT, Product, Sum, 
and Gamma [52] [53] (Zadeh, 1965; Bonham-Carter, 1994). 

In this study, fuzzy modeling was performed using 
algorithms implemented in ArcGIS, including Fuzzy Small, 
Fuzzy Near, and Fuzzy Linear. One of the key steps in fuzzy 
modeling and fuzzy memberships is the calculation of 
Euclidean distance, representing the shortest distance 
between two points. Euclidean distances were computed for 
four contributing variables: faults, earthquakes, drainages, 
and roads. Fuzzy Small was applied to faults, earthquakes, 
drainages, and roads, aiming for small input values for set 
membership with spread of 0.2, 2, 1, and 1, respectively. 
Figure 5 presents the results of applying Fuzzy Small to 
these variables with different values as shown in each figure. 
Fuzzy Near, on the other hand, assigns membership values 
near a specific value, with the midpoint assigned a 
membership of 1 and the end value assigned a membership 
of 0. For lithology, soil, and land cover raster factors, 
reclassification was performed to 6, 8, and 8 classes, 
respectively, with the highest value assigned a membership 
of 1. For example, in lithology, class 6 was assigned a 
membership of 1. Figure 6 provides an overview of this 
process. Linear data such as precipitation, slope, and 
elevation were transformed using the Fuzzy Linear 
transformation, as shown in Figure 7. 

 

Fig -5: Fuzzy Small memberships including faults (a), 
earthquakes (b), drainages (c), and roads (d). 

 
Ultimately, fuzzy overlay was applied to create the landslide 
susceptibility index using the Fuzzy Gamma operator, which 
has been effectively used in landslide susceptibility mapping 
[51] (e.g., Kanungo et al., 2009). The Fuzzy Gamma operator 
is expressed algebraically by Esri as a combination of Fuzzy 
Product and Sum, as shown in Equation 4: 

                (4) 

where μ represents the fuzzy membership function, x 
represents the universe, and 𝛾 is a chosen value within the 
range of 0 to 1. 

4.4 Evaluating and Validation the Results 
 
The evaluation of a landslide assessment model's quality is 
crucial to ensure its reliability and the production of 
acceptable results. The primary criterion for quality 
evaluation is the accuracy of the model, which involves 
examining the agreement between the modeled results and 
the observed data [54] (e.g., Frattini et al., 2010). In this 
study, the observed data consist of past documented 
landslide events represented in the landslide inventory, 
while the modeled results are the generated landslide 
susceptibility indices. Statistical analysis was conducted 
using Equation 5 to compare the known landslide 
occurrences with the produced landslide susceptibility  

 



          International Research Journal of Engineering and Technology (IRJET)       e-ISSN: 2395-0056 

                Volume: 11 Issue: 03 | Mar 2024              www.irjet.net                                                                         p-ISSN: 2395-0072 

  

© 2024, IRJET       |       Impact Factor value: 8.226       |       ISO 9001:2008 Certified Journal       |     Page 130 
 

Factor Precipitation Lithology Slope Elevation Soil 
Land 
cover 

Faults Earthquakes Drainages Roads Weight 

Precipitation 1.00 3.00 3.00 5.00 6.00 6.00 7.00 7.00 8.00 9.00 0.30 

Lithology 0.33 1.00 1.00 4.00 5.00 5.00 6.00 6.00 7.00 8.00 0.19 

Slope 0.33 1.00 1.00 4.00 5.00 5.00 6.00 6.00 7.00 8.00 0.19 

Elevation 0.20 0.25 0.25 1.00 4.00 4.00 5.00 5.00 6.00 7.00 0.11 

Soil 0.17 0.20 0.20 0.25 1.00 1.00 4.00 4.00 5.00 6.00 0.06 

Land cover 0.17 0.20 0.20 0.25 1.00 1.00 4.00 4.00 5.00 6.00 0.06 

Faults 0.14 0.17 0.17 0.20 0.25 0.25 1.00 1.00 4.00 5.00 0.03 

Earthquakes 0.14 0.17 0.17 0.20 0.25 0.25 1.00 1.00 4.00 5.00 0.03 

Drainages 0.13 0.14 0.14 0.17 0.20 0.20 0.25 0.25 1.00 2.00 0.02 

Roads 0.11 0.13 0.13 0.14 0.17 0.17 0.20 0.20 0.33 1.00 0.01 

CI = 0.0051            

RI = 1.49            

CR = 0.0034            

Table -4: Pairwise comparison matrix for the landslide susceptibility index. 
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Fig -6: Fuzzy Near memberships including lithology (a), 
soil (b), and land cover (c).   

 
 
 

 

Fig -7: Fuzzy Linear memberships including precipitation 
(a), slope (b), and elevation (c).   
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indices. This analysis provides a quantitative measure of 
how well the model aligns with the observed landslide 
occurrences, allowing for an assessment of the model's 
performance and reliability. 

                              (5) 

where A represents the average model accuracy, N denotes 
the number of landslides within each susceptibility index, 
and T is the total number of landslides. 

 
5. RESULTS AND DISCUSSIONS 
 
This study has produced valuable outcomes in the form of a 
landslide inventory map and two landslide susceptibility 
models. The landslide inventory map displays the 
distribution of past and current landslides in Kenya, 
encompassing 130 events that occurred between 1928 and 
2018 (Figure 1). It is important to note that the accuracy of 
the susceptibility models relies on the available documented 
landslide data, and further improvements could be achieved 
with a larger number of recorded events. Nonetheless, the 
created models remain reliable and offer utility for future 
planning and mitigating landslide hazards in Kenya. 

The central and southwestern regions of Kenya exhibit the 
highest susceptibility to landslides, as indicated by the two 
susceptibility models. These areas are characterized by a 
combination of factors including high rainfall, steep slopes, 
and weathered soil and bedrock conditions. The weighted 
overlay model classifies Kenya into four susceptibility index 
classes (Figure 8.a): low, medium, high, and very high, 
covering approximately 34%, 40%, 22%, and 4% of the total 
area, respectively (Table 5). The high and very high 
susceptibility classes encompass about 26% of the entire 
country, corresponding to an area of 151,22 km2 that is 
vulnerable to active landslides. 

 

 

Fig -8: Landslide index created by the weighted overlay 
(a). Landslide susceptibility index created by the fuzzy 

logic (b). 
 

Table -5: Statistical analysis for the landslide index created 
by the weighted overlay (WO) and fuzzy logic (FZ) with the 
accuracy correlation for the two models (values are in %). 
 
Hazard 
Index 

Index % # of past 
landslides 

Fuzzy 
Index 
Value 

Accuracy 
correlation % 

 WO FZ WO FZ  WO FUZZY 
Low 34 68 0 0 < 0.3 0 0 
Medium 40 19 4 20 0.3 – 

0.5 
3 15.4 

High 22 10 56 46 0.5 – 
0.6 

43 35.4 

Very 
high 

4 3 70 64 > 0.6 54 49.2 

 
In contrast, the fuzzy logic model produces a distinct output 
for landslide susceptibility, with pixel values ranging from 0 
to 0.85. It also categorizes the country into four main classes 
(Figure 8.b): low, medium, high, and very high, representing 
approximately 68%, 19%, 10%, and 3% of Kenya's area, 
respectively (Table 5). These percentages differ from those 
calculated by the weighted overlay model due to the 
variations in factor standardization approaches employed in 
each modeling procedure. Statistical analysis reveals that the 
weighted overlay model reports no landslide events in the 
low index, only 4 events in the medium index, and 126 
events in the high and very high indices (Table 5). 
Conversely, the fuzzy model has no landslides reported in 
the low index, 20 in the medium index, and 110 in the high 
and very high indices (Table 5). When considering the high 
and very high indices of both models, the weighted overlay 
model achieves an accuracy of 97%, compared to 85% for 
the fuzzy logic model (Table 5). 

Unfortunately, the areas most prone to landslides are also 
the most agriculturally productive and densely populated in 
Kenya, owing to their high precipitation rates and fertile 
soils. Long-term land use changes may have contributed to 
increased landslide occurrences in these areas. To mitigate 
landslide hazards in such regions, it is crucial to avoid 
construction on steep slopes and existing landslides. 
Cultivation, deforestation, and settlement should be 
minimized in steep slope areas. However, if building on 
gentle slopes becomes necessary, slope stabilization 
measures should be considered. Planting deep-rooted trees 
on steep slopes can also help mitigate landslides. 
Additionally, geodetic monitoring should be implemented in 
areas prone to active landslides. There is a pressing need for 
the development of a comprehensive landslide management 
program in Kenya to assess landslide hazards and associated 
risks effectively. 

 
6. CONCLUSIONS 
 
Landslides are a prevalent phenomenon in the mountainous 
regions of Kenya, emphasizing the importance of landslide 
hazard assessment, particularly in the central and 
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southwestern parts of the country. This study successfully 
created a landslide inventory map, encompassing 130 past 
landslide events, by compiling records from various reliable 
sources. Subsequently, two models, the weighted overlay 
model and the fuzzy logic model, were employed to compute 
landslide susceptibility indices. 

The accuracy of the models heavily relies on the limited 
number of documented landslide events and the identified 
causative and triggering factors. The weighted overlay model 
exhibited a high accuracy, with approximately 97% of the 
past landslides occurring in the high and very high 
susceptibility indices, compared to 85% for the fuzzy logic 
model. These variations can be attributed to the different 
approaches employed for factor categorization and 
standardization in each model. 

The results from the weighted overlay model indicate that 
approximately 26% of Kenya's land area is susceptible to 
landslides. As the first comprehensive landslide study 
conducted for the entire country, this research significantly 
enhances our understanding of landslide hazards and 
provides valuable insights for decision-makers in future 
planning and mitigating associated risks in Kenya. 

Furthermore, this study underscores the effectiveness of 
geospatial technologies in landslide assessments and 
emphasizes the need for ongoing geodetic monitoring in the 
central and southwestern regions of Kenya, which are 
particularly vulnerable to active landslides. By predicting 
potential disastrous events, geodetic monitoring can play a 
vital role in safeguarding lives and infrastructure. This study 
contributes to the advancement of landslide research in 
Kenya and highlights the importance of proactive measures 
to address landslide hazards. Continued efforts in landslide 
monitoring, research, and implementation of appropriate 
mitigation strategies are crucial for the sustainable 
development and safety of communities in landslide-prone 
areas of Kenya. 
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