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Abstract - In this study, we employ a hyperparameter-tuned 
DenseNet121 architecture within a Convolutional Neural 
Network (CNN) framework to analyze fundus oculi images for 
predicting the presence and severity of Diabetic Retinopathy 
(DR). Diabetes, a condition characterized by elevated blood 
sugar levels, can lead to DR, a significant cause of vision 
impairment and blindness, especially among older individuals. 
Early detection of DR is crucial for timely intervention and 
treatment. Our model is trained and evaluated using a dataset 
comprising labeled fundus oculi images, each annotated with 
the severity of DR. Leveraging hyperparameter tuning, 
specifically optimizing the learning rate and dropout rate, we 
enhance the performance of the DenseNet121-based CNN 
model. Through rigorous experimentation, we demonstrate 
the effectiveness of our approach in accurately classifying DR 
severity levels, thus contributing to early diagnosis and 
management strategies for this sight-threatening condition. 
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1.INTRODUCTION  

Diabetic Retinopathy results from damage to the 
blood vessels in the retina caused by diabetes. Individuals 
with diabetes often experience some degree of retinal 
damage. The affected blood vessels can swell, leak, or 
promote the growth of new blood vessels. The loss of 
pericytes, which are contractile cells that envelop capillary 
endothelial cells in the body's venules, contributes to 
capillary damage. This damage occurs due to high levels of 
glucose in the blood, which clump together in the capillaries 
and impede blood flow, a condition known as ischemia. 
Microaneurysms, resulting from the diminished blood flow 
caused by the deterioration of these blood vessels, are 
saccular enlargements at the venous end of retinal 
capillaries. This process compromises the arteries' 
impermeability, leading to leaks such as bleeding or lipid 
exudation. 

Ischemia in the retina leads to two major complications. The 
first issue involves the synthesis of the cytokine protein 
VEGF, which promotes the formation of new blood vessels 
(neovascularization) from existing ones. This protein can 
cause problems by proliferating on the surface of the 
vitreous humor and retina. Due to insufficient blood flow, 

these new vessels continue to grow until they rupture, 
leading to bleeding in the vitreous cavity or tearing the 
retina, ultimately resulting in vision loss due to tissue 
expansion. The second issue is plasma leakage, which 
involves lipid exudation that deposits fat in the macula, 
altering its structure and leading to vision impairment. 

After examining the retina's fundus, diabetic 
retinopathy can be classified from its mildest to most severe 
stages. The two primary forms of the condition are Non-
Proliferative Diabetic Retinopathy (NPDR) and Proliferative 
Diabetic Retinopathy (PDR). NPDR is further divided into 
three subcategories: mild, moderate, and severe, as 
illustrated in Figure 1. 

Fig-1: Stages of Diabetic Retinopathy 

 Deep learning (DL) is a well-established technique 
that automatically extracts features from images through a 
convolutional neural network's layer stack. These features 
enable the classification of image contents by identifying 
specific patterns. In this study, we propose a DL model to 
categorize retina fundus images and identify diabetic 
retinopathy (DR) across all stages. We utilize DenseNet121, a 
type of Convolutional Neural Network, to distinguish 
between healthy eyes and those affected by proliferative 
diabetic retinopathy. 

2. RELATED WORKS 

Numerous studies have explored the detection and 
classification of diabetic retinopathy (DR) using various 
methods. One of the pioneering works in this field is by Cree 
et al. [2], who developed a system that used hand-
engineered features and empirically determined parameters 
to classify digitized retina fundus images. 
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Yun et al. [3] introduced a method for classifying 
retina fundus images into categories such as normal, 
moderate, severe, and proliferative diabetic retinopathy 
(DR). Their approach included preprocessing the images 
using morphological operations with disc and diamond 
structuring elements. Features were then extracted, focusing 
on pixel area, perimeter, and RGB channel analysis. 
Classification was carried out using a single-layer feed-
forward neural network. 

Rosas et al. [4] concentrated on the detection of 
microaneurysms in retinal images. Their approach involved 
applying computer vision techniques to preprocess the 
images, extracting features related to nonuniform lighting 
and grayscale intensities. Principal component analysis 
(PCA) and the radon transform were employed to 
distinguish round-shaped candidate regions and quantify 
discrete angle values, respectively. 

Gargeya et al. [5] introduced an automated diabetic 
retinopathy (DR) screening system that achieved an 
impressive area under the curve (AUC) of 0.95 on the 
Messidor dataset using a 5-fold cross-validation technique. 
Their approach aimed to streamline the screening process 
by leveraging machine learning algorithms. 

Chetoui et al. [6] devised a system for detecting 
referable diabetic retinopathy (DR) and vision-threatening 
DR by employing EfficientNet with transfer learning. Their 
work yielded promising outcomes, achieving an impressive 
area under the curve (AUC) of up to 0.98 on both the APTOS 
2019 dataset and the EyePACS dataset. 

Dondeti et al. [7] explored the use of pre-training 
model NASNET and T-SNE space for feature extraction in DR 
classification. Their approach, based on the APTOS 2019 
dataset, achieved an accuracy rate of 77.90%. 

Qummar et al. [8] presented an ensemble method 
employing five deep learning models, specifically crafted to 
address imbalanced data. Their strategy yielded an accuracy 
rate of 70% and underscored the effectiveness of ensemble 
approaches in classifying diabetic retinopathy (DR). 

3. PROPOSED WORK 

3.1Convolutional Neural Network 

In a traditional feed-forward convolutional neural 
network (CNN), the initial convolutional layer, which 
receives the input, is the sole layer that directly connects to 
the output of the preceding convolutional layer. This layer 
generates an output feature map, which is then transmitted 
to the subsequent convolutional layer. Consequently, each 
layer has "L" direct connections to the next layer. However, 
as CNNs deepen or expand in levels, they encounter the 
challenge of the "vanishing gradient" problem. This issue 
implies that as the network's depth increases, some 

information may diminish or become lost, diminishing the 
network's learning capacity. 

DenseNets address this problem by modifying the 
conventional CNN architecture and enhancing connectivity 
between layers. The term "Densely Connected Convolutional 
Network" denotes an architecture in which every layer is 
interconnected with all others. Consequently, there exist 
L(L+1)/2 direct links between "L" layers. 

The proposed model is based on the DenseNet121 
architecture, which accepts an RGB image of 224 × 224 
pixels. The model's weights were pre-trained using the 
ImageNet dataset, leveraging the learned features to 
optimize the fully connected layer's output weights 
adequately. The feature extraction process occurs within the 
convolutional layers, while the final layer handles 
classification. A softmax activation function is applied to the 
model's output to assign probabilities to each class. Notably, 
each output from a convolutional layer is concatenated with 
subsequent layers within the same block, as depicted in 
Figure 2, showcasing a distinctive characteristic of DenseNet. 

 

Fig-2: DenseNet-121 Architecture 

The features extracted from the image after processing 
through the convolutional layers are subsequently fed into 
the classification stage. The classifier comprises two fully 
connected layers. Following a dropout layer with a dropout 
probability of 50%, the first layer of the system consists of 
1024 units with a ReLU activation function. The final layer 
comprises 5 units, representing the classes, and utilizes a 
softmax activation function. 

3.2 Retina image Dataset 

 In this study, the dataset is sourced from Kaggle and 
is known as the APTOS dataset. It comprises 3662 labeled 
images for training and 1928 unlabeled images for testing 
purposes. The dataset can be accessed via the Kaggle Dataset 
Download link: https://www.kaggle.com/c/aptos2019-
blindness-detection/data. Originally published as a 
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competition on the Kaggle platform, the APTOS dataset 
consists of fundus oculi images captured under various 
conditions and of different sizes. Sample images are provided 
below as shown in Figure 3. 

  

Fig-3: Images in the Dataset 

4. METHODOLOGY 

4.1 Data-Preprocessing 

As part of the preprocessing step, all images in the 
datasets underwent center cropping, resulting in only the 
retina's fundus being retained, as it is the most critical part 
of the image for our task. Additionally, the images were 
resized to dimensions of 224 x 224 pixels as in Figure 4. This 
standardization ensures consistency in image sizes and 
focuses the model's attention on the relevant features of the 
retinal images. 

Fig-4: Preprocessed image 

4.2 Data Augmentation 

 Data augmentation involves generating new data 
samples from existing training data through various 
transformations such as cropping, padding, flipping, rotating, 
and resizing. This technique is commonly used to increase 
the diversity and quantity of training data, which in turn 
enhances the performance of machine learning models. By 
exposing the model to a wider range of variations in the 

input data, data augmentation helps prevent overfitting and 
improves the generalization ability of the model. 

4.3 Model Implementation 

 The CNN model employed in this study is built upon 
the DenseNet121 architecture, renowned for its dense 
connectivity patterns. Leveraging pre-training on the 
ImageNet dataset, DenseNet121 serves as the feature 
extraction backbone, capturing rich visual features from 
retinal fundus images via transfer learning. To tailor the 
model for diabetic retinopathy classification, additional 
layers are added to the DenseNet121 base. A global average 
pooling layer reduces spatial dimensions, followed by a dense 
layer with ReLU activation to capture high-level 
representations. Dropout regularization is incorporated to 
mitigate overfitting by randomly deactivating neurons during 
training. 

The output layer consists of a dense layer with 
softmax activation, producing a probability distribution over 
five classes of retinal diseases. The model is compiled using 
SGD optimizer with momentum, categorical cross-entropy 
loss, and accuracy metric. Data augmentation techniques are 
employed to enhance performance and combat overfitting. 
Augmented images, generated using ImageDataGenerator, 
undergo random transformations like rotation and flipping, 
enriching the training dataset for better generalization. 

 Hyperparameter tuning is conducted using the Keras 
Tuner library, optimizing dropout rate and learning rate. The 
hyperband optimization algorithm efficiently explores 
parameter space, identifying the configuration maximizing 
validation accuracy. During training, callbacks such as reduce 
learning rate and early stopping monitor performance and 
prevent overfitting. The model is trained on augmented data 
and evaluated on a validation set to assess loss and accuracy, 
ensuring robust performance in classifying diabetic 
retinopathy. 

4.4 Result Analysis 

The trial consisted of training the model over 9 
epochs while monitoring its performance. At the end of this 
trial, the validation accuracy reached approximately 76.45%. 
However, it's worth noting that the highest validation 
accuracy achieved during training was approximately 
78.67%, indicating a positive trend of improvement over the 
training period. 

Optimal hyperparameters were identified to 
maximize validation accuracy, including a learning rate of 
0.001 and a dropout rate of 0.5. These parameters 
significantly influenced the model's performance, showcasing 
their importance in training CNNs effectively. 

Throughout the training process, the model showed 
consistent improvement, as seen in the steady increase in 
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accuracy and decrease in loss. By the 9th epoch, the model 
achieved an impressive accuracy of 84.29%, demonstrating 
its ability to learn and recognize patterns within the dataset 
effectively. 

Dynamic adjustments to the learning rate were 
implemented during training, with a reduction to 0.0001 after 
the 8th epoch. This adaptive learning rate strategy likely 
contributed to the model's enhanced performance, allowing 
for fine-tuning of parameters and convergence towards 
optimal solutions. 

 After training, evaluation on the validation set 
revealed promising results, with a validation loss of 0.5139 
and a validation accuracy of 80.38% as shown in Chart -2 & 1 
respectively. These metrics highlight the model's 
effectiveness in accurately classifying diabetic retinopathy, 
suggesting its potential application in clinical settings for 
disease diagnosis and management as shown in chart 3. 

 

Chart -1: Model Accuracy 

 

Chart -2: Model Loss 

 

Chart -3: Comparison of Accuracy with the existing 
System 

5. CONCLUSION 

 In conclusion, the trained convolutional neural 
network (CNN) model has demonstrated promising 
performance in effectively classifying diabetic retinopathy 
using retinal fundus images. Through meticulous training and 
hyperparameter optimization, the model has achieved 
noteworthy results. Its capability to accurately classify 
diabetic retinopathy, along with its robustness in learning 
and identifying patterns within the dataset, highlights its 
potential applicability in clinical settings. 

As a valuable tool for disease diagnosis and 
management, the CNN model holds promise in assisting 
healthcare professionals in early detection and intervention 
for diabetic retinopathy, ultimately leading to improved 
patient outcomes and enhanced quality of care. However, 
further research and validation on larger datasets and real-
world clinical scenarios are essential to ascertain the model's 
efficacy and generalizability, ensuring its reliability and 
effectiveness in practical healthcare settings. 

6. FUTURE WORK 

 Future research directions aim to enhance the 
diabetic retinopathy classification model's efficacy and 
broaden its applicability in clinical practice. Firstly, the 
creation of a benchmark dataset will establish a standard for 
evaluating model performance, enabling fair comparisons 
across different studies. Secondly, exploring alternative 
preprocessing functions and architectures, including 
multilabel approaches, holds promise for improving the 
model's accuracy and robustness. Thirdly, investigating a 
bounding box detection approach could provide valuable 
insights into the localization and extent of abnormalities in 
retinal images, facilitating more precise diagnosis and 
treatment planning. These proposed avenues for future work 
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seek to advance the state-of-the-art in diabetic retinopathy 
classification, ultimately benefiting patients and healthcare 
professionals alike. 
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