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Abstract 
 
Software defect along with an intrinsic element of 
software product is also an important aspect of software 
quality. Software defects are an unavoidable co product 
of the developed software. In addition to this, the 
guarantee of software quality assurance is not so easy 
and requires a lot of time too. There are different ways to 
define defects, such as in terms of quality. The defects 
may be present in all products whether it is a small 
program or large-scale software system. A number of 
defects can be discovered without any complexity. The 
various steps are applied for the software defect 
prediction which includes pre-processing, feature 
extraction and classification. The various techniques 
which are proposed in the previous time for the software 
defect prediction are reviewed and analysed in this 
paper. The techniques are reviewed in terms of 
technique description and their findings in terms of 
various parameters  

Keywords - Software defect, Prediction, Machine 
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1. Introduction 

Because of the increasing complexity of today’s software 
and enhance chances of failures, ensuring reliability has 
become an important concern. Organisations such as 
Google employ code review and unit testing to identify 
problems in new code and increases reliability. 
Meanwhile, testing each code unit is not practical and 
human code reviews are labour- intensive [1]. With less 
funding for software projects, it is fruitful to detect 
potential issues immediately. As a result, software defect 
prediction algorithms are commonly employed to 
automatically identify possible mistakes, enabling 
developers to make optimal consumption of their 
resources. Software defect prediction includes, creating 
classifiers that analyse data such as change history and 
complexity of code to identify code segments with 
potential flaws. This practice ensures code reviewers to 
allocate their efforts with more strategy and receive 
warnings about potentially buggy code regions based on 
the prediction outcomes [2]. These code sections may 
include alterations, files, or processes. In the typical fault 
prediction process, there are two main stages: feature 
extraction from source files and the creation of a 

classifier using various machine learning techniques. 
Previous research emphasises on enhancing the 
precision of predictions has mainly involved manually 
crafting discriminative features or combining 
characteristics [3]. Halstead features based on operators 
and operands, McCabe features based on dependencies, 
and CK features for object-oriented programs are some 
of the examples. However, traditional hand-crafted 
features often overlook the intricate semantics and 
clearly-defined syntax concealed in the Abstract Syntax 
Trees (ASTs) of programs. 

Prediction models, important to Software Defect 
Prediction (SDP), are crucial in anticipating software 
faults. Number of methods and algorithms have been 
used to increase the correction of Software Defect 
Prediction (SDP) models, till the fundamental stages of 
SDP can be succinctly outlined. Primarily, collection of 
data includes collecting both pure and defective code 
samples from software repositories [4]. Next to this, a 
dataset is constructed by extracting related qualities 
from the compiled samples, with forthcoming steps 
including dataset balancing if any imbalance is identified, 
model training utilizing the prepared dataset, and the 
upcoming predictions of problematic components within 
new software datasets using the trained model. 
Consequently, the performance of the SDP model is 
evaluated. This innovative process allows for ongoing 
refinement and improvement over time. 
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As described in Figure 1, the first step of the process 
involves the collection of both functional and faulty code 
examples [5]. Software data, creating source codes, 
commit messages, bug reports, and other artifacts exists 
in different formats and is typically sourced from 
repositories and archives. Next to this, the second step in 
the Software Defect Prediction (SDP) process is feature 
extraction. During this phase, various data sources such 
as commit logs, messages, source codes, and software 
artifacts are changed into metrics that serve as input for 
model training. During feature extraction, it's important 
to consider the nature of the input data which may 
encompass McCabe metrics, CK metrics, convert 
histories, assembly code, and source code, along with 
representation of data [6]. Along with metric-based data, 
ample of deep learning techniques presently provide 
automated feature extraction capabilities and can handle 
the data with high-dimension and more complexity. An 
optional step sometime follows after this. Given that 
defect datasets typically consist of a dramatically lowest 
percentage of defective components as compare to fine 
ones, this stage involves balancing of data. The 
unbalanced structure of class can cause misleading 
outcomes for different performance evaluation metrics 
used in assessing Software Defect Prediction (SDP) [7], 
therefore badly affect most SDP strategies.  Numerous 
methods like oversampling can be employed to minimize 
this concern and increase the performance of SDP. 

The fourth phase of the Software Defect Prediction (SDP) 
process involves analysing the problematic areas within 
the software. At this stage, mainly focus is on selecting 
optimal Deep Learning (DL) algorithms and techniques, 
which may encompass various topologies such as 
Convolutional Neural Networks [8], and machine 
learning categories like supervised or unsupervised 
learning. In addition to this, during this step an 
important consideration is determining the level of 
granularity at which the sections of problems are to be 
detected, which could range from module and file levels 
to class [9], function, or even phrase levels. The 
upcoming step entails predicting the faulty parts within 
fresh (test) data by using the model trained in the 
previous stage.  Lastly, the prediction made in this step 
acts as input for the final phase of the SDP process. The 
final phase of the Software Defect Prediction (SDP) 
process including the evaluation of created model. 
Different alternatives, such as the area under the curve 
and the F-measure, can be employed to increase the 
performance of SDP model [10]. Then prediction models 
are evaluated and compared them with other pertinent 
studies by using one or more of these measures. In the 
realm of software defect prediction, Machine learning 
classifiers have garnered a lot of attention due to their 
ability to predict the mistakes of software by analysing 
code and features extraction from raw data sources. 
Over the past few decades, ample of machine learning-
based methods have been developed specifically to 

identify software issues [11]. One prominent machine 
learning technique for tasks involving reduction of 
features, detection, regression, and classification is the 
support vector machine.  Locate a hyperplane (or series 
of hyperplanes for more classes) is main focus that splits 
two classes. The plane is selected in a way by increasing 
the distance from the two data clusters, that separates 
the two classes of data points. Because it offers some 
possibility that future data can be classified more 
precisely, it is meaningful to increase this kind of 
distance metric. Support vectors are the data points that 
are nearest to the hyperplane [12]. The position of 
hyperplane is adjusted in according to the support vector 
positions to preserve the maximum distance between 
the data points of both classes. A supervised learning 
method called Random Forest defines the concept of 
merging learning models to gain a superior performance 
superior to that of a single model. Specifically, it 
integrates several Decision Trees to produce a prediction 
with more accuracy. In order to construct a lot of 
decision trees from the dataset and merge them into a 
final judgment, this approach called randomness [13]. 
However, the variables with maximum depth allows you 
to set the tree's depth, and n_estimators enable us to 
limit the count of decision trees in the tree. The ability to 
calculate a significance score for every feature—which 
gives us some insight into the features that are important 
to get an accurate prediction—is one benefit of 
employing random forest. The number of neighbours 
such as k is the primary determining feature in k-nearest 
neighbour. This classifier is used for both regression and 
classification problems [14]. In both circumstances, the 
output relies on whether k-NN is applied to the 
regression or classification model, and the k closest 
training examples are taken into consideration as input 
[15]. The algorithm work on the presumption that the 
new and present data is same. When a new case or set of 
data is received, the algorithm places it in the category 
that shares the lot of similarities with the existing 
categories [16]. 

2. Literature Review 

M. Ali, et.al (2024) suggested an intelligent ensemble 
framework that integrated various classification 
techniques to forecast software defects [17]. Their 
approach involved a two-phase procedure designed for 
detecting defective modules. Initially, the focus was on 
utilizing four supervised machine learning (SML) 
methods: Random Forest (RF), Support Vector Machine 
(SVM), Naïve Bayes (NB), and Artificial Neural Network 
(ANN). They employed an iterative parameter 
optimization technique to enhance the accuracy of these 
methods. Subsequently, the second phase aimed to 
amalgamate the accuracy of each method into a voting 
ensemble to predict defects in software effectively. This 
framework significantly improved the accuracy and 
reliability of software defect prediction. The proposed 
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framework was evaluated using seven datasets sourced 
from the NASA MDP repository. The experimental 
outcomes demonstrated the superiority of their 
approach over existing methods in predicting software 
defects. 

R. Haque, et.al (2024) introduced an innovative 
technique called heterogeneous cross-project defect 
prediction (HCDP), employing encoder networks and a 
transfer learning (ENTL) model to anticipate software 
defects [18]. The encoder networks (ENs) were 
leveraged to extract significant features from both the 
source and target datasets. Furthermore, negative 
transfer in transfer learning (TL) was alleviated by 
incorporating an augmented dataset containing pseudo-
labels and the source dataset. The model was trained on 
a single dataset and evaluated on sixteen datasets 
derived from four public projects. A comparative 
analysis was conducted against traditional methods, 
employing cost-sensitive learning (CL) to address 
imbalanced class issues. Experimental results 
demonstrated the robustness of the proposed method in 
predicting software defects, outperforming traditional 
methods across metrics such as PD, PF, F1-score, G-
mean, and AUC. 

Y. Al-Smadi, et.al (2023) introduced an innovative 
approach for predicting software defects by 
implementing 11 machine learning (ML) techniques 
across 12 diverse datasets [19]. They utilized four 
diverse meta-heuristic algorithms: particle swarm 
optimization (PSO), genetic algorithm (GA), harmony 
algorithm (HA), and ant colony optimization (ACO) to 
select features. Additionally, they applied the synthetic 
minority oversampling technique (SMOTE) to address 
imbalanced data issues. Moreover, they used the Shapley 
additive explanation (SAE) framework to identify 
decisive features. Experimental results indicated that 
gradient boosting (GB), stochastic gradient boosting 
(SGB), decision trees (DTs), and categorical boosting 
(CB) algorithms performed exceptionally well, achieving 
an accuracy and ROC-AUC of over 90%. Furthermore, the 
superiority of the categorical boosting (CB) algorithm 
was demonstrated against other methods for predicting 
software defects. 

A. Wang, et.al (2023) devised a Federal Prototype 
Learning leveraging Prototype Averaging (FPLPA) 
method and integrating federated learning (FL) with 
prototype learning (PL) to forecast heterogeneous 
defects in software [20]. They employed the one-sided 
selection (OSS) algorithm to eliminate noise from local 
training data and utilized the Chi-Squares Test algorithm 
to select the optimal subset of features. Subsequently, 
they introduced the Convolution Prototype Network 
(CPN) model to create local prototypes, which exhibited 
greater robustness against heterogeneous data 
compared to convolutional neural networks (CNNs), 

mitigating the impact of class imbalances in software 
data. The prototype served as the communication 
subject between clients and the server, with the local 
prototype developed irreversibly to safeguard privacy in 
the communication process. The final task involved 
updating the presented model using the loss of local and 
global prototypes as regularization. They evaluated the 
developed method using the AEEEM, NASA, and Relink 
datasets, with simulation outcomes demonstrating its 
superiority over traditional methods for defect 
prediction. 

S. Kwon, et.al (2023) projected a function-level just-in-
time (JIT) software defect prediction (SDP) technique 
aimed at addressing the challenge of predicting software 
defects [21]. They prioritized limited testing resources 
for defect-prone functions. Their approach relied on a 
pre-trained method, specifically a transformer-based 
deep learning (TDL) model trained on a large corpus of 
code snippets to provide defect proneness for altered 
functions at a commit level. They evaluated the 
CodeBERT, GraphCodeBERT, and UniXCoder methods on 
edge-cloud systems, with a primary focus on analyzing 
their efficacy in this environment. Results indicated that 
the UniXCoder method outperformed others in the 
WPDP environment. Furthermore, the projected 
technique demonstrated stability in predicting software 
defects. 

W. Wen, et.al (2022) introduced a Class Code Similarity-
based Cross-Project Software Defect Prediction (CCS-
CPDP) method for software defect prediction. Initially, 
the focus was on converting the code set extracted from 
the Abstract Syntax Tree (AST) into a vector set [22]. To 
achieve this, they employed a Doc2Bow and TF-IDF 
(DTI) method. The second step involved computing 
similarity between the vector sets of target projects and 
training projects. Finally, they utilized the principle of 
the majority decision subordinate category in K-Nearest 
Neighbor (KNN) to determine the number of occurrences 
of the same class in the training project. Based on this, 
the class instance was selected to refine the source 
project, and predictions were made regarding software 
defects. The developed method was evaluated against 
traditional methods, and experimental results indicated 
its effectiveness, offering higher recall and F1-score in 
predicting software defects compared to other methods. 

S. Kassaymeh, et.al (2022) developed a Salp Swarm 
Algorithm (SSA) coupled with a backpropagation neural 
network (BPNN) to predict software faults. Their 
integrated method, SSA-BPNN, aimed to enhance 
accuracy in defect prediction by optimizing optimal 
metrics [23]. They applied various datasets to evaluate 
the presented method across different parameters 
including AUC, confusion matrix, sensitivity, specificity, 
accuracy, and error rate, varying in size and complexity. 
Simulation results demonstrated that the presented 
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method outperformed conventional methods, achieving 
higher accuracy in software defect prediction. Moreover, 
this technique proved to be an effective tool in 
addressing challenges within software engineering. 

W. Wen, et.al (2022) developed a Cross-Project Defect 
Prediction (CPDP) model named BSLDP to anticipate 
software defects. They utilized a Bidirectional Long 
Short-Term Memory (Bi-LSTM) algorithm combined 
with a self-attention (SA) method to extract semantic 
information from source code files [24]. The ALC model 
was employed to extract source code semantics based on 
source code files, and a classifier, termed BSL, was 
generated using the semantic information from both the 
source and target projects to create a predictive 
framework. To enhance the model, they adopted an 
equal meshing method to extract semantic information 
from small code fragments by splitting the numerical 
token vector. They evaluated the designed model using 
the PROMISE dataset and found that it effectively 
predicted defects, improving the F1 score by up to 
14.2%, 34.6%, 32.2%, and 23.6% compared to four other 
techniques, respectively. 

C. Yu, et.al (2021) highlighted the use of homomorphic 
encryption (HE) for defect prediction, introducing a 
novel technique called HOPE. They presented an 
algorithm approximation (AA) method to approximate 
the sigmoid function and selected the Paillier 
homomorphic encryption (PHE) algorithm to execute 

logistical regression (LR) [25]. Real-time projects served 
as experimental subjects for generating the MORPH 
dataset to evaluate the formulated technique. 
Subsequently, three control groups were deployed to 
simulate three different scenarios based on whether the 
client transmitted encrypted data to the server and 
whether the formulated technique was employed on the 
server. The results indicated that when the original LR 
was deployed on the server to generate the technique 
using encrypted data, the trained model achieved similar 
performance, thus preserving data privacy. Moreover, 
the formulated technique demonstrated greater 
efficiency in terms of minimal computing cost. 

L. Yang, et.al (2021) conducted a study on a hybrid 
approach combining particle swarm optimization (PSO) 
and Salp Swarm Algorithm (SSA), termed SSA-PSO, 
aimed at improving convergence prior to individual 
updates in SSA [26]. Additionally, they introduced a 
novel maximum likelihood estimation (MLE)-based 
fitness function (FF) of metrics, used to initialize metrics. 
They evaluated this approach using five sets of actual 
datasets, comparing it against individual techniques. 
Experimental results demonstrated the stability of the 
SSA-PSO approach over others, showing higher 
convergence speed and accuracy. Moreover, the novel FF 
helped address issues related to slow convergence speed 
and lower solution accuracy. The investigated approach 
proved to be more effective in estimating and predicting 
software defects.

2.1 Comparison Table 

Author & Year Technique used Dataset Findings Limitations 

M. Ali, et al. 
(2024) 

Random Forest, 
Support Vector 
Machine, Naïve 

Bayes, and 
Artificial Neural 
Network, voting 

ensemble  

Seven datasets 
from datasets 

from the NASA 
MDP repository, 

namely CM1, JM1, 
MC2, MW1, PC1, 

PC3, and PC4 

Accuracy= 87.14, 
Misclassification 

Rate= 12.86, False 
Positive 

Ratio= 0.003, False 
Negative Ratio= 0.905 

This study does not explore 
sophisticated methods for 
selecting features to boost 

the reliability of the proposed 
model in software defect 

prediction. 

R. Haque, et al. 
(2024) 

Encoder Networks 
and Transfer 

Learning 

Sixteen datasets 
from AEEM, NASA, 

Promise and JIRA. 

PD=0.711, PF=0.0911, 
F1-score=0.475, G-

mean=0.770, AUC=0.663 

This evaluates the presented 
model using 16 datasets from 

four publicly available 
software defect projects, 

leaving benchmark datasets 
like Relink and SOFTLAB for 

future investigation, while 
considering methods like 
SMOTE to address class 

imbalance more accurately in 
upcoming research. 

Y. Al-Smadi, et 
al. (2023)  

Machine learning 
and metaheuristic 

algorithms 

Twelve datasets 
from NASA 

Accuracy= 0.931 

ROC-AUC=above 90% 

This work does not compare 
meta-heuristic algorithms 

with filter methods for 
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feature selection or evaluate 
the performance of SMOTE 
against other resampling 

techniques. 

A. Wang, et al. 
(2023) 

Federated 
Prototype 
Learning 

AEEEM, NASA and 
Relink 

AUC= 0.8098, G-mean= 
0.5978 

Numerous metric variations 
significantly increase the 

complexity of constructing 
software defect prediction 

models. 

S. Kwon, et al. 
(2023) 

Function-level 
justin-time (JIT) 

SDP) model 

CodeSearch AUC= 0.548, F-measure= 
0.667 

This work creates SDP 
models through refining pre-

trained models, with the 
exception of batch size and 
maximum sequence length, 

adjusted due to memory 
constraints. 

W. Wen, et al. 
(2022) 

CCS-CPDP Promise Recall increases by 
41.8% and f1-score 

increases by 15.9% than 
baseline models 

The proposed approach 
utilizes limited project source 
code datasets for evaluation 
and does not conduct data 

validation tests from various 
aspects to verify the 

performance of the proposed 
method. 

S. Kassaymeh, 
et al. (2022) 

Salp swarm 
optimizer (SSA), 

SSA-BPNN 

Ant-1.7, Ar, CM, 
Jedit, KC, PC, MC 

AUC= 0.79, Sensitivity= 
0.997, Specificity= 0.900, 

Accuracy= 0.9964,  

A limitation observed in the 
proposed method is its 
elevated computational 

expense across most 
datasets. 

W. Wen, et al. 
(2022) 

Deep Learning 
With Self-
Attention 

PROMISE The performance 

of cross-project defect 
prediction in terms of F1 
by 14.2%, 34.6%, 32.2% 
and 23.6%, respectively 

against four baseline 
(DBN-CP,TCA+, AST-

LSTM,DP-CNN) methods. 

The proposed model solely 
extracts semantic 

information at the level of 
source code files. 

C. Yu, et al. 
(2021) 

HOPE MORPH Accuracy=79%, AUC=0.5 Due to the inherent 
constraint of homomorphic 

encryption, only integers can 
be encrypted during the data 

encryption process 

L. Yang, et al. 
(2021) 

Hybrid 

Particle Swarm 
Optimization and 

Sparrow Search 
Algorithm 

PROMISE Accuracy=92% With an increasing number of 
iterations, the optimal, worst, 

and average values of y 
gradually decrease. 

 

 

 

 



       International Research Journal of Engineering and Technology (IRJET)     e-ISSN: 2395-0056 

                Volume: 11 Issue: 05 | May 2024              www.irjet.net                                                                        p-ISSN: 2395-0072 

  

© 2024, IRJET       |       Impact Factor value: 8.226       |       ISO 9001:2008 Certified Journal       |     Page 2240 
 

Conclusion 

Software defect along with an intrinsic element of 
software product, is also an important aspect of software 
quality. Software defects are an unavoidable co product 
of the developed software. In addition to this, the 
guarantee of software quality assurance is not so easy 
and requires a lot of time too. There are different ways to 
define defects, such as in terms of quality. However, the 
defects are generally defined in the form of deviations 
from specifications or expectations which may be the 
reason of failure in functioning. It is analyzed that major 
content is published in the conferences and in the latest 
trends journals are preferred. In future deep learning 

approach will be applied for the software defect 
prediction.  
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