
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 11 Issue: 05 | May 2024 www.irjet.net p-ISSN: 2395-0072

© 2024, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page 2235

Analysis of Various Software Defect Prediction Techniques

Pooja Gupta1, Komal Ahuja2

1M.Tech Student, Computer Science Engineering Department, GRIMT,Radaur(Yamunanagar), Haryana, India
2Assistant Professor, Computer Science Engineering Department, GRIMT,Radaur(Yamunanagar), Haryana, India

---***---
Abstract

Software defect along with an intrinsic element of
software product is also an important aspect of software
quality. Software defects are an unavoidable co product
of the developed software. In addition to this, the
guarantee of software quality assurance is not so easy
and requires a lot of time too. There are different ways to
define defects, such as in terms of quality. The defects
may be present in all products whether it is a small
program or large-scale software system. A number of
defects can be discovered without any complexity. The
various steps are applied for the software defect
prediction which includes pre-processing, feature
extraction and classification. The various techniques
which are proposed in the previous time for the software
defect prediction are reviewed and analysed in this
paper. The techniques are reviewed in terms of
technique description and their findings in terms of
various parameters

Keywords - Software defect, Prediction, Machine
learning, Pre-processing, Feature extraction,
Classification

1. Introduction

Because of the increasing complexity of today’s software
and enhance chances of failures, ensuring reliability has
become an important concern. Organisations such as
Google employ code review and unit testing to identify
problems in new code and increases reliability.
Meanwhile, testing each code unit is not practical and
human code reviews are labour- intensive [1]. With less
funding for software projects, it is fruitful to detect
potential issues immediately. As a result, software defect
prediction algorithms are commonly employed to
automatically identify possible mistakes, enabling
developers to make optimal consumption of their
resources. Software defect prediction includes, creating
classifiers that analyse data such as change history and
complexity of code to identify code segments with
potential flaws. This practice ensures code reviewers to
allocate their efforts with more strategy and receive
warnings about potentially buggy code regions based on
the prediction outcomes [2]. These code sections may
include alterations, files, or processes. In the typical fault
prediction process, there are two main stages: feature
extraction from source files and the creation of a

classifier using various machine learning techniques.
Previous research emphasises on enhancing the
precision of predictions has mainly involved manually
crafting discriminative features or combining
characteristics [3]. Halstead features based on operators
and operands, McCabe features based on dependencies,
and CK features for object-oriented programs are some
of the examples. However, traditional hand-crafted
features often overlook the intricate semantics and
clearly-defined syntax concealed in the Abstract Syntax
Trees (ASTs) of programs.

Prediction models, important to Software Defect
Prediction (SDP), are crucial in anticipating software
faults. Number of methods and algorithms have been
used to increase the correction of Software Defect
Prediction (SDP) models, till the fundamental stages of
SDP can be succinctly outlined. Primarily, collection of
data includes collecting both pure and defective code
samples from software repositories [4]. Next to this, a
dataset is constructed by extracting related qualities
from the compiled samples, with forthcoming steps
including dataset balancing if any imbalance is identified,
model training utilizing the prepared dataset, and the
upcoming predictions of problematic components within
new software datasets using the trained model.
Consequently, the performance of the SDP model is
evaluated. This innovative process allows for ongoing
refinement and improvement over time.

Figure 1: Software Defect Prediction Process

Collect clean &

defective code

samples

Extract features

Train SDP

model

balance dataset

(optional)

Evaluate the

performance of

SDP model

Predict defects

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 11 Issue: 05 | May 2024 www.irjet.net p-ISSN: 2395-0072

© 2024, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page 2236

As described in Figure 1, the first step of the process
involves the collection of both functional and faulty code
examples [5]. Software data, creating source codes,
commit messages, bug reports, and other artifacts exists
in different formats and is typically sourced from
repositories and archives. Next to this, the second step in
the Software Defect Prediction (SDP) process is feature
extraction. During this phase, various data sources such
as commit logs, messages, source codes, and software
artifacts are changed into metrics that serve as input for
model training. During feature extraction, it's important
to consider the nature of the input data which may
encompass McCabe metrics, CK metrics, convert
histories, assembly code, and source code, along with
representation of data [6]. Along with metric-based data,
ample of deep learning techniques presently provide
automated feature extraction capabilities and can handle
the data with high-dimension and more complexity. An
optional step sometime follows after this. Given that
defect datasets typically consist of a dramatically lowest
percentage of defective components as compare to fine
ones, this stage involves balancing of data. The
unbalanced structure of class can cause misleading
outcomes for different performance evaluation metrics
used in assessing Software Defect Prediction (SDP) [7],
therefore badly affect most SDP strategies. Numerous
methods like oversampling can be employed to minimize
this concern and increase the performance of SDP.

The fourth phase of the Software Defect Prediction (SDP)
process involves analysing the problematic areas within
the software. At this stage, mainly focus is on selecting
optimal Deep Learning (DL) algorithms and techniques,
which may encompass various topologies such as
Convolutional Neural Networks [8], and machine
learning categories like supervised or unsupervised
learning. In addition to this, during this step an
important consideration is determining the level of
granularity at which the sections of problems are to be
detected, which could range from module and file levels
to class [9], function, or even phrase levels. The
upcoming step entails predicting the faulty parts within
fresh (test) data by using the model trained in the
previous stage. Lastly, the prediction made in this step
acts as input for the final phase of the SDP process. The
final phase of the Software Defect Prediction (SDP)
process including the evaluation of created model.
Different alternatives, such as the area under the curve
and the F-measure, can be employed to increase the
performance of SDP model [10]. Then prediction models
are evaluated and compared them with other pertinent
studies by using one or more of these measures. In the
realm of software defect prediction, Machine learning
classifiers have garnered a lot of attention due to their
ability to predict the mistakes of software by analysing
code and features extraction from raw data sources.
Over the past few decades, ample of machine learning-
based methods have been developed specifically to

identify software issues [11]. One prominent machine
learning technique for tasks involving reduction of
features, detection, regression, and classification is the
support vector machine. Locate a hyperplane (or series
of hyperplanes for more classes) is main focus that splits
two classes. The plane is selected in a way by increasing
the distance from the two data clusters, that separates
the two classes of data points. Because it offers some
possibility that future data can be classified more
precisely, it is meaningful to increase this kind of
distance metric. Support vectors are the data points that
are nearest to the hyperplane [12]. The position of
hyperplane is adjusted in according to the support vector
positions to preserve the maximum distance between
the data points of both classes. A supervised learning
method called Random Forest defines the concept of
merging learning models to gain a superior performance
superior to that of a single model. Specifically, it
integrates several Decision Trees to produce a prediction
with more accuracy. In order to construct a lot of
decision trees from the dataset and merge them into a
final judgment, this approach called randomness [13].
However, the variables with maximum depth allows you
to set the tree's depth, and n_estimators enable us to
limit the count of decision trees in the tree. The ability to
calculate a significance score for every feature—which
gives us some insight into the features that are important
to get an accurate prediction—is one benefit of
employing random forest. The number of neighbours
such as k is the primary determining feature in k-nearest
neighbour. This classifier is used for both regression and
classification problems [14]. In both circumstances, the
output relies on whether k-NN is applied to the
regression or classification model, and the k closest
training examples are taken into consideration as input
[15]. The algorithm work on the presumption that the
new and present data is same. When a new case or set of
data is received, the algorithm places it in the category
that shares the lot of similarities with the existing
categories [16].

2. Literature Review

M. Ali, et.al (2024) suggested an intelligent ensemble
framework that integrated various classification
techniques to forecast software defects [17]. Their
approach involved a two-phase procedure designed for
detecting defective modules. Initially, the focus was on
utilizing four supervised machine learning (SML)
methods: Random Forest (RF), Support Vector Machine
(SVM), Naïve Bayes (NB), and Artificial Neural Network
(ANN). They employed an iterative parameter
optimization technique to enhance the accuracy of these
methods. Subsequently, the second phase aimed to
amalgamate the accuracy of each method into a voting
ensemble to predict defects in software effectively. This
framework significantly improved the accuracy and
reliability of software defect prediction. The proposed

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 11 Issue: 05 | May 2024 www.irjet.net p-ISSN: 2395-0072

© 2024, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page 2237

framework was evaluated using seven datasets sourced
from the NASA MDP repository. The experimental
outcomes demonstrated the superiority of their
approach over existing methods in predicting software
defects.

R. Haque, et.al (2024) introduced an innovative
technique called heterogeneous cross-project defect
prediction (HCDP), employing encoder networks and a
transfer learning (ENTL) model to anticipate software
defects [18]. The encoder networks (ENs) were
leveraged to extract significant features from both the
source and target datasets. Furthermore, negative
transfer in transfer learning (TL) was alleviated by
incorporating an augmented dataset containing pseudo-
labels and the source dataset. The model was trained on
a single dataset and evaluated on sixteen datasets
derived from four public projects. A comparative
analysis was conducted against traditional methods,
employing cost-sensitive learning (CL) to address
imbalanced class issues. Experimental results
demonstrated the robustness of the proposed method in
predicting software defects, outperforming traditional
methods across metrics such as PD, PF, F1-score, G-
mean, and AUC.

Y. Al-Smadi, et.al (2023) introduced an innovative
approach for predicting software defects by
implementing 11 machine learning (ML) techniques
across 12 diverse datasets [19]. They utilized four
diverse meta-heuristic algorithms: particle swarm
optimization (PSO), genetic algorithm (GA), harmony
algorithm (HA), and ant colony optimization (ACO) to
select features. Additionally, they applied the synthetic
minority oversampling technique (SMOTE) to address
imbalanced data issues. Moreover, they used the Shapley
additive explanation (SAE) framework to identify
decisive features. Experimental results indicated that
gradient boosting (GB), stochastic gradient boosting
(SGB), decision trees (DTs), and categorical boosting
(CB) algorithms performed exceptionally well, achieving
an accuracy and ROC-AUC of over 90%. Furthermore, the
superiority of the categorical boosting (CB) algorithm
was demonstrated against other methods for predicting
software defects.

A. Wang, et.al (2023) devised a Federal Prototype
Learning leveraging Prototype Averaging (FPLPA)
method and integrating federated learning (FL) with
prototype learning (PL) to forecast heterogeneous
defects in software [20]. They employed the one-sided
selection (OSS) algorithm to eliminate noise from local
training data and utilized the Chi-Squares Test algorithm
to select the optimal subset of features. Subsequently,
they introduced the Convolution Prototype Network
(CPN) model to create local prototypes, which exhibited
greater robustness against heterogeneous data
compared to convolutional neural networks (CNNs),

mitigating the impact of class imbalances in software
data. The prototype served as the communication
subject between clients and the server, with the local
prototype developed irreversibly to safeguard privacy in
the communication process. The final task involved
updating the presented model using the loss of local and
global prototypes as regularization. They evaluated the
developed method using the AEEEM, NASA, and Relink
datasets, with simulation outcomes demonstrating its
superiority over traditional methods for defect
prediction.

S. Kwon, et.al (2023) projected a function-level just-in-
time (JIT) software defect prediction (SDP) technique
aimed at addressing the challenge of predicting software
defects [21]. They prioritized limited testing resources
for defect-prone functions. Their approach relied on a
pre-trained method, specifically a transformer-based
deep learning (TDL) model trained on a large corpus of
code snippets to provide defect proneness for altered
functions at a commit level. They evaluated the
CodeBERT, GraphCodeBERT, and UniXCoder methods on
edge-cloud systems, with a primary focus on analyzing
their efficacy in this environment. Results indicated that
the UniXCoder method outperformed others in the
WPDP environment. Furthermore, the projected
technique demonstrated stability in predicting software
defects.

W. Wen, et.al (2022) introduced a Class Code Similarity-
based Cross-Project Software Defect Prediction (CCS-
CPDP) method for software defect prediction. Initially,
the focus was on converting the code set extracted from
the Abstract Syntax Tree (AST) into a vector set [22]. To
achieve this, they employed a Doc2Bow and TF-IDF
(DTI) method. The second step involved computing
similarity between the vector sets of target projects and
training projects. Finally, they utilized the principle of
the majority decision subordinate category in K-Nearest
Neighbor (KNN) to determine the number of occurrences
of the same class in the training project. Based on this,
the class instance was selected to refine the source
project, and predictions were made regarding software
defects. The developed method was evaluated against
traditional methods, and experimental results indicated
its effectiveness, offering higher recall and F1-score in
predicting software defects compared to other methods.

S. Kassaymeh, et.al (2022) developed a Salp Swarm
Algorithm (SSA) coupled with a backpropagation neural
network (BPNN) to predict software faults. Their
integrated method, SSA-BPNN, aimed to enhance
accuracy in defect prediction by optimizing optimal
metrics [23]. They applied various datasets to evaluate
the presented method across different parameters
including AUC, confusion matrix, sensitivity, specificity,
accuracy, and error rate, varying in size and complexity.
Simulation results demonstrated that the presented

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 11 Issue: 05 | May 2024 www.irjet.net p-ISSN: 2395-0072

© 2024, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page 2238

method outperformed conventional methods, achieving
higher accuracy in software defect prediction. Moreover,
this technique proved to be an effective tool in
addressing challenges within software engineering.

W. Wen, et.al (2022) developed a Cross-Project Defect
Prediction (CPDP) model named BSLDP to anticipate
software defects. They utilized a Bidirectional Long
Short-Term Memory (Bi-LSTM) algorithm combined
with a self-attention (SA) method to extract semantic
information from source code files [24]. The ALC model
was employed to extract source code semantics based on
source code files, and a classifier, termed BSL, was
generated using the semantic information from both the
source and target projects to create a predictive
framework. To enhance the model, they adopted an
equal meshing method to extract semantic information
from small code fragments by splitting the numerical
token vector. They evaluated the designed model using
the PROMISE dataset and found that it effectively
predicted defects, improving the F1 score by up to
14.2%, 34.6%, 32.2%, and 23.6% compared to four other
techniques, respectively.

C. Yu, et.al (2021) highlighted the use of homomorphic
encryption (HE) for defect prediction, introducing a
novel technique called HOPE. They presented an
algorithm approximation (AA) method to approximate
the sigmoid function and selected the Paillier
homomorphic encryption (PHE) algorithm to execute

logistical regression (LR) [25]. Real-time projects served
as experimental subjects for generating the MORPH
dataset to evaluate the formulated technique.
Subsequently, three control groups were deployed to
simulate three different scenarios based on whether the
client transmitted encrypted data to the server and
whether the formulated technique was employed on the
server. The results indicated that when the original LR
was deployed on the server to generate the technique
using encrypted data, the trained model achieved similar
performance, thus preserving data privacy. Moreover,
the formulated technique demonstrated greater
efficiency in terms of minimal computing cost.

L. Yang, et.al (2021) conducted a study on a hybrid
approach combining particle swarm optimization (PSO)
and Salp Swarm Algorithm (SSA), termed SSA-PSO,
aimed at improving convergence prior to individual
updates in SSA [26]. Additionally, they introduced a
novel maximum likelihood estimation (MLE)-based
fitness function (FF) of metrics, used to initialize metrics.
They evaluated this approach using five sets of actual
datasets, comparing it against individual techniques.
Experimental results demonstrated the stability of the
SSA-PSO approach over others, showing higher
convergence speed and accuracy. Moreover, the novel FF
helped address issues related to slow convergence speed
and lower solution accuracy. The investigated approach
proved to be more effective in estimating and predicting
software defects.

2.1 Comparison Table

Author & Year Technique used Dataset Findings Limitations

M. Ali, et al.
(2024)

Random Forest,
Support Vector
Machine, Naïve

Bayes, and
Artificial Neural
Network, voting

ensemble

Seven datasets
from datasets

from the NASA
MDP repository,

namely CM1, JM1,
MC2, MW1, PC1,

PC3, and PC4

Accuracy= 87.14,
Misclassification

Rate= 12.86, False
Positive

Ratio= 0.003, False
Negative Ratio= 0.905

This study does not explore
sophisticated methods for
selecting features to boost

the reliability of the proposed
model in software defect

prediction.

R. Haque, et al.
(2024)

Encoder Networks
and Transfer

Learning

Sixteen datasets
from AEEM, NASA,

Promise and JIRA.

PD=0.711, PF=0.0911,
F1-score=0.475, G-

mean=0.770, AUC=0.663

This evaluates the presented
model using 16 datasets from

four publicly available
software defect projects,

leaving benchmark datasets
like Relink and SOFTLAB for

future investigation, while
considering methods like
SMOTE to address class

imbalance more accurately in
upcoming research.

Y. Al-Smadi, et
al. (2023)

Machine learning
and metaheuristic

algorithms

Twelve datasets
from NASA

Accuracy= 0.931

ROC-AUC=above 90%

This work does not compare
meta-heuristic algorithms

with filter methods for

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 11 Issue: 05 | May 2024 www.irjet.net p-ISSN: 2395-0072

© 2024, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page 2239

feature selection or evaluate
the performance of SMOTE
against other resampling

techniques.

A. Wang, et al.
(2023)

Federated
Prototype
Learning

AEEEM, NASA and
Relink

AUC= 0.8098, G-mean=
0.5978

Numerous metric variations
significantly increase the

complexity of constructing
software defect prediction

models.

S. Kwon, et al.
(2023)

Function-level
justin-time (JIT)

SDP) model

CodeSearch AUC= 0.548, F-measure=
0.667

This work creates SDP
models through refining pre-

trained models, with the
exception of batch size and
maximum sequence length,

adjusted due to memory
constraints.

W. Wen, et al.
(2022)

CCS-CPDP Promise Recall increases by
41.8% and f1-score

increases by 15.9% than
baseline models

The proposed approach
utilizes limited project source
code datasets for evaluation
and does not conduct data

validation tests from various
aspects to verify the

performance of the proposed
method.

S. Kassaymeh,
et al. (2022)

Salp swarm
optimizer (SSA),

SSA-BPNN

Ant-1.7, Ar, CM,
Jedit, KC, PC, MC

AUC= 0.79, Sensitivity=
0.997, Specificity= 0.900,

Accuracy= 0.9964,

A limitation observed in the
proposed method is its
elevated computational

expense across most
datasets.

W. Wen, et al.
(2022)

Deep Learning
With Self-
Attention

PROMISE The performance

of cross-project defect
prediction in terms of F1
by 14.2%, 34.6%, 32.2%
and 23.6%, respectively

against four baseline
(DBN-CP,TCA+, AST-

LSTM,DP-CNN) methods.

The proposed model solely
extracts semantic

information at the level of
source code files.

C. Yu, et al.
(2021)

HOPE MORPH Accuracy=79%, AUC=0.5 Due to the inherent
constraint of homomorphic

encryption, only integers can
be encrypted during the data

encryption process

L. Yang, et al.
(2021)

Hybrid

Particle Swarm
Optimization and

Sparrow Search
Algorithm

PROMISE Accuracy=92% With an increasing number of
iterations, the optimal, worst,

and average values of y
gradually decrease.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 11 Issue: 05 | May 2024 www.irjet.net p-ISSN: 2395-0072

© 2024, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page 2240

Conclusion

Software defect along with an intrinsic element of
software product, is also an important aspect of software
quality. Software defects are an unavoidable co product
of the developed software. In addition to this, the
guarantee of software quality assurance is not so easy
and requires a lot of time too. There are different ways to
define defects, such as in terms of quality. However, the
defects are generally defined in the form of deviations
from specifications or expectations which may be the
reason of failure in functioning. It is analyzed that major
content is published in the conferences and in the latest
trends journals are preferred. In future deep learning

approach will be applied for the software defect
prediction.

References

[1] R. R. Panda and N. K. Nagwani, ‘‘Classification and
intuitionistic fuzzy set-based software bug triaging
techniques,’’ J. King Saud Univ., Comput. Inf. Sci., vol. 34,
no. 8, pp. 6303–6323, Sep. 2022.

[2] P. Oliveira, R. M. C. Andrade, I. Barreto, T. P. Nogueira,
and L. M. Bueno, ‘‘Issue auto-assignment in software
projects with machine learning techniques,’’ in Proc.
IEEE/ACM 8th Int. Workshop Softw. Eng. Res. Ind. Pract.
(SER IP), Madrid, Spain, Jun. 2021, pp. 65–72, doi:
10.1109/SER-IP52554.2021.00018.

[3] M. Panda and A. T. Azar, ‘‘Hybrid multi-objective Grey
Wolf search optimizer and machine learning approach
for software bug prediction,’’ in Handbook of Research
on Modeling, Analysis, and Control of Complex Systems.
2020, doi: 10.4018/978-1-7998-5788-4

[4] Z. J. Szamosvölgyi, E. T. Váradi, Z. Tóth, J. Jász, and R.
Ferenc, ‘‘Assessing ensemble learning techniques in bug
prediction,’’ in Computational Science and Its
Applications—ICCSA 2021 (Lecture Notes in Computer
Science), vol. 12955. Springer, 2021,

[5] S. F. A. Zaidi, H. Woo, and C.-G. Lee, ‘‘A graph
convolution networkbased bug triage system to learn
heterogeneous graph representation of bug reports,’’
IEEE Access, vol. 10, pp. 20677–20689, 2022, doi:
10.1109/ACCESS.2022.3153075.

[6] A. Goyal and N. Sardana, ‘‘An empirical study of non-
reproducible bugs,’’ Int. J. Syst. Assurance Eng. Manage.,
vol. 10, no. 5, pp. 1186–1220, Oct. 2019.

[7] D. Zhan, X. Yu, H. Zhang and L. Ye, "ErrHunter:
Detecting Error-Handling Bugs in the Linux Kernel
Through Systematic Static Analysis," in IEEE
Transactions on Software Engineering, vol. 49, no. 2, pp.
684-698, 1 Feb. 2023

[8] J. Wang, Y. Huang, S. Wang and Q. Wang, "Find Bugs in
Static Bug Finders," 2022 IEEE/ACM 30th International
Conference on Program Comprehension (ICPC),
Pittsburgh, PA, USA, 2022, pp. 516-527

[9] J. Lu, F. Li, C. Liu, L. Li, X. Feng and J. Xue, "CloudRaid:
Detecting Distributed Concurrency Bugs via Log Mining
and Enhancement," in IEEE Transactions on Software
Engineering, vol. 48, no. 2, pp. 662-677, 1 Feb. 2022

[10] K. Foss, I. Couckuyt, A. Baruta and C. Mossoux,
"Automated Software Defect Detection and Identification
in Vehicular Embedded Systems," in IEEE Transactions
on Intelligent Transportation Systems, vol. 23, no. 7, pp.
6963-6973, July 2022

[11] K. Tameswar, G. Suddul and K. Dookhitram, “A
hybrid deep learning approach with genetic and coral
reefs metaheuristics for enhanced defect detection in
software”, International Journal of Information
Management Data Insights, vol. 2, no. 2, pp. 12-20, 19
August 2022

 [12] A. Perera, "Using Defect Prediction to Improve the
Bug Detection Capability of Search-Based Software
Testing," 2020 35th IEEE/ACM International Conference
on Automated Software Engineering (ASE), Melbourne,
VIC, Australia, 2020, pp. 1170-1174

[13] R. Amankwah, J. Chen, A. A. Amponsah, P. K. Kudjo,
V. Ocran and C. O. Anang, "Fast Bug Detection Algorithm
for Identifying Potential Vulnerabilities in Juliet Test
Cases," 2020 IEEE 8th International Conference on Smart
City and Informatization (iSCI), Guangzhou, China, 2020,
pp. 89-94

[14] D. Zhang, P. Qi and Y. Zhang, "GoDetector: Detecting
Concurrent Bug in Go," in IEEE Access, vol. 9, pp.
136302-136312, 2021

[15] Y. Li, "Improving Bug Detection and Fixing via Code
Representation Learning," 2020 IEEE/ACM 42nd
International Conference on Software Engineering:
Companion Proceedings (ICSE-Companion), Seoul, Korea
(South), 2020, pp. 137-139

[16] J. Lee, J. Choi, D. Ryu and S. Kim, "Holistic Parameter
Optimization for Software Defect Prediction," in IEEE
Access, vol. 10, pp. 106781-106797, 2022

[17] M. Ali et al., "Software Defect Prediction Using an
Intelligent Ensemble-Based Model," in IEEE Access, vol.
13, no. 4, pp. 127-134, 2024, doi:
10.1109/ACCESS.2024.3358201.

[18] R. Haque, A. Ali, S. McClean, I. Cleland and J. Noppen,
"Heterogeneous Cross-Project Defect Prediction Using
Encoder Networks and Transfer Learning," in IEEE

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 11 Issue: 05 | May 2024 www.irjet.net p-ISSN: 2395-0072

© 2024, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page 2241

Access, vol. 12, pp. 409-419, 2024, doi:
10.1109/ACCESS.2023.3343329.

[19] Y. Al-Smadi, M. Eshtay and A. A. Abd El-Aziz,
“Reliable prediction of software defects using Shapley
interpretable machine learning models”, Egyptian
Informatics Journal, vol. 24, no. 3, pp. 386-394, 31 July
2023, doi: 10.1016/j.eij.2023.05.011.

[20] A. Wang, L. Yang, H. Wu and Y. Iwahori,
"Heterogeneous Defect Prediction Based on Federated
Prototype Learning," in IEEE Access, vol. 11, pp. 98618-
98632, 2023, doi: 10.1109/ACCESS.2023.3313001.

[21] S. Kwon, S. Lee, D. Ryu and J. Baik, "Pre-Trained
Model-Based Software Defect Prediction for Edge-Cloud
Systems," in Journal of Web Engineering, vol. 22, no. 2,
pp. 255-278, March 2023, doi: 10.13052/jwe1540-
9589.2223.

[22] W. Wen et al., "Cross-Project Software Defect
Prediction Based on Class Code Similarity," in IEEE
Access, vol. 10, pp. 105485-105495, 2022, doi:
10.1109/ACCESS.2022.3211401.

[23] S. Kassaymeh, S. Abdullah and M. Alweshah, “Salp
swarm optimizer for modeling the software fault
prediction problem”, Journal of King Saud University -
Computer and Information Sciences, 11 February 2022,
vol. 34, no. 6, pp. 3365-3378, June 2022, doi:
10.1016/j.jksuci.2021.01.015.

[24] W. Wen et al., "A Cross-Project Defect Prediction
Model Based on Deep Learning with Self-Attention," in
IEEE Access, vol. 10, pp. 110385-110401, 2022, doi:
10.1109/ACCESS.2022.3214536.

[25] C. Yu, Z. Ding and X. Chen, "HOPE: Software Defect
Prediction Model Construction Method via
Homomorphic Encryption," in IEEE Access, vol. 9, pp.
69405-69417, 2021, doi:
10.1109/ACCESS.2021.3078265.

[26] L. Yang, Z. Li, D. Wang, H. Miao and Z. Wang,
"Software Defects Prediction Based on Hybrid Particle
Swarm Optimization and Sparrow Search Algorithm," in
IEEE Access, vol. 9, pp. 60865-60879, 2021, doi:
10.1109/ACCESS.2021.3072993.

