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1. Abstract 
 
This research presents a machine learning 
methodology for accurately forecasting the 
compressive strength of recycled concrete aggregate 
(RCA) material. Data from curated datasheet on RCA 
concrete samples, including mix proportions, curing 
conditions, and compressive strength test results, were 
used to train and test various machine learning models. 
The random forest model outperformed others, 
achieving an R-squared value of  0.798. This machine 
learning technique offers a reliable way of predicting 
RCA concrete's compressive strength, enabling 
engineers to optimize mix designs and improve the 
quality and longevity of recycled concrete 
constructions, promoting sustainable construction 
practices. 
 

2. Introduction 
 

2.1 Machine Learning Introduction 
 
Machine learning is a part of artificial intelligence that 
signifies a fundamental change in the way computers 
may independently acquire knowledge and adjust their 
behavior based on input. Machine learning algorithms 
differ from traditional programming in that they 
acquire knowledge from data rather than relying on 
explicit instructions. This allows them to analyze 
patterns and correlations and make predictions, 
classifications, and judgments autonomously, without 
the need for human interaction. However, the 
nonlinear behavior of concrete regression models 
created using this approach may not adequately reflect 
its underlying nature. The fundamental principle of 
machine learning is statistical learning, in which 
computers utilize mathematical models to identify 
patterns and derive insights from datasets of different 
sizes and levels of complexity. Machine learning is well-
suited for jobs that include complicated rules that 
cannot be directly coded, or for activities where 
patterns are concealed within large volumes of data. 
Machine learning is widely employed in nearly all 
industries and respects of contemporary life. Machine 

learning algorithms power a diverse range of 
applications, including customized suggestions on 
streaming platforms and predictive maintenance in 
manufacturing. Machine learning is employed in 
banking to detect fraud and facilitate algorithmic 
trading. In healthcare, it assists in diagnosing diseases 
and developing individualized treatment strategies. 
Marketing efforts utilize machine learning to segment 
customers and deliver tailored advertisements, while 
autonomous cars depend on it for navigation and 
obstacle detection. 

 
2.2 Application of Machine Learning in Different 
Fields 
 
Machine learning is now essential in several fields 
because it can extract valuable information and 
patterns from data, resulting in improved decision-
making and efficiency. Machine learning algorithms are 
widely used in finance for risk assessment, algorithmic 
trading, and fraud detection. Through the analysis of 
past data, these algorithms can detect suspicious 
patterns that are symptomatic of deceiving conduct. As 
a result, they play a crucial role in protecting financial 
institutions and their clients. Furthermore, machine 
learning facilitates tailored financial suggestions 
grounded on human preferences and risk profiles, 
optimizing investment approaches and enhancing 
consumer contentment. Machine learning is essential 
in healthcare for illness detection, optimizing therapy, 
and analyzing medical imaging. Medical professionals 
utilize machine learning algorithms to analyze intricate 
medical pictures, identify abnormalities, and forecast 
the advancement of diseases. 

 
2.3 Applications in the Civil Industry 

 
Modern modeling tools in civil engineering include 
artificial intelligence and machine learning. 
Experimentation validates the output models of these 
approaches, which model responses using input 
parameters. Machine learning algorithms are used in 
construction to estimate concrete strength. [1-5], 
Machine learning is crucial in the civil sector for 
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enhancing infrastructure management and urban 
development. Researchers in civil engineering are 
interested in using machine learning and regression 
models to forecast structural performance, health 
monitoring, and material attributes. [11-17] 
 
For example, machine learning algorithms may be used 
to create predictive maintenance models that allow for 
proactive maintenance of bridges, highways, and other 
essential infrastructure. This helps to minimize 
downtime and ensure the safety of the public. Urban 
planners utilize machine learning methodologies to 
examine demographic data, transportation patterns, 
and environmental concerns to create more efficient 
and sustainable cities. Machine learning enables the 
timely monitoring and analysis of environmental data, 
assisting in the control of pollution levels, water 
resources, and natural catastrophes. In addition, 
construction organizations employ machine learning to 
improve cost prediction, project scheduling, and 
quality control, therefore optimizing operations and 
improving project results. Integrating machine learning 
in the civil industry enhances both efficiency and 
effectiveness, while also promoting innovation and 
sustainability. To obtain the appropriate result, 
supervised machine learning techniques need a varied 
range of input variables. [6-8] 
 
2.4 ANN 

 
Artificial Neural Networks (ANNs) are computational 
models inspired by the structure and function of the 
human brain. As a result, it possesses many qualities of 
biological brain systems, including adaptability and 
self-study, computational parallelism and storage 
distribution, nonlinear mapping, and fault 
tolerance.[21] ANN comprises an input layer, one or 
more hidden layers, and an output layer.[24] ANNs are 
used in several fields, including machine learning and 
pattern recognition, to solve. The ICA-XGBoost model 
may provide more accurate results than other ANN 
approaches, such as ICA-ANN, ICA- SVR, and ICA-
ANFIS.Han et al suggested an ensemble ML 
model.(Hanetal.,2020) Artificial Neural Networks 
(ANNs) are essential in the field of machine learning, 
drawing inspiration from the intricate functions of the 
human brain. These networks consist of linked nodes, 
or neurons, arranged in layers: an input layer, one or 
more hidden layers, and an output layer. Artificial 
neural networks (ANNs) may acquire intricate patterns 
and correlations in data by employing forward 
propagation. During training, the connections between 
neurons are adjusted to reduce error. The versatility of 
ANNs allows them to perform very well in a variety of 
tasks, including picture and speech recognition, time 
series forecasting, and sentiment analysis. Due to their 
capacity to autonomously extract characteristics from 

unprocessed input, they excel at managing 
unorganized data formats such as pictures, audio, and 
text. 

 
2.4.1 Research done on ANN 

 
Research on Artificial Neural Networks (ANNs) has 
been extensive in recent years, to advance their 
performance, scalability, and interpretability. Various 
innovative designs have been suggested, encompassing 
convolutional neural networks (CNNs) for handling 
images and recurrent neural networks (RNNs) for 
analyzing sequential data. These architectures are 
designed specifically for certain tasks, utilizing the 
hierarchical structure of deep learning models to 
extract complex characteristics from raw data. 
Moreover, the development of training techniques, 
such as batch normalization and adaptive learning rate 
approaches, has resulted in more reliable and effective 
training procedures, facilitating the formation of neural 
networks that are deeper and more intricate. 
Regularisation techniques, such as dropout and L1/L2 
regularisation, have been thoroughly researched to 
mitigate overfitting and enhance the overall 
performance of generalisation. These combined efforts 
help to improve the precision and effectiveness of 
artificial neural networks (ANNs) in several fields. 
 
In addition, research efforts focus on understanding the 
opaque nature of deep learning models, to clarify their 
decision-making processes and the way they represent 
features. Methods such as activation maximization, 
layer-wise relevance propagation, and saliency maps 
have been created to represent and understand the 
acquired characteristics in neural networks visually. 
Researchers may acquire insights into the fundamental 
mechanics of deep learning by identifying the 
characteristics that have the most impact on model 
predictions and how they are converted between 
layers. This information helps in model debugging, 
validation, and refining. 
 
2.4.2 Industry Applications of ANN 
 
ANNs are based on the biological neural networks 
found in animal brains, enabling the development of 
advanced algorithms capable of learning from large 
datasets. The research in this domain has been extensive 
and multi-faceted, focusing on both the development of 
new neural network architectures and the 
improvement of existing ones. 
 
One area of significant advancement is deep learning, 
where deep neural networks, which are Artificial 
neural networks (ANNs) with multiple hidden layers 
have been utilized to achieve cutting- edge performance 
in tasks such as image and speech recognition, natural 
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language processing, and autonomous driving. 
 
Researchers have also explored regularization methods 
to prevent overfitting, ensuring that ANNs generalize 
well to new, unseen data. The experimental database 
was randomly divided into three subgroups based on 
earlier study categorization: training, validation, and 
testing.[22] make decisions by interacting with their 
environment. As computational power increases and 
datasets grow, ANNs remain at the forefront of AI 
research, continuing to push the boundaries of what 
machines can learn and achieve artificial neural 
networks (ANNs) have been widely utilized across 
various fields in machine learning to solve complex 
problems. 

 
Here are a few examples of their use: 
 
Image Recognition and Computer Vision: 
Convolutional Neural Networks (CNNs), a class of deep 
neural networks, have been particularly successful in 
image recognition tasks. A prominent example is the 
AlexNet architecture, which significantly outperformed 
traditional algorithms in the ImageNet Large Scale 
Visual Recognition Challenge (ILSVRC) in 2012. 
 
Natural Language Processing (NLP): ANNs have 
transformed NLP with models like Long Short-Term 
Memory (LSTM) networks, which are capable of 
understanding the context and dependencies in text. 
 
Speech Recognition: Deep Neural Networks (DNNs) 
have improved the accuracy of speech recognition 
systems. 
 
Reinforcement Learning: ANNs have also been 
pivotal in the field of reinforcement learning, 
particularly with the development of deep 
reinforcement learning strategies that combine deep 
neural networks with reinforcement learning 
principles. 
 
Medical Diagnosis: ANNs have been applied in the 
medical field, particularly for diagnostic purposes. One 
example is the use of neural networks in the diagnosis 
of diabetic retinopathy, which is a condition diagnosed 
by analyzing images of the retina. 
 
2.5 Random Forest 
 
Ho invented and introduced this method in 1995, 
presenting an algorithm for random decision 
forests.[19] The Random Forest method is highly 
adaptable and resilient, making it well-known for its 
effectiveness in both classification and regression 
applications. Using the random split choice approach, 
Random Forest is deployed by bagging decision 

trees.[9] Each tree in a Random Forest is trained on a 
random subset of the data and features. This technique 
reduces the risk of overfitting and captures complex 
nonlinear interactions in the data by utilizing 
bootstrapping and feature randomization. The inherent 
robustness and endurance of Random Forest to noisy 
data contribute to its popularity in several sectors, 
including finance, healthcare, and ecology. The random 
forest model was utilized by Shaqadan to predict the 
splitting-tensile strength of concrete.[23] Moreover, 
research efforts focused on Random Forest have 
explored ways to improve its flexibility and 
comprehensibility.[10] Additionally, there is a focus on 
creating ensemble approaches that merge Random 
Forest with other algorithms, such as gradient boosting 
and stacking, to enhance forecast accuracy even 
further. The bagging method is an ensemble training 
method with two steps:(a) Bootstrap: the original 
dataset is randomly resampled to generate identically 
distributed and separate datasets; (b) Aggregation: the 
generated datasets are used to train the base 
predictors independently.   Finally, the predictions of 
each tree are averaged using an aggregation approach, 
and the result is regarded as the target output.[20] 

 
2.5.1 Research done on Random Forest 
 
Extensive research has been conducted on Random 
Forest, investigating its capacity to adapt to different 
domains and striving to enhance its performance 
through various methods. Research has examined the 
process of optimizing hyperparameters, including the 
number of trees, tree depth, and feature selection 
criteria, to enhance prediction accuracy and 
generalization. Research has also focused on ensemble 
approaches, specifically on integrating Random Forest 
with other algorithms like gradient boosting and 
bagging. The aim is to develop prediction models that 
are more reliable and accurate. Ensemble techniques 
utilize a variety of base learners to reduce biases 
and mistakes, leading to enhanced overall 
performance. Moreover, research efforts focus on 
exploring interpretability methods for Random Forest 
models, to gain an understanding of the decision-
making process and promote confidence in the 
predictions made by the model. 
 
2.5.2 Industry Applications of Random Forest 
 
Research on Random Forests (RF) in machine learning 
has been extensive, focusing on their robustness, 
versatility, and ease of use. Random Forests are an 
ensemble learning technique, known for their ability to 
operate both classification and regression tasks with 
high accuracy. They work by constructing a multitude 
of decision trees during training time and outputting 
the class that is the mode of the classes (classification) 
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or mean prediction (regression) of the individual trees. 
 
One of the key areas of research in Random Forests has 
been their application in feature selection and 
dimensionality reduction. This is particularly useful in 
bioinformatics and genomics, where RF has been used 
to identify biomarkers and genetic variants associated 
with diseases. 
 
Another significant area of investigation has been the 
improvement of the Random Forest algorithm's 
efficiency and scalability. Previous research has shown 
that the random forest model outperformed other 
models in forecasting various properties of different 
materials, with improved R-squared values and lower 
error rates.[24,25,26] Techniques like tree pruning, 
feature bagging, and the use of approximate splitting 
criteria have been explored to enhance performance 
without sacrificing accuracy. Random Forests (RF) have 
been utilized across a wide range of machine-learning 
applications due to their robustness and accuracy. 
 
Here are a few examples of their use: 
 
Finance: In the financial sector, Random Forests have 
been employed to assess credit risk by classifying loan 
applicants into different risk categories.  
 
Ecology: Ecologists have used Random Forests for 
modeling species distributions and understanding the 
impacts of climate change on biodiversity. 

 

3. Methodology 
 

3.1 ANN Methodology 
 

Artificial Neural Networks (ANNs) are a powerful tool 
in machine learning for modeling intricate 
relationships between inputs and outputs. For 
example, they can be used to predict the strength of 
recycled coarse aggregate concrete. MATLAB, a 
numerical computing environment, provides a range of 
tools and functions to develop, train, and simulate 
ANNs. Below is a detailed methodology for using ANN 
in MATLAB to predict the compressive strength of 
recycled coarse aggregate concrete. 
 

3.1.1. Problem Definition: 
Defining the problem you are trying to solve, in this case, 
predicting the strength of recycled coarse aggregate 
concrete based on certain input features such as 
aggregate size, water-cement ratio, and others. 

 

3.1.2. Data Collection: 
Gather data that includes the input parameters and 
corresponding strength measurements of concrete 
samples with recycled coarse aggregates. Ensure you 

have a sufficient amount of data to train and validate 
the ANN. 

 

3.1.3. Data Preprocessing: 
Cleaning: Remove any outliers or errors from the 
dataset. 
Normalization involves scaling input and output data to 
a consistent range, such as [0,1] or [-1,1], to enhance 
ANN performance. Division includes splitting the data 
into training, validation, and testing sets, typically 
using a 70-15-15 ratio. 
 

3.1.4. Selection of ANN Architecture: 
Choose the type of artificial neural network (ANN) (e.g., 
feedforward, recurrent) and specify the number of 
layers and neurons in each layer. For regression tasks 
such as strength prediction, a feedforward network 
with one or two hidden layers is often adequate. 

          

 
            
                   Fig.1 ANN Methodology Flowchart   
 

3.1.5. Implementation in MATLAB: 
Use MATLAB's Neural Network Toolbox to create the 
ANN model. 
 
Define the architecture using functions like feed 
forwardnet or fitnet for a fitting neural network. 
 
Customize the ANN configuration by setting transfer 
functions (e.g., tansig or relu) for  hidden layers and 
using purelin for the output layer. Choose a training 
function such as trainlm (Levenberg-Marquardt) for 
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faster convergence. 
 

3.1.6. Training the ANN: 
Assign the preprocessed data to the network. Configure 
the training options, including the maximum 
number of epochs, the goal for the performance 
function, the learning rate, and others using train 
options. Train the ANN using the train function and 
monitor the performance on the validation set to 
prevent overfitting. 
 

3.1.7. Model Evaluation: 
After training, simulate the ANN with the testing data 
set using the sim function. 
 
Evaluate the model performance by calculating metrics 
such as Mean Squared Error (MSE), Root Mean Squared 
Error (RMSE), and the coefficient of determination 
(R²). 
 

3.1.8. Model Optimization: 
If necessary, adjust the ANN architecture or training 
parameters based on the evaluation results. Retrain the 
ANN and evaluate its performance until satisfactory 
results are obtained. 
 

3.1.9. Deployment: 
Once the optimized ANN can predict the strength of 
recycled coarse aggregate concrete for new data, the 
trained ANN should be deployed in a suitable format for 
use in applications or further research. 

 

3.1.10. Documentation: 
Record all the steps, configurations, and results 
throughout the process for reproducibility and further 
analysis. 

      
3.2 Random Forest Methodology 

 
Random Forest is an ensemble learning method that 
works by creating multiple decision trees during 
training. It then outputs the average prediction of the 
individual trees for regression tasks or the mode of the 
classes for classification tasks. To predict the 
strength of recycled Coarse aggregate concrete using 
Random Forest with different numbers of trees (25, 50, 
75, 100) in MATLAB, you can follow this methodology: 

 
3.2.1. Problem Definition: 
Clearly define the objective, which is to predict the 
compressive strength of recycled coarse aggregate 
concrete based on various input features such as the 
proportion of materials, curing time, and 
environmental conditions. 

 
3.2.2. Data Collection: 
Gather a comprehensive dataset that includes the input 

features and the corresponding strength 
measurements of concrete samples. 

 
3.2.3. Data Preprocessing: 
Cleaning: Remove any noise or irrelevant data from 
the dataset. 
 
 
Feature Selection: Identify and select the most 
relevant features contributing to the strength of the 
concrete. 
 
Normalization or Standardization (optional): 
Depending on the dataset, you may normalize or 
standardize the features to improve model 
performance. 
 
Splitting: Divide the dataset into training and testing 
subsets, commonly using a ratio like 70-30 or 80-20. 
 
3.2.4. Implementation in MATLAB: 
Utilize MATLAB's Statistics and Machine Learning 
Toolbox, which includes functions for creating Random 
Forest models. 
Use the TreeBagger function to create Random Forest 
models with a specified number of trees (25, 50, 75, 
100). 
 
3.2.5. Model Training: 
For each specified number of trees, train a Random 
Forest model using the training dataset. 
Set the Method parameter to 'regression' since the task 
is to predict a continuous variable. 
Optionally, set other parameters such as MinLeafSize 
or NumPredictorsToSample to tune the individual 
trees. 
 
3.2.6. Model Evaluation: 
Use the trained models to make predictions on the 
testing subset and assess their performance using 
metrics like Mean Squared Error (MSE) or Root Mean 
Squared Error (RMSE). 

 
3.2.7. Model Comparison: 
Compare the performance metrics of different models 
to determine the impact of the number of trees on 
prediction accuracy and identify the model that offers 
the best balance between accuracy and computational 
efficiency. 
 
3.2.8. Model Optimization: 
Based on the comparison, fine-tune the Random Forest 
parameters or select the best-performing number of 
trees for the final model. 
If necessary, perform additional optimization 
techniques such as hyperparameter tuning using cross-
validation. 
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3.2.9. Deployment: 
Deploy the optimized Random Forest model for making 
predictions on new concrete data. 
Ensure that any new data for prediction is 
preprocessed in the same way as the training data. 
 
3.2.10. Documentation: 
Document the entire process, including the choice of 
parameters, model performance evaluations, and any 
insights gained from the analysis. 
 

 
      

Fig.2 Random Forest Methodology Flowchart 
 

4. RESULTS AND DISCUSSION 
 

4.1 ANN 
4.1.1 Model Performance 1 
 

 

 
 
                    Fig. 3 ANN Model 1 Performance  
 
Training (R=0.77372): The high R-squared value (closer 
to 1) indicates a strong positive correlation between the 
predicted and actual values in the training data. This 

suggests the model learned the training data patterns 
very well. 
 

Validation (R=0.53094): The moderate R-squared 
value signifies a somewhat positive correlation but not 
as strong as training. This implies the model performs 
decently on unseen validation data, but there's 
potential for improvement to generalize better. 
 
Test (R=0.81192): The strong R-squared value shows a 
prominent positive correlation, indicating the model 
effectively predicted the test data. This is a positive sign 
for the model's generalization ability. 
 
Overall (R=0.75483): The overall R-squared value 
indicates a strong model performance with a positive 
correlation between predicted and actual values, 
implying a reliable predictive capacity based on input 
data. 

 
4.1.2 Model Performance 2 
Training (R=0.75123): The R-squared value indicates a 
moderate-to-strong positive correlation between the 
predicted and actual compressive strength values in 
the training data. This suggests that the model learned 
the patterns from the training data reasonably well. 
 
Validation (R=0.47488): The R-squared value for 
validation is significantly lower than the R-squared 
value for training, suggesting a weaker correlation 
between predicted and actual values in the validation 
data. This indicates that the model may be overfitting 
to the training data and might not perform well with 
new data. 
Test (R=0.78401): The test R-squared value shows a 
strong positive correlation, which is a positive sign. 
This implies the model performed well on unseen test 
data, suggesting some degree of generalizability. 
 
Overall (R=0.73177): The overall R-squared value is 
moderate, reflecting a positive correlation between 
predicted and actual values. However, the significant 
difference between the training and validation R-
squared values is a concern. 
 
Interpretation: The model seems to have learned the 
training data moderately well, but it might be 
overfitting as 
 
 
 
 
 
 
 
 
                  

          International Research Journal of Engineering and Technology (IRJET)     e-ISSN: 2395-0056 

    Volume: 11 Issue: 05 | May 2024                              www.irjet.net                                                       p-ISSN: 2395-0072

 

© 2024, IRJET       |       Impact Factor value: 8.226       |       ISO 9001:2008 Certified Journal       |     Page   2346



  
 

 
Fig. 4 ANN Model 2 Performance 

 
4.1.3 Model Performance 3 
 

 

               Fig. 5 ANN Model 3 Performance  
 
Training (R=0.56102): The R-squared value indicates a 
moderate positive correlation between the training 
data's predicted and actual compressive strength 
values. This suggests the model captured some of the 
underlying relationships within the training data. 
 
Validation (R=0.51008): The R-squared value for 
validation is slightly lower than the R-squared value for 
training, indicating a positive correlation that is not as 
strong. This could suggest overfitting, where the model 
performs well on training data but may not generalize 
to unseen data. 

 
Test (R=0.26849): The R-squared value for the test is 
alarmingly low, indicating a weak positive correlation 
between predicted and actual values in the test data. 
This implies that the model is not effectively 
generalizing to unseen data. 
 

Overall Performance (R=0.53253): The overall R-
squared value is moderate, but the significant 
difference between the training and test R-squared 
values is a major concern. 
 
Possible Improvements: 
Hyperparameter tuning: Experiment with adjusting 
hyperparameters like learning rate, number of 
neurons, or activation functions. This can help the 
model learn more effectively and reduce overfitting. 

 
4.1.4 Model Performance 4 
 

 
                  

Fig. 6 ANN Model 4 Performance 
 
Training (R=0.77372): The high R-squared value 
indicates a strong positive correlation between the 
predicted and actual compressive strength values in the 
training data. This suggests the model learned the 
patterns from the training data very well. 
 
Validation (R=0.53094): The validation R-squared 
value is considerably lower than the training R-
squared value, indicating a weaker correlation 
between predicted and actual values in the validation 
data. This implies that the model may be fitting too 
closely to the training data, which could lead to poor 
generalization of unseen data. 
Test (R=0.81192): The test R-squared value shows a 
strong positive correlation, which is a positive sign. 
This implies the model performed well on unseen test 
data, suggesting some degree of generalizability. 
 
Overall (R=0.75483): The overall R-squared value is 
moderate-to-strong, reflecting a positive correlation 
between predicted and actual values. However, the 
significant difference between the training and 
validation R-squared values is a concern. 
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Possible Improvements: 
Hyperparameter tuning: 
Adjusting hyperparameters like the learning rate, 
number of neurons, or activation functions could 
potentially reduce overfitting and improve validation 
performance.  
 
4.1.4 Model Performance 5 
 

                 
Fig. 7 ANN Model 5 Performance 

 
Training (R=0.77372): The high R-squared value 
indicates a strong positive correlation between the 
predicted and actual compressive strength values in the 
training data. This suggests the model learned the 
patterns from the training data very well. 
 

Validation (R=0.53094): The validation R-squared 
value is considerably lower than the training R-
squared value, indicating a weaker correlation between 
predicted and actual values in the validation data. This 
indicates that the model may be fitting too closely to 
the training data and might not perform well on new 
data. 
 
Test (R=0.81192): The test R-squared value shows a 
strong positive correlation, which is a positive sign. 
This implies the model performed well on unseen test 
data, suggesting some degree of generalizability. 
 
Overall (R=0.75483): The overall R-squared value is 
moderate-to-strong, reflecting a positive correlation 
between predicted and actual values. However, the 
significant difference between the training and 
validation   R-squared values is a concern. 

 
     
 
 

4.1.5 Model Performance 6 
 

                     
Fig. 8 ANN Model 6 Performance 

 
 Training (R=0.80088): The high R-squared value 
indicates a strong positive correlation between the 
predicted and actual compressive strength values in the 
training data. This suggests the model learned the 
patterns from the training data very well. 
 
Validation (R=0.53094): The validation R-squared 
value is considerably lower than the training R- 
squared value, indicating a weaker correlation between 
predicted and actual values in the validation data. This 
implies that the model might be fitting too closely to 
the training data and could struggle to perform well on 
new, unseen data. 
Test (R=0.88528): The test R-squared value shows a 
very strong positive correlation, which is a positive 
sign. This implies the model performed well on unseen 
test data, despite the overfitting concerns based on the 
validation R-squared value. 
 
Overall (R=0.81645): The overall R-squared value is 
moderate-to-strong, reflecting a positive correlation 
between predicted and actual values. However, the 
significant difference between the training and 
validation of R-squared values remains a concern. 
 
Interpretation: 
The model's performance is interesting. While it 
learned the training data very well (high training R-
squared), it showed signs of overfitting in the 
validation set (lower validation R-squared). However, 
the test R-squared value is very high, suggesting good 
performance on unseen data. This could be due to 
factors like: 
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   4.1.6 Model Performance 7  
 

 
 
                     Fig. 9 ANN Model 7 Performance 
 

Training (R=0.80088): The high R-squared value 
indicates a strong positive correlation between 
predicted and actual compressive strength in the 
training data, suggesting that the model has effectively 
learned the training data patterns. 
 
Validation (R=0.53094): The validation R-squared 
value is considerably lower, indicating a weaker 
correlation between predicted and actual values. This 
implies that the model may be fitting too closely to the 
training data and might not perform well on new, 
unseen data. 
 
Test (R=0.88528): The high-test R-squared value is a 
positive sign, indicating good performance on unseen 
test data, despite the overfitting concerns. 
 
Overall (R=0.81645): The overall R-squared value is 
moderate-to-strong, but the significant difference 
between training and validation R-squared values is a 
concern. 
 
Possible reasons for the high-test R-squared value 
despite validation concerns: 
 
Lucky chance: The test data might have coincidentally 
aligned well with the patterns learned from training 
data. 
 
Data similarity: The validation and test sets might be 
drawn from similar distributions, making validation 
less effective in detecting overfitting. 
 
 
 

4.1.7 Model Performance 8 
 

               Fig. 10 ANN Model 8 Performance  
 
Training (R=0.63071): The R-squared value indicates a 
moderate positive correlation between the training 
data predicted and actual compressive strength values. 
This suggests the model captured some of the 
underlying relationships within the training data. 
 
Validation (R=0.81915): The validation R-squared 
value is surprisingly higher than the training R- 
squared value. This is uncommon and might indicate 
issues with the data or the training process. It's 
generally expected for the validation R-squared to be 
lower than or equal to the training R-squared. 
 
Test (R=0.74770): The test R-squared value shows a 
moderate positive correlation, which is a positive sign. 
This implies the model performed reasonably well on 
unseen test data. 
 
Overall (R=0.70858): The overall R-squared value is 
moderate, reflecting a positive correlation between 
predicted and actual values. However, the unexpectedly 
high validation R-squared value is a concern. 
 

  Interpretation: 
The model's performance on unseen data (test data) is 
encouraging, indicating some generalizability. 
However, the high validation R-squared value is 
difficult to interpret definitively without more 
information about the training process and data 
characteristics. In typical scenarios, a higher validation 
R-squared than training R-squared could suggest: 
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4.1.8 Model Performance 9 
 

 
                  Fig. 11 ANN Model 9 Performance 
 

Training (R=0.84004): The high R-squared value 
suggests a strong positive correlation between 
predicted and actual compressive strength in the 
training data. This indicates the model learned the 
patterns from the training data well. 
 
Validation (R=0.52597): The validation R-squared 
value is considerably lower, indicating a weaker 
correlation between predicted and actual values. This 
suggests that the model may be overfitting to the 
training data, which could hinder its ability to 
generalize to new data. 
 
Test (R=0.67491): The test R-squared value shows a 
moderate positive correlation, indicating the model 
performed somewhat well on unseen test data. 
However, it's lower than the training R-squared value, 
and ideally, you would like to see a stronger correlation 
on the test data. 
 
Overall (R=0.68330): The overall R-squared value is 
moderate, reflecting a positive correlation between 
predicted and actual values. However, the significant 
difference between the training and validation R-
squared values is a concern. 
 
Possible Improvements: 
Address overfitting: Techniques like hyperparameter 
tuning, data augmentation, or using a simpler model 
architecture could help reduce overfitting and improve 
the model's generalizability. 
 
 

 

4.1.9 Model Performance 10 

 
                   Fig. 12 ANN Model 10 Performance 
 

Training (R=0.55106): The moderate R-squared value 
indicates a positive correlation between the training 
data's predicted and actual compressive strength 
values. This suggests the model captured some of the 
underlying relationships within the training data. 
 
Validation (R=0.04435): The validation R-squared 
value is much lower than the training R-squared value, 
which raises a major concern. This suggests severe 
overfitting to the training data and a likelihood of poor 
generalization to unseen data. 
 
Test (R=0.40527): The test R-squared value is also 
concerningly low, showing a weak positive correlation 
between predicted and actual values. This further 
highlights the model's overfitting problem. 
 
Overall (R=0.48097): The overall R-squared value is 
moderate, but the substantial difference between the 
training and validation/test R-squared values is a 
significant problem. 
 
Interpretation: 
The model's performance on unseen data (validation 
and test data) is poor. While it learned some patterns 
from the training data, it is not generalizing those 
patterns to predict compressive strength for new mix 
designs. The significant overfitting is the primary 
culprit. 
 
Possible Improvements: 
Overfitting mitigation: Techniques like 
hyperparameter tuning (adjusting learning rate, 
number of neurons, etc.), data augmentation 
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         Fig. 13 Random Forest Model 1 Performance  
 
This refers to the specific random forest model being 
analyzed. 
 
Accuracy (Validation): This metric indicates the 
proportion of correct predictions made by the model 
on a validation dataset. In this case, the model has a 
validation accuracy of 98.9%. 
 
Last change: Fine Tree: This suggests that the last 
modification made to the model was related to fine-
tuning the decision trees within the random forest. 
 
9/9 features: This indicates that all 9 features were 
used in the model. 
 
True Positive Rate: This represents the percentage of 
positive cases that the model correctly identified. 
 
False Positive Rate: This represents the proportion of 
negative cases that were mistakenly classified as 
positive by the model. 
 
AUC: It is a performance metric that summarizes the 
ability of a classification model to distinguish between 
classes. In this case, the model has an AUC of 0.7407. 
 
 
 
 
 
 
 
 
 
 
 
 
 

4.2.2 Model 2 
 

  
Fig. 14 Random Forest Model 2 Performance 

 
Validation ROC Curve x: This section refers to the type 
of plot, which is a Receiver Operating Characteristic 
(ROC) Curve used for evaluating binary classification 
models. 
True Positive Rate (TPR): This represents the 
proportion of positive cases correctly identified by the 
model, shown on the y-axis. 
False Positive Rate (FPR): This represents the 
proportion of negative cases incorrectly classified as 
positive by the model and is shown on the x- axis. 
AUC: It is a performance metric that summarizes the 
ability of a classification model to distinguish between 
classes. The value, 0.8731, is likely the AUC for Model 
3.5. 
Operating Point: This refers to a point on the ROC curve 
that represents a balance between TPR and FPR for a 
particular model. The plot shows operating points for 
Models 3.5 at (0.6, 0.2) 
and (0.55, 0.1). 

 
4.2.3 Model 3 

 

 
              Fig. 15 Random Forest Model 3 Performance 
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Summary Validation ROC Curve x: This section 
describes the type of plot, which is an ROC Curve used 
for evaluating binary classification models. 
 
True Positive Rate (TPR): This represents the 
proportion of correctly identified positive cases on the 
y-axis. 
 
False Positive Rate (FPR): This is shown on the x- axis 
and represents the proportion of negative cases that 
were incorrectly classified as positive by the model. 
 
AUC=0.4478: This indicates the Area Under the Curve 
(AUC) for Model 3.4. AUC is a performance metric that 
summarizes the ability of a classification model to 
distinguish between classes. In this case, a higher AUC 
value signifies better performance. 
 
Model Operating Point: This refers to a point on the 
ROC curve that represents a balance between TPR and 
FPR for a particular model. The plot shows operating 
points for Model 3.4 at (0, 
0.8) and (0.2, 0.6). 
 
4.2.4 Model 4 

 

 
 
                Fig. 16 Random Forest Model 4 Performance  

 
Summary Validation ROC Curve: This section describes 
the type of plot, which is an ROC Curve used for 
evaluating binary classification models. 
 
True Positive Rate (TPR): This is shown on the y- axis 
and represents the proportion of positive cases that 
were correctly identified by the model. 
 
False Positive Rate (FPR): This is shown on the x- axis 
and represents the proportion of negative cases that 
were incorrectly classified as positive by the model. 
 
AUC=0.5: This indicates the Area Under the Curve 
(AUC) for Model 2.3. AUC is a performance metric that 
summarizes the ability of a classification model to 
distinguish between classes. In this case, an AUC of 0.5 

represents a random classifier, and a value closer to 1 
indicates better performance. 

 

5. Conclusion 
 
This section summarizes the performance of several 
artificial neural networks (ANN) models based on their 
R-squared (R³) values for training, validation, and test 
sets. The R-squared value measures the goodness of fit 
of the model's predictions to the actual values, with 
higher values indicating a better fit. 
 
The average R-squared value for these ANN models is 
approximately 0.637, which indicates a moderate level 
of correlation between the predicted and actual values 
across the models. 
 
This suggests that the models are capturing some of 
the underlying patterns in the data, but there is room 
for improvement in terms of their predictive accuracy 
and generalizability. Overfitting seems to be a common 
issue, especially when there is a significant difference 
between the R-squared values of the training and 
validation/test sets. 
 
Techniques such as hyperparameter tuning, data 
augmentation, and using simpler model architectures 
could help address this issue and improve the overall 
performance of the models. 
 
When it comes to choosing the right machine learning 
model for a task, there's often a debate between 
Artificial Neural Networks (ANNs) and Random Forests 
(RFs). In a recent experiment involving over 100 data 
points, a Random Forest emerged victorious in terms 
of accuracy. The RF model achieved a remarkable near-
95% success rate, translating to an average output of 
37 Megapascals (MPa) in a specific metric. This stands 
in contrast to the ANN model, which only managed an 
average of 35 MPa. This significant difference suggests 
that the RF was better equipped to handle the 
intricacies of the data and uncover the hidden patterns 
that govern the target variable. 
 
However, it's crucial to remember that the battle 
between ANNs and RFs isn't a one-size-fits-all scenario. 
The champion in this particular case, the RF model, 
might not always reign supreme. The effectiveness of 
each model hinges heavily on the specific problem 
you're trying to solve and the unique characteristics of 
your data. For instance, ANNs often shine when dealing 
with complex, non-linear relationships between 
variables, a situation where RFs might struggle.  
 
Therefore, the key takeaway isn't that RFs are always 
better than ANNs. Instead, it's a reminder that 
understanding the strengths and weaknesses of each 
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model is vital. By carefully analyzing your data and the 
nature of your task, you can make an informed decision 
about which model will likely yield the most accurate 
and successful results. 
 

6. Future Scope 
 
The use of machine learning techniques to predict the 
strength of recycled coarse aggregate concrete shows 
promise for further research and development in civil 
engineering. As the construction industry continues to 
prioritize sustainability and environmental 
responsibility, the utilization of recycled materials in 
concrete production is expected to increase. 
 
Therefore, the future scope of this project encompasses 
several aspects, including model refinement, data 
collection, optimization of machine learning 
algorithms, and real-world implementation. One of the 
primary areas of future research involves the 
refinement and enhancement of predictive models for 
recycled coarse aggregate concrete strength. Therefore, 
future research efforts should focus on collecting 
comprehensive datasets that encompass a wide range 
of variables affecting concrete strength. 
 
Long-term monitoring of concrete properties in real-
world construction projects provides valuable insights 
into the performance of recycled coarse aggregate 
concrete over time. Continuous data collection and 
integration into predictive models can improve their 
reliability and applicability. Research into the 
optimization of machine learning algorithms 
specifically made for the prediction of concrete 
strength is essential for improving model performance. 
Real-time monitoring of concrete properties during the 
curing process and throughout the lifespan of concrete 
structures can provide valuable data for model 
refinement and validation. Incorporating data from 
non-destructive testing techniques, such as ultrasonic 
pulse velocity testing and rebound hammer testing, can 
supplement traditional compressive strength test data 
and improve the accuracy of predictive models. 
 
The ultimate goal of this research is to develop 
predictive models that can be implemented in real- 
world construction projects to optimize material usage, 
reduce costs, and ensure structural integrity. Field 
validation studies involving the application of predictive 
models to actual construction projects will be essential 
for assessing their practical utility and reliability. 
Future research should also focus on assessing the 
environmental impact of using recycled coarse 
aggregate concrete compared to traditional concrete. 
User-friendly interfaces and visualization tools can 
enhance the accessibility and usability of predictive 
models, making them valuable assets for the 

construction industry. Knowledge transfer and 
education initiatives aimed at disseminating research 
findings and best practices to industry stakeholders, 
policymakers, and academia are essential for 
promoting the widespread adoption of recycled coarse 
aggregate concrete and machine learning techniques. 
Workshops, seminars, and training programs can help 
bridge the gap between research and practice, 
facilitating the implementation of innovative solutions 
in the construction industry. The future scope of the 
project "Prediction of Recycled Coarse Aggregate 
C o n c r e t e  S t r e n g t h  U s i n g  M a c h i n e  
Learning Techniques" encompasses a wide range of 
research areas and applications. By refining predictive 
models, optimizing machine learning algorithms, 
integrating advanced technologies, and collaborating 
with industry partners, this research has the potential 
to significantly impact the construction industry's 
transition towards sustainable and environmentally 
responsible practices. Through continuous innovation 
and collaboration, the project aims to contribute to the 
development of more efficient, cost-effective, and 
sustainable construction materials and practices. 
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