

© 2024, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page 1101

INFLUENCE OF ARTIFICIAL INTELLIGENCE ON THE EVOLUTION OF

CODING LANGUAGES

Ankit Singh1, Dipti Ranjan Tiwari2

1Master of Technology, Computer Science and Engineering, Lucknow Institute of Technology, Lucknow, India
2Assistant Professor, Department of Computer Science and Engineering, Lucknow Institute of Technology,

Lucknow, India
---***---

Abstract - The rapid advancement of artificial intelligence
(AI) has led to a significant transformation across various
industries, with a particular focus on the realm of
programming languages. This in-depth research thoroughly
investigates the complex interplay between AI and the
evolution of coding languages, shedding light on the
profound impact that AI technologies have had on the
development, design principles, and capabilities of
programming languages in recent years. Through an
examination of notable examples and detailed case studies,
this study highlights the specific ways in which AI has
spurred innovation in the syntax, semantics, and overall
landscape of programming languages. The research delves
into the implications of these transformations for
developers, industry stakeholders, and the wider
technological ecosystem. By analyzing these changes, the
study offers a comprehensive exploration of how AI is
shaping the future trajectory of coding languages. It also
provides valuable insights into potential trends and
challenges that may emerge in the future, offering a glimpse
into the evolving landscape of programming languages in the
age of artificial intelligence.

Key Words: Artificial Intelligence (AI), Coding languages,
Evolution, Programming paradigms, Syntax, Semantics.

1.EVOLUTION OF PROGRAMMING LANGUAGES
FROM EARLY MACHINE CODE TO HIGH-LEVEL
LANGUAGES

In the early days of computing, programming languages
began with machine code, which consisted of binary
instructions understood directly by the computer's
hardware. Each instruction corresponded to specific
operations such as arithmetic calculations or data
movement. As computers evolved, assembly languages were
developed to make programming more human-readable.
Assembly languages used mnemonic codes to represent
machine code instructions, making it easier for programmers
to write and understand programs. The next significant leap
came with the development of high-level programming
languages in the mid-20th century. These languages, such as
Fortran, COBOL, and Lisp, introduced abstraction from
hardware-specific details. Programmers could now write
code using English-like syntax and constructs that were
closer to human thought processes.

High-level languages offered advantages such as increased
productivity, portability across different computer
architectures, and improved readability and maintainability
of code. They allowed programmers to focus more on solving
problems rather than managing low-level details of
computer hardware. High-level languages continued to
evolve and diversify. New languages emerged to address
specific needs and paradigms, such as object-oriented
programming (e.g., Smalltalk, C++) and functional
programming (e.g., Haskell, Scala). Each language brought its
own set of features, syntax, and programming paradigms,
catering to different application domains and preferences of
programmers. Today, the landscape of programming
languages is vast and varied, ranging from general-purpose
languages like Python, Java, and C# to domain-specific
languages tailored for specific tasks such as web
development (JavaScript, PHP), data analysis (R, MATLAB),
and scientific computing (Julia). The evolution of
programming languages from machine code to high-level
languages reflects a progression towards greater
abstraction, productivity, and versatility in software
development, driven by advancements in computer
hardware and the increasing complexity of modern
applications.

Figure-1: Evolution of AI

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 11 Issue: 06 | Jun 2024 www.irjet.net p-ISSN: 2395-0072

© 2024, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page 1102

2.MAJOR MILESTONES IN THE DEVELOPMENT OF
CODING LANGUAGES (E.G., FORTRAN, C, JAVA)

The development of programming languages has seen
several key milestones that have shaped the landscape of
software development. Fortran, introduced in 1957 by IBM,
revolutionised the field with its ability to handle complex
mathematical computations through loops and subroutines.
Following this, COBOL, launched in 1959, played a crucial
role in standardising programming for business applications,
particularly in sectors like banking. Lisp, dating back to
1958, introduced functional programming and dynamic
typing, influencing areas such as artificial intelligence. The
advent of C in 1972 by Dennis Ritchie marked a significant
advancement, providing low-level memory access and
efficiency, pivotal for system programming. Building upon C,
C++ emerged in 1985, incorporating object-oriented
programming principles like classes and inheritance. Java,
introduced in 1995, brought platform independence and
bytecode execution, making it ideal for web-based
applications. Python, starting in 1991, prioritised readability
and simplicity, becoming prominent in web development,
scientific computing, and data analysis. These milestones
illustrate the progression of programming languages, each
introducing new paradigms and capabilities that have
shaped modern software development practices.

3.THE INTERSECTION OF ARTIFICIAL
INTELLIGENCE AND CODING LANGUAGES

The intersection of artificial intelligence (AI) and coding
languages represents a transformative evolution in software
development. AI technologies are increasingly integrated
into coding practices, enhancing efficiency, productivity, and
the capabilities of programmers. One notable area of impact
is AI-driven code completion and suggestion tools, which
streamline the coding process by predicting and automating
code snippets based on context and previous patterns. These
tools, often powered by machine learning algorithms, not
only reduce development time but also assist developers in
writing more accurate and efficient code.

AI is influencing coding languages themselves, with
advancements such as probabilistic programming languages
that facilitate the development of AI models. Languages like
Python, known for its simplicity and extensive libraries, have
become a preferred choice for AI and machine learning
applications due to its flexibility and community support.
Beyond development tools, AI is also being applied to
improve code quality through automated testing and
debugging. AI-based systems can analyse code for potential
errors, vulnerabilities, or performance bottlenecks, thereby
enhancing software reliability and security.

Figure-2:AI and Deep Learning

The integration of AI into coding languages is not without
challenges, however. Issues such as bias in AI algorithms, the
need for specialised skills in AI-enhanced programming, and
ethical considerations regarding data privacy and
transparency are crucial factors that developers and
policymakers must address. The continued fusion of AI and
coding languages promises further innovations and
efficiencies in software development. As AI technologies
advance, programming languages are likely to evolve to
accommodate new AI-driven paradigms, shaping the future
landscape of coding and software engineering.

4.IMPACT OF AI ON THE EVOLUTION OF CODING
LANGUAGES

The impact of artificial intelligence (AI) on the evolution of
coding languages has been profound, ushering in significant
advancements and changes across various facets of software
development. One major impact lies in AI-enhanced tools
and frameworks that augment the capabilities of
programmers. AI-powered code completion, for instance,
uses machine learning algorithms to predict and suggest
code snippets, thereby accelerating the coding process and
improving accuracy. This not only reduces development time
but also enhances productivity by automating routine tasks.
AI has spurred the development of specialised programming
languages tailored for machine learning and data science.
Languages like Python have seen widespread adoption due
to their robust libraries for AI tasks, such as TensorFlow and
PyTorch, which simplify complex operations like neural
network implementations and data manipulation.

AI's influence extends beyond tooling and libraries to include
the integration of AI techniques directly into coding
languages. Concepts such as probabilistic programming,
used for modelling uncertainty in AI systems, are
increasingly being integrated into programming languages to
facilitate the development of AI models with greater ease
and efficiency. AI-driven advancements in software testing

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 11 Issue: 06 | Jun 2024 www.irjet.net p-ISSN: 2395-0072

© 2024, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page 1103

and debugging are transforming how developers ensure
code quality and reliability. AI algorithms can analyse code
for bugs, vulnerabilities, and performance issues more
comprehensively than traditional methods, thereby
improving software robustness and security.

The evolution of coding languages with AI also brings
challenges. Developers must navigate issues such as
algorithmic bias, the need for specialised skills in AI
programming, and ethical considerations surrounding AI's
use in coding practices. The symbiotic relationship between
AI and coding languages is poised to continue shaping the
future of software development. As AI technologies advance,
programming languages will likely evolve further to harness
AI's full potential, driving innovation and efficiency across
the software engineering landscape.

5.CHALLENGES AND CONSIDERATIONS

The integration of artificial intelligence (AI) into coding
languages presents several challenges and considerations
that need careful attention from developers, researchers,
and policymakers alike. One significant challenge is the
ethical implications of AI-powered coding tools and
techniques. Algorithms used for code generation and
analysis can inadvertently perpetuate biases present in
training data, leading to unfair or discriminatory outcomes.
Addressing these biases requires robust testing,
transparency in algorithmic decisions, and ongoing efforts to
mitigate bias through diverse and inclusive datasets.

Another consideration is the skills gap in AI-enhanced
programming. Developers need specialised knowledge and
training in AI concepts, such as machine learning and natural
language processing, to effectively utilise AI-driven tools and
frameworks. Bridging this gap requires comprehensive
education programmes and continuous learning
opportunities tailored to AI integration in coding practices.
The complexity of AI algorithms introduces challenges in
debugging and maintaining AI-enhanced codebases. Unlike
traditional software, AI models may require frequent
updates and fine-tuning to adapt to changing data and
performance requirements. Developing robust debugging
techniques and tools specific to AI-driven applications is
crucial for maintaining software reliability and performance.

Data privacy and security also pose significant concerns. AI
tools often rely on large datasets for training and inference,
raising issues around data confidentiality and compliance
with data protection regulations (e.g., GDPR). Safeguarding
sensitive information and ensuring ethical data practices are
essential considerations in the development and deployment
of AI-powered coding solutions. The rapid pace of AI
innovation necessitates careful consideration of its long-
term implications for job roles and workforce dynamics.
While AI enhances productivity and efficiency in software
development, it may also reshape job requirements and
demand new skill sets from developers. Adapting to these

changes requires proactive workforce development
strategies and policies that support lifelong learning and
career reskilling.

6.WEB DEVELOPMENT BY AI AND TRADITIONAL
CODING

Creating a contact us page for a website involves both design
and functionality. Here's an example using traditional coding
with HTML, CSS, and a touch of JavaScript. Additionally, I'll
show how AI (like ChatGPT) can help generate content and
structure for the page.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 11 Issue: 06 | Jun 2024 www.irjet.net p-ISSN: 2395-0072

© 2024, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page 1104

7.MOBILE APP DEVELOPMENT BY AI AND
TRADITIONAL CODING

Creating a mobile app involves several steps, including
planning, design, development, and testing. We'll outline a
basic approach to building a simple mobile app using AI for
content generation and traditional coding for development.
For this example, we'll create a simple "Contact Us" mobile
app using React Native, which allows for building cross-
platform apps for both iOS and Android.

import React from 'react';

import { NavigationContainer } from '@react-
navigation/native';

import { createStackNavigator } from '@react-
navigation/stack';

import ContactScreen from './screens/ContactScreen';

const Stack = createStackNavigator();

export default function App() {

 return (

 <NavigationContainer>

 <Stack.Navigator initialRouteName="Contact">

 <Stack.Screen name="Contact"
component={ContactScreen} options={{ title: 'Get in Touch'
}} />

 </Stack.Navigator>

 </NavigationContainer>

);

}

import React, { useState } from 'react';

import { View, Text, TextInput, Button, StyleSheet, Alert }
from 'react-native';

export default function ContactScreen() {

 const [name, setName] = useState('');

 const [email, setEmail] = useState('');

 const [subject, setSubject] = useState('');

 const [message, setMessage] = useState('');

 const handleSubmit = () => {

 if (name && email && subject && message) {

 // Here, you would typically handle the form submission
to your backend

 Alert.alert('Thank you for reaching out!', "We'll get back
to you soon.");

 // Clear the form

 setName('');

 setEmail('');

 setSubject('');

 setMessage('');

 } else {

 Alert.alert('Error', 'Please fill in all fields.');

 }

 };

return (

 <View style={styles.container}>

 <Text style={styles.intro}>We'd love to hear from you!
Whether you have a question about our services, pricing, or
anything else, our team is ready to answer all your
questions.</Text>

 <TextInput

 style={styles.input}

 placeholder="Name"

 value={name}

 onChangeText={setName}

 />

 <TextInput

 style={styles.input}

 placeholder="Email"

 value={email}

 onChangeText={setEmail}

 keyboardType="email-address"

 />

 <TextInput

 style={styles.input}

 placeholder="Subject"

 value={subject}

 onChangeText={setSubject}

 />

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 11 Issue: 06 | Jun 2024 www.irjet.net p-ISSN: 2395-0072

© 2024, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page 1105

 <TextInput

 style={styles.textArea}

 placeholder="Message"

 value={message}

 onChangeText={setMessage}

 multiline

 numberOfLines={4}

 />

 <Button title="Send Message" onPress={handleSubmit}
/>

 </View>

);

}

const styles = StyleSheet.create({

 container: {

 flex: 1,

 padding: 20,

 backgroundColor: '#fff',

 },

 intro: {

 fontSize: 16,

 marginBottom: 20,

 },

 input: {

 height: 40,

 borderColor: '#ccc',

 borderWidth: 1,

 marginBottom: 20,

 paddingHorizontal: 10,

 },

 textArea: {

 borderColor: '#ccc',

 borderWidth: 1,

 paddingHorizontal: 10,

 marginBottom: 20,

 textAlignVertical: 'top',

 },

});

8.CONCLUSION

In conclusion, the incorporation of Artificial Intelligence (AI)
into the coding process has completely transformed the way

software is developed, leading to a significant increase in
efficiency and productivity. AI-driven tools have the ability
to automate repetitive tasks, produce flawless code, and
offer intelligent suggestions, which allows developers to
dedicate more time to creative problem-solving and
innovation. These AI-powered tools cover a wide range of
functions, including automated code generation, smart
debugging, refactoring, and documentation creation, all of
which streamline different stages of the development cycle,
resulting in improved code quality, reliability, and ease of
maintenance. Furthermore, AI-powered testing and
continuous integration play a crucial role in enhancing test
coverage and CI/CD pipelines, ultimately leading to quicker
and more dependable software deployment. As AI
technology continues to progress, it has the potential to
greatly revolutionize the software development industry,
making coding more accessible, efficient, and impactful than
ever before.

REFERENCE

1. Jess, Hohenstein., Dominic, DiFranzo., René, F., Kizilcec.,
Zhila, Aghajari., Hannah, Mieczkowski., Karen, Levy.,
Mor, Naaman., Jeffrey, T., Hancock., Malte, F., Jung.
(2021). Artificial intelligence in communication impacts
language and social relationships.. arXiv: Human-
Computer Interaction,

2. Emmanuel, Adetiba., Temitope, M., John., Adekunle,
Akinrinmade., Funmilayo, S., Moninuola., Oladipupo,
Akintade., Joke, A., Badejo. (2021). Evolution of artificial
intelligence languages, a systematic literature review..
arXiv: Artificial Intelligence,

3. Kornack and P. Rakic, “Cell Proliferation without
Neurogenesis in Adult Primate Neocortex,” Science, vol.
294, Dec. 2001, pp. 2127-2130,
doi:10.1126/science.1065467.

4. M. Young, The Technical Writer’s Handbook. Mill Valley,
CA: University Science, 1989.

5. R. Nicole, “Title of paper with only first word
capitalized,” J. Name Stand. Abbrev., in press.

6. Coulin, C., Zowghi, D., & Sahraoui, A. (2010). MUSTER: A
Situational Tool for Requirements Elicitation. In F.
Meziane, & S. Vadera (Eds.), Artificial Intelligence
Applications for Improved Software Engineering
Development: New Prospects (pp. 146-165)

7. Harmain, H. M., & Gaizauskas, R. (2003). CM-Builder: A
natural language-based CASE tool for object-oriented
analysis. Automated Software Engineering Journal,
10(2), 157–181

8. Hewett, Micheal, and Rattikorn Hewett (1994). 1994
IEEE 10th Conference on Artificial Intelligence for
Applications.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 11 Issue: 06 | Jun 2024 www.irjet.net p-ISSN: 2395-0072

© 2024, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page 1106

9. Hull, E., Jackson, K., & Dick, J. (2005). Requirements
Engineering. Berlin: Springer.

10. Kof, L. (2010). From Textual Scenarios to Message
Sequence Charts. In F. Meziane, & S. Vadera (Eds.),
Artificial Intelligence Applications for Improved
Software Engineering Development: New Prospects
(pp. 83-105).

11. Smith, T. J. (1993). READS: a requirements engineering
tool. Proceedings of IEEE International Symposium on
Requirements Engineering, (pp. 94–97), San Diego.
SSBSE (2010). http://www.ssbse.org, checked
10.5.2011.

12. Vadera, S., & Meziane, F. (1994). From English to
Formal Specifications. The Computer Journal, 37(9),
753–763.

13. George F Ludger “Artificial Intelligence Structure and
strategies for complex problem solving” 5th Edition
Pearson,2009

14. Xindong Wu, Senior Member, IEEE” Data Mining: An AI
Perspective”1965 [4]Holland, “Adaption in Nature and
Artificial Systen”1965.

15. Searle (1990).The Brain Mind Computer Program?
Scientific America, 262,pp.

16. T kamba “A Web Marketing With Automatic Pricing”
Computer network vol 33 775-788(2000)

17. Kevin Warwick “Artificial Intelligence: The Basic”2011.

18. John E.Kelly, “Smart Machine-IBM’S Watson And The
Era of Cognitive Computing” 2013.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 11 Issue: 06 | Jun 2024 www.irjet.net p-ISSN: 2395-0072

