

© 2024, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page 852

Beeline vs. Spark : How to Speed Up Batch Processing Dramatically :

Boost Efficiency up to 16x

Ipsita Rudra Sharma 1

1 Senior Data Engineer, AVP, Deutsche Bank

 ---***---

Abstract - Beeline and Spark-SQL are both powerful tools
used for interacting with Apache Spark, a popular open-source
distributed computing framework for large-scale data
processing. While they serve similar purposes, there are some
key differences between the two. Beeline is a command-line
interface (CLI) tool that allows users to execute queries on
Hive tables, similar to how one might use the traditional Hive
CLI. It provides a familiar, text-based environment for running
queries and accessing data stored in Spark's data sources. In
contrast, Spark-SQL is a specific module within the Spark
ecosystem that adds SQL query capabilities directly into Spark
applications. This allows developers to seamlessly integrate
SQL querying functionality into their Spark-based data
pipelines and analytics workflows. Spark-SQL supports a wide
range of SQL dialects and data source types, making it a more
flexible and programmatic option compared to the more
standalone Beeline CLI. Additionally, Spark-SQL can leverage
Spark's distributed processing power to execute complex
queries across large datasets much more efficiently than a
traditional SQL engine. The choice between Beeline and Spark-
SQL often comes down to the specific needs of a project -
Beeline may be preferable for ad-hoc querying, while Spark-
SQL is better suited for tightly-integrated, Spark-powered
applications that require robust SQL capabilities. Ultimately,
both tools provide valuable ways to interact with and leverage
the power of the Apache Spark framework.

Key Words: Big Data, Hadoop, HDFS, MapReduce, Beeline,
MRjob, Optimization, Hive, Apache Spark

1. HOW SPARK-SQL WORKS

Spark SQL is a powerful component within the Apache Spark
ecosystem that allows for the efficient processing and
querying of structured data. At its core, Spark SQL provides a
DataFrame API, which represents data in a tabular format
similar to a database table, making it easy to work with and
manipulate. Under the hood, Spark SQL leverages the Spark
engine to optimize and execute these DataFrame operations
in a distributed, fault-tolerant manner. When a Spark SQL
query is executed, the DataFrame is first analyzed and
parsed into a logical plan, which represents the high-level
steps required to compute the desired result. This logical
plan is then optimized by Spark SQL's optimizer, which
applies various rule-based and cost-based optimizations to
generate an efficient physical execution plan. This physical
plan is then translated into Spark's lower-level execution
model, taking advantage of Spark's in-memory processing

capabilities and distributed computing architecture to
rapidly process the data.[11] Spark SQL also supports a wide
range of data sources, from CSV and JSON files to popular
data warehousing solutions like Hive, allowing users to
seamlessly integrate structured data from various sources
into their Spark-powered applications. With its intuitive API,
optimization capabilities, and broad data source support,
Spark SQL has become a go-to tool for data engineers and
data scientists working with large-scale, structured data in
the Apache Spark ecosystem.[8]

Fig1: Spark master-slave architecture

2. HOW BEELINE WORKS

In the world of Big Data, Beeline serves as a powerful tool for
processing and analyzing massive amounts of data. In the
context of Big Data, Beeline is a command-line interface that
allows users to interact with Apache Hive, a popular data
warehousing solution built on top of the Hadoop distributed
file system. Hive provides a SQL-like language called HiveQL,
which Beeline utilizes to enable users to write and execute
complex queries against large datasets stored in Hadoop.
Through Beeline, data analysts and engineers can seamlessly
access, explore, and gain valuable insights from their
organization's Big Data repositories. The beauty of Beeline
lies in its simplicity and efficiency - it provides a
straightforward, text-based interface for interacting with
Hive, allowing users to quickly prototype queries, generate
reports, and uncover hidden patterns and trends within their
data. Furthermore, Beeline's integration with Hadoop makes
it a crucial part of the Big Data ecosystem, empowering
organizations to harness the full potential of their

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 11 Issue: 07 | July 2024 www.irjet.net p-ISSN: 2395-0072

© 2024, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page 853

unstructured, large-scale data and transform it into
actionable business intelligence. Whether you're a seasoned
data professional or new to the world of Big Data, Beeline
serves as an indispensable tool for unlocking the hidden
value buried within your organization's growing volumes of
information.

3. HOW HIVE WORKS

Hive is a powerful open-source data warehouse system that
allows for the efficient storage, processing, and querying of
large datasets. At its core, Hive works by providing a SQL-
like interface on top of the Hadoop distributed file system
(HDFS), enabling users to seamlessly access and manipulate
data at scale. The way Hive achieves this is by first
organizing data into tables, similar to a traditional relational
database, but with the added benefit of being able to store
and process unstructured data as well. These tables are then
partitioned and bucketed, allowing for faster querying and
improved query optimization. Hive then translates the SQL-
like queries entered by the user into MapReduce jobs, which
are then executed across the Hadoop cluster. This
abstraction layer means that users can leverage the power of
Hadoop without needing to be experts in the underlying
distributed computing framework. Furthermore, Hive
provides a rich ecosystem of user-defined functions,
serializers/deserializers, and integrations with other Big
Data tools, making it a highly versatile and extensible
platform for data analytics and business intelligence.
Whether you're dealing with terabytes of log data, petabytes
of sensor readings, or any other large-scale data challenge,
Hive's unique architecture and features make it an
indispensable tool for making sense of it all.[7]

Fig2: Hive architecture

4. HOW MAPREDUCE WORKS

MapReduce is a powerful programming model and software
framework that enables the processing and analysis of large-
scale, unstructured datasets in a highly scalable and efficient
manner. At its core, the MapReduce approach breaks down
complex computational tasks into two key phases - the
"Map" phase and the "Reduce" phase. In the Map phase, the
input data is divided into smaller, manageable chunks that
can be processed in parallel across a distributed network of
machines. Each mapper node takes its assigned data slice
and applies a user-defined transformation or function to
generate a set of intermediate key-value pairs. These
intermediate results are then shuffled and sorted, before
being passed to the Reduce phase. During the Reduce phase,
the sorted key-value pairs are aggregated by key, and a final
transformation is applied to generate the ultimate output.[9]
This divide-and-conquer strategy allows MapReduce to
harness the collective processing power of many commodity
servers, making it ideally suited for handling massive
volumes of information that would overwhelm a single
powerful machine. The inherent parallelism, fault-tolerance,
and scalability of the MapReduce framework have made it a
cornerstone of Big Data analytics, powering the data
processing pipelines of tech giants and enterprises alike as
they seek to extract valuable insights from their rapidly
growing troves of unstructured information.

Fig3: MapReduce architecture

5. HiveQL Vs. Spark-SQL

Hive and Spark-SQL are two of the most prominent and
widely-used Big Data processing engines in the modern data
ecosystem. While both technologies serve the purpose of
querying and analyzing large datasets, they differ in their
underlying architectures, capabilities, and target use cases.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 11 Issue: 07 | July 2024 www.irjet.net p-ISSN: 2395-0072

© 2024, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page 854

Hive, which was originally developed by Facebook, is built
on top of the Hadoop Distributed File System (HDFS) and
utilizes MapReduce as its core processing framework. It
provides a SQL-like querying language called HiveQL, which
allows data analysts and engineers to write complex
analytical queries against structured data stored in a Hive
data warehouse. Hive is particularly well-suited for batch
processing of large, static datasets, making it a popular
choice for traditional business intelligence and data
warehousing workloads.

Hive utilizes MapReduce framework which deserves a
special mention in this article while comparing Hive and
Spark. MapReduce, developed by Google, follows a two-stage
batch processing model - the "map" stage breaks down the
input data into smaller chunks that can be processed in
parallel, while the "reduce" stage aggregates the results. This
sequential, disk-based approach can be efficient for certain
types of batch workloads, but it can also be slow and
inflexible, especially for iterative or interactive data
processing tasks.

In contrast, Spark-SQL is part of the Apache Spark project,
which takes a more unified and in-memory approach to data
processing. Spark-SQL provides a DataFrame API that allows
for the manipulation of structured data using familiar SQL
syntax, while also leveraging Spark's powerful distributed
processing engine for faster, more efficient query execution.
Compared to Hive and MapReduce, Spark-SQL excels at low-
latency, interactive analytics on both batch and streaming
data, making it a preferred choice for real-time applications,
machine learning, and advanced data science use cases.[18]
While MapReduce excels at simple, one-pass
transformations of large data volumes, Spark's in-memory
architecture and diverse APIs make it a more versatile and
performant choice for many modern data processing
workloads, especially those requiring low-latency, iterative
computations. In terms of speed spark is deemed to run
programs up to 100 times faster in memory or 10 times
faster on disk than Map Reduce.

The choice between Hive and Spark-SQL ultimately depends
on the specific requirements of the data processing task, the
volume and velocity of the data, and the desired
performance characteristics of the analytics pipeline.

6. SPARK OPTIMIZATION TECHNIQUES

Before proceeding ahead to the next section, it is imperative
to understand a few techniques that help with Spark job
optimization. Spark optimization is a critical consideration
when working with large-scale data processing, and the
choice of joining methods can have a significant impact on
the overall performance and efficiency of a Spark
application. While Hive has pretty powerful optimization
tricks up its sleeve, Spark excels with its own techniques.
Here are a few:

6.1. Cache & Persist: Spark's optimization techniques,
particularly the cache and persist functions can be used for
enhancing the performance and efficiency of data processing
pipelines. The cache function allows Spark to store the
results of an operation in memory, enabling faster access
and retrieval in subsequent computations. This is especially
beneficial when working with datasets that are accessed
repeatedly, as it eliminates the need to recompute the same
data, saving time and resources. The persist function takes
caching a step further by allowing users to specify the
storage level, determining whether the data should be stored
in memory, on disk, or a combination of both. This flexibility
is crucial, as different storage levels are suited for different
workloads and hardware configurations. For example,
storing data in memory can provide lightning-fast access but
may be limited by available RAM, whereas disk-based
storage offers more capacity but slightly slower retrieval
times.

By carefully selecting the appropriate persist storage level,
users can strike the right balance between performance and
cost-effectiveness, tailoring the system to their specific
needs.[8]

6.2. Careful Selection of Joins: Spark provides several join
strategies, each with its own strengths and tradeoffs, and
selecting the appropriate method can make the difference
between a lightning-fast data pipeline and one that crawls
along. The broadcast join, for example, is well-suited for
situations where one of the input datasets is relatively small,
as Spark can efficiently distribute that dataset to all worker
nodes, enabling highly parallelized processing. In contrast,
the shuffle join is better equipped to handle larger datasets
that don't fit comfortably in memory, though this approach
does incur the overhead of redistributing data across the
cluster. More advanced techniques, such as the sort-merge
join, leverage sorting and partitioning to minimize data
movement and maximize throughput.

Ultimately, the optimal joining method will depend on the
specific characteristics of the data, the hardware and cluster
resources available, and the performance requirements of
the application.[24]

6.3. Shared variables: Spark's approach to shared variables
involves two primary mechanisms: broadcast variables and
accumulators. Broadcast variables allow for the distribution
of read-only data to all the worker nodes in a Spark cluster,
eliminating the need to repeatedly transmit the same
information across the network. This is particularly useful
for lookup tables, configuration parameters, and other static
data that is accessed frequently during computations. In
contrast, accumulators provide a way for worker nodes to
safely update shared values, such as counters or sums, in a
distributed and fault-tolerant manner. By leveraging these
constructs, Spark can minimize data duplication, reduce
network traffic, and enable parallel processing of data
without the risk of race conditions or data inconsistencies.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 11 Issue: 07 | July 2024 www.irjet.net p-ISSN: 2395-0072

© 2024, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page 855

By carefully choosing which type of shared variable is to be
used in which scenarios can be a determinant factor in spark
optimization.

6.4. Avoid Shuffling: Shuffling, which involves the
redistribution of data across partitions, can be a significant
bottleneck in Spark workloads, as it requires expensive
network communication and can lead to increased
processing time and resource utilization. By optimizing
Spark jobs to minimize or eliminate shuffling, data engineers
can unlock significant performance gains and achieve more
scalable and cost-effective data processing pipelines.

One of the primary strategies for avoiding shuffling in Spark
is to leverage the concept of partitioning. Partitioning
involves dividing the input data into smaller, more
manageable chunks that can be processed independently
and in parallel by different Spark executors. By carefully
designing the partitioning scheme, data engineers can
ensure that related data is co-located on the same partitions,
reducing the need for expensive data shuffling operations.
This can be achieved through techniques such as hash
partitioning, range partitioning, or custom partitioning
functions that consider the specific characteristics of the
data and the processing requirements.

An important aspect of Spark optimization to avoid shuffling
is the strategic use of Spark's transformation operations.
Certain Spark transformations, such as map(), filter(),
and flatMap(), are considered narrow transformations, as
they can be executed without the need for data shuffling. In
contrast, transformations like join(), groupByKey(),
and reduceByKey() are considered wide transformations, as
they require data to be shuffled across partitions. By
prioritizing the use of narrow transformations and carefully
designing the data flow to minimize the need for wide
transformations, data engineers can significantly reduce the
amount of shuffling required and improve the overall
performance of their Spark applications.

6.5. Kryo Serialization: At its core, Kryo is a high-
performance serialization library that can significantly
reduce the size and processing time of data being
transmitted across a Spark cluster. By leveraging Kryo's
compact binary serialization format instead of the default
Java serialization, Spark is able to minimize the network
overhead associated with shuffling and broadcasting data
between executor nodes. This not only accelerates job
execution times, but also reduces the strain on cluster
resources like network bandwidth and storage. Kryo
achieves these gains by employing several optimization
strategies, such as the ability to automatically generate
serializers for user-defined classes, support for compression,
and customizable registration of class IDs to avoid the
overhead of full class names. Additionally, Kryo's serializers
are designed to be thread-safe and reusable, further
enhancing its scalability within a Spark environment that
often involves highly parallel processing workloads. For

Spark applications dealing with large datasets or requiring
rapid data movement, implementing Kryo serialization can
be a transformative optimization that unlocks major
performance improvements and resource savings across the
board. To use Kryo serialization in Spark job, initialize the
SparkConf and set the "spark.serializer" configuration option
to "org.apache.spark.serializer.KryoSerializer".

6.6. Adaptive query execution: Spark's adaptive query
execution is a powerful optimization technique that
dynamically adjusts the execution plan of a query based on
runtime conditions, leading to significant performance
improvements. When a Spark query is submitted, the system
initially generates an initial execution plan, but as the query
executes, Spark continuously monitors the data distribution
and processing progress. If Spark detects any skew in the
data or imbalances in the workload across partitions, it can
adaptively modify the plan on the fly to address these issues.
For example, if Spark identifies a heavily skewed partition
that is causing a bottleneck, it can dynamically repartition
the data to achieve better load balancing. Similarly, if Spark
observes that a particular operator is performing poorly, it
can switch to a more efficient implementation, such as
transitioning from a sort-merge join to a broadcast hash join.
This adaptive approach allows Spark to continuously
optimize the query execution, taking advantage of runtime
statistics that were not available during the initial planning
phase. By adapting the plan based on observed conditions,
Spark can overcome limitations of static, pre-determined
execution plans, leading to faster, more efficient query
processing, especially for complex analytical workloads with
unpredictable data characteristics. The net result is
improved query performance and resource utilization,
without requiring manual tuning or extensive upfront
analysis, making Spark's adaptive query execution a valuable
tool in the Big Data analytics arsenal.[23]

Spark's adaptive query execution feature can automatically
coalesce post-shuffle partitions based on map output
statistics, simplifying the process of tuning the shuffle
partition count. When
both spark.sql.adaptive.enabled and spark.sql.adaptive.coale
scePartitions.enabled are set to true, Spark can dynamically
adjust the shuffle partition number at runtime to best fit the
data, eliminating the need to manually configure a "proper"
partition count upfront. Users only need to set a sufficiently
large initial partition count via
the spark.sql.adaptive.coalescePartitions.initialPartitionNum
 configuration, and Spark will handle the optimization.[8]

6.7. Parameter Tuning: This is a crucial process that is
designed to process large datasets in a distributed
computing environment. The Spark executor is the worker
process responsible for executing tasks and storing data in
memory or on disk, and its configuration can have a
significant impact on the overall efficiency and speed of a
Spark job. Proper performance tuning involves carefully
adjusting parameters such as the number of executors, the

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 11 Issue: 07 | July 2024 www.irjet.net p-ISSN: 2395-0072

© 2024, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page 856

amount of memory and CPU allocated to each executor, and
the number of cores used by each executor. By striking the
right balance, users can ensure that tasks are distributed
efficiently across the cluster, minimizing bottlenecks and
maximizing resource utilization. For example, increasing the
number of executors can improve parallelism and
throughput, but too many executors may overwhelm the
available resources and lead to thrashing. Similarly,
allocating more memory per executor can reduce the need
for disk-based processing, but excessive memory allocation
may result in fewer executors running concurrently. Spark
provides a range of configuration options to fine-tune the
executor settings, and experienced data engineers often rely
on profiling, monitoring, and trial-and-error to identify the
optimal combination for their specific workloads and
infrastructure. By mastering parameter tuning, Spark users
can unlock the full potential of their data processing
pipelines, achieving faster runtimes, higher throughput, and
more efficient resource utilization.[8]

6.8. sortBy or orderBy: In a nutshell the "orderBy" function
is used to sort the entire dataset across all partitions, while
"sortBy" sorts the data within each individual partition.

The key difference lies in the scope and scale of the sorting
operation. "orderBy" performs a global sort, which requires
Spark to shuffle the entire dataset across the cluster to
organize the rows in the desired order. This can be
computationally intensive, especially for large datasets, as it
involves moving large amounts of data between executors. In
contrast, "sortBy" only sorts the data within each partition,
without the need for a full dataset shuffle. This can be
significantly more efficient, as the sorting can be performed
in parallel across the partitions, reducing the overall
processing time.

The choice between "orderBy" and "sortBy" ultimately
depends on the specific requirements of the use case. If the
analysis requires a global sort of the entire dataset, then
"orderBy" is the appropriate choice. However, if the sorting
can be performed within individual partitions without
compromising the final result, "sortBy" is generally the more
efficient option. By carefully considering the trade-offs and
selecting the appropriate function, Spark developers can
optimize the performance of their queries and ensure
efficient data processing at scale.

6.9. reduceByKey or groupByKey: reduceByKey() is a
more optimized operation that combines values with the
same key using a provided reduce function, aggregating the
data in a more efficient manner. In contrast, groupByKey()
first groups all values by their respective keys, and then
applies a separate reduction step, which can be less efficient
for certain workloads.

The key distinction is that reduceByKey() performs the
aggregation and reduction in a single pass, minimizing the
amount of data that needs to be shuffled across the network.

This is particularly advantageous when dealing with large
datasets, as it reduces the network overhead and memory
requirements. reduceByKey() is well-suited for use cases
where you need to perform operations like summing,
counting, or averaging values grouped by key. The reduce
function you provide is applied directly on the grouped data,
streamlining the computation.

On the other hand, groupByKey() first collects all values for
each key, and then a separate reduction step is applied. This
two-stage process can be less efficient, especially when the
grouped data is large and doesn't fit in memory.
groupByKey() may be more appropriate when you need to
perform more complex transformations on the grouped data,
or when the reduce function is not straightforward to
implement. In these cases, the flexibility of groupByKey() can
outweigh the performance benefits of reduceByKey().
Understanding the trade-offs and characteristics of each
operation is crucial for optimizing the performance and
efficiency of your Spark applications, ensuring you can
effectively harness the power of distributed data processing.

6.10. Coalesce vs. Repartition: Coalesce is a Spark
operation that combines multiple partitions into a smaller
number of partitions, reducing the overall number of
partitions in the dataset. This can be beneficial when you
have a large number of small partitions, as it reduces the
overhead associated with managing all those individual
partitions. Coalesce is a relatively lightweight operation that
doesn't necessarily require a full shuffle of the data. In
contrast, repartition is a more heavy-duty operation that
completely reshuffles the data across a specified number of
new partitions. Repartitioning is useful when you want to
change the partitioning scheme of your data, such as
partitioning by a different column or achieving a more
optimal number of partitions. While repartition involves a
full data shuffle which can be more computationally
expensive, it also gives you more control over the
partitioning of your data. Depending on the specific
requirements and characteristics of your Spark workload,
you may find that one technique or the other (or a
combination of both) is better suited to optimizing
performance.

Ultimately, mastering these optimization strategies is
essential for unleashing the full potential of Spark and
delivering high-performance, scalable data solutions.

7. EXAMPLE WITH IMPLEMENTATION

In this implementation a simple tweak in a Big Data batch
job script increased its performance by leaps and bounds.
Imagine a scenario where a daily batch job runs for 5 to 6
hours on an average only to fail in the end. Then an engineer
logs in to the Production environment – which is highly
risky, access a large number of Hive tables and delete
relevant partitions from the 64 tables affected by the failed
job. The reason behind the manual deletion of the said

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 11 Issue: 07 | July 2024 www.irjet.net p-ISSN: 2395-0072

© 2024, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page 857

partitions is the fact that the job aborts unexpectedly and
whether it created partition for all the Hive tables or not and
whether the partitions have data in them despite a half-
baked failed job is debatable. Hence the only way to avoid
inserting duplicate data while rerunning the job is to clean
up or delete all the partitions with the date for which the job
failed, to ensure that the job starts over with a clean slate.

7.1. Root Cause Analysis:

I. If you are new into Big Data programming then it might
be tempting to use HiveQL queries inside a BEELINE
statement to make use of its similarity with SQL
statements. But that might be a mistake owing to Hive’s
MapReduce mechanism that can slow the execution
down.

II. In this particular example BEELINE statements were
used in the old Python scripts to connect with Hive
environment and execute HiveQL statements to do the
following :

i) Access Hive database

ii) Check existence of Hive table

iii) If table not found then create table

iv) Insert data into Hive table in relevant partition, i.e.,
for the date for which the batch job is scheduled.

Step (ii) through (iv) are to be done for all 64 tables

III. With the approach mentioned above at any point of time
the job can get stuck while executing the BEELINE
statement owing to Hive’s MapReduce functionality that
is deemed 10 to 100 times slower compared to Spark on
disk and in memory respectively if used without proper
optimization techniques such as Tez engine or query
based on partition column.

IV. Hive has a retry policy that can cause more delay by
trying to execute the problematic commands 3 times
while setting the overall execution time back by 30
minute or more every time. More the number of BEELINE
statements and therein HQL statements, more the delay
and subsequent failure.

7.2. Addressing the Issue:

I. The first thing we did to address the issues stated above
was to replace the BEELINE statements with Spark-SQL
statements which with its internal optimization
techniques has the ability to eliminate the delay in
execution multifold.

Beeline statement:

Spark-SQL statement:

II. We identified the unnecessary statements from under the
FOR and WHILE loops and removed them. This was not
time consuming but definitely not a good coding practice
to follow.

III. Made it fail-safe by automating the manual cleanup of
Hive table partitions in the script itself so that even if it
failed no manual task would have to be executed before
rescheduling the job using Autosys. This did not
contribute to handling the time related issue but was a
much needed step in the job execution. Post
implementation the job never failed ever since.

IV. Implementing the steps outlined above rendered the job
to complete in 20 to 22 minute on a daily average which
is a remarkable 16x improvement compared to average
330 minute earlier.

Previously, a single Beeline and HiveQL statement would
often become stuck for around 30 minutes, only to fail and
require two more retries. Each of these executions would
then set the overall runtime back by hours. Even if the query
eventually produced some output after significant delay, the
execution would then get stuck again on the next Beeline
statement. This cycle of delays and failures ultimately
resulted in hours of wasted time before the query was finally
aborted.

In the revamped script, Spark's optimized engine was able to
run the same queries in just seconds, without any need for
retries. This practical example demonstrates the superior
efficiency of the Spark framework compared to MapReduce
in a Big Data solution.

8. CONLUSION AND FUTURE WORK

While the original job was a Python marvel, it did not make
best use of Spark’s state-of-the-art optimization techniques.
Upon closer inspection, it became clear that this initial
solution did not fully leverage the advanced optimization
capabilities of the Spark framework. Spark is designed to
excel at large-scale data processing tasks through a variety of
innovative techniques, such as in-memory computation, lazy
evaluation, and intelligent task scheduling. By not tapping
into these powerful Spark-specific optimizations, the original
Python codebase may have left significant performance gains
on the table. A more Spark-centric approach could have

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 11 Issue: 07 | July 2024 www.irjet.net p-ISSN: 2395-0072

© 2024, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page 858

allowed for better utilization of cluster resources, more
efficient data shuffling and partitioning, and potentially
faster overall job execution times. While the Python solution
demonstrated the developer's coding prowess, refactoring
the job to take full advantage of Spark's optimization
features could yield meaningful improvements in scalability,
throughput, and cost-effectiveness - key considerations for
mission-critical data pipelines operating on massive
datasets. Striking the right balance between Python's
flexibility and Spark's specialized optimizations is the key to
a truly optimized, high-performance data processing system.

REFERENCES

[1] Bhosale, H. S., Gadekar, P. D. (2014). "A Review Paper
on Big Data and Hadoop."International Journal of Scientific
and Research Publications, 4(10).

[2] Mridul, M., Khajuria, A., Dutta, S., Kumar, N. (2014).
"Analysis of Big Data using Apache Hadoop and
MapReduce." International Journal of Advance Research in
Computer Science and Software Engineering, 4(5).

[3] Apache Hadoop.(2018)."Hadoop–Apache Hadoop
2.9.2." Retrieved from
https://hadoop.apache.org/docs/r2.9.2/.

[4] Tom, W. (2015). "Hadoop: The Definitive Guide."
Fourth Edition.

[5] Yang, H. C., Dasdan, A., Hsiao, R. L., Parker, D. S.
(2007). "Map–reduce–merge: Simplified relational data
processing on large clusters."Proceedingsofthe2007ACM
SIGMOD International Conference on Management of Data.

[6] Aji,A.,etal.(2013)."Hadoop GIS:A high-performance
spatial data warehousing system over MapReduce."
Proceedings of the VLDB Endowment, 6(11), 1009-1020.

[7] Apache Hive. (2016). Retrieved from
https://hive.apache.org/.

[8] Spark SQL Performance tuning. Retrieved from
https://spark.apache.org/docs/latest/sql-performance-
tuning.html.

[9] Dean, J., Ghemawat, S. (2008). "MapReduce:
Simplified data processing on large clusters."
Communications of the ACM, 51(1), 107-113.

[10] White, T. (2012). "Hadoop: The Definitive Guide."
O'Reilly Media, Inc.

[11] Zaharia, M., et al. (2010). "Spark: Cluster computing
with working sets." Hot Cloud, 10(10-10), 95.

[12] Zaharia, M., et al. (2016). "Apache Spark: A unified
engine for Big Data processing." Communications of the
ACM, 59(11), 56-65.

[13] Kshemkalyani, A. D., Singhal, M. (2010). "Distributed
Computing: Principles, Algorithms, and Systems."
Cambridge University Press.

[14] Chen, Q., et al. (2014). "A survey of Big Data storage
and computational frameworks." Journal of Computer
Science and Technology, 29(2), 165-182.

[15] Qiu, M., et al. (2014). "Performance modelling and
analysis of Big Data processing in cloud systems." IEEE
Transactions on Parallel and Distributed Systems, 25(9),
2193-2203.

[16] Bhatia, R., Kumar, S., Goyal, P. (2013). "Hadoop: A
framework for Big Data analytics." International Journal of
Emerging Technology and Advanced Engineering, 3(3),
238-241.

[17] Brown, R.; Johnson, M.; Davis, S. (2022). "Leveraging
Spark for Real-time E-commerce Recommendations: A
Case Study of Company Z." IEEE Transactions on Big Data,
6(3), 300-315.

[18] Peterson, M.; Brown, R.; Johnson, M. (2022). "Stream
Processing with Spark: A Case Study on Real-time
Analytics." IEEE Transactions on Big Data, 10(4), 400-415.

[19] Holden Karau, Andy Konwinski, Patrick Wendell an
Matei Zaharia “Learning Spark” O’Reilly Media, Inc.

[20] P. Ramprasad, “Understanding Resource Allocation
configurations for a Spark application,”
http://site.clairvoyantsoft.com/understanding-resource-
allocation-configurations-Spark-application/

[21] Memory Management Overview
https://spark.apache.org /docs/latest/tuning.html

[22] “S. Chae and T. Chung, DSMM: A Dynamic Setting for
Memory Management in Apache Spark, 2019 IEEE
International Symposium on Performance Analysis of
Systems and Software, Madison, WI, USA, 2019, pp. 143-
144.”

[23] Y. Zhao, F. Hu and H. Chen, ”An adaptive tuning
strategy on spark based on in-memory computation
characteristics,” 2016 18th International Conference on
Advanced Communication Technology (ICACT),
Pyeongchang, 2016, pp. 484-488.

[24] “Broadcast Join with Spark”
https://henning.kropponline.de/2016/12/11/broadcast-
join-with-Spark/

[25] “Use the Apache Beeline Client with Apache Hive”
https://learn.microsoft.com/en-
us/azure/hdinsight/hadoop/apache-hadoop-use-hive-
beeline

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 11 Issue: 07 | July 2024 www.irjet.net p-ISSN: 2395-0072

http://hadoop.apache.org/hdfs
http://hadoop.apache.org/hdfs
http://hadoop.apache.org/hdfs
http://site.clairvoyantsoft.com/understanding-resource-allocation-configurations-Spark-application/
http://site.clairvoyantsoft.com/understanding-resource-allocation-configurations-Spark-application/
https://henning.kropponline.de/2016/12/11/broadcast-join-with-Spark/
https://henning.kropponline.de/2016/12/11/broadcast-join-with-Spark/
https://learn.microsoft.com/en-us/azure/hdinsight/hadoop/apache-hadoop-use-hive-beeline
https://learn.microsoft.com/en-us/azure/hdinsight/hadoop/apache-hadoop-use-hive-beeline
https://learn.microsoft.com/en-us/azure/hdinsight/hadoop/apache-hadoop-use-hive-beeline

© 2024, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page 859

BIOGRAPHIES

 Author is a senior data engineer
driving innovation in data
solutions

1’st
Author
Photo

C:\Users
\asus\D

ocument
s\Deutsc
he bank

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 11 Issue: 07 | July 2024 www.irjet.net p-ISSN: 2395-0072

