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Abstract - An This Paper address two major problems that 
are faced in the software development projects. Basically, 
when defects are detected in testing phase, we have to perform 
Root causal analysis to find out the root cause whether it is 
injection or removal root cause and then accordingly we 
perform the preventive and the corrective actions. However, 
the causal analysis takes significant amount of effort and time 
of development team. So, using textual analysis we find out the 
root cause of various defects and accordingly categories 
defects and take preventive actions. Another problem is that in 
testing phase if in last phase we found that the defects are 
more than the expected count and due to which there is a 
chance of delay in milestone/release of the product so in order 
to address this issue. We will be using the dataset of defects of 
previous 5 years products and using ANN model will be trained 
to predict risky requirements based on various factors, like 
design complexity, code changes, side case or coverage area of 
changes, developer’s skill.  For example, bigger code changes 
near the release may risk in quality. Also, one of the factors 
would be the relevant functionality module. Based on the 
predicted risky requirements, effort in testing could be 
increased and also development team will also take action in 
the relevant module. We will also try using ML algorithm 
Gradient Boost on same dataset and compare the performance 
with ANN 

Key Words:  ANN, ML, Gradient Boost, Softmax, SME, 
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1.INTRODUCTION  

Requirement Engineering is the efficient and systematic 
approach for gathering user’s requirements to implement 
software solution. It is a process of describing, 
understanding and maintaining requirements in the process 
of engineering design.  Mostly all the software saves some 
basic features and they are basically the requirements which 
need to be developed by the project team. QCD depends on 
the requirements of a project directly or indirectly. In the 
development some of the requirement share straightforward 
and easy for the development team to understand and 
implement however in some requirements there some issues 
or aps or complexity which make these requirements risky 
for the success of the project. When we say risky that means 
the either project KPI Quality/ Cost or time is going beyond 
target. 

If these risks are not captured and mitigated timely, the 
project may suffer a lot. These risks must be eliminated and 
diluted to control the software cost and schedule. Because in 
the testing phase beginning, we have already implemented 
the requirements and the cane requests or any other 
possible factors causing risk is already known to 
development team and so it is best time for forecasting risks 
at this stage. This may improvise software productivity and 
quality while reducing the probability of project disaster. 
When risks are appropriately mitigated or their contingency 
plan is available then, it helps to reduce the possibility of 
software project failure. There are many solutions available 
to provide the prediction of software risk at different phases 
in SDLC. however, as there is lot of variation of data and it 
depends on the project nature as well. So still there is a 
scope of improvement in the model implementation. 
Whereas our timings are apt to predict risky requirements. A 
Risk prediction model includes classification methods that 
are projected to predict risks on the Software Specifications 
of the project. 

 

Figure 1: Proactive approach with prediction model 

1.1 Solution 

As we have been working for this client for more than 5 
years and we have delivered several projects for the same 
base source code. We have the entire data of the 
requirements along with their defects.  We have dataset of 
around 250 different requirements developed till date. We 
have taken inputs from SMEs about how to estimate defects 
in a particular feature. There are few factors identified by 
SMEs and based the impact of these factors the defects are 
estimated. If a feature is having higher than the estimated 
defects, then that requirement is considered risky 
requirement and accordingly the testing team takes some 
corrective action by proactively planning of testing that 
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feature. In this paper we use ANN to analyze Risk and predict 
the result.  

2. THE RESEARCH METHOD 

We are going to use Multilayer Perceptron which is basic of 
the neural networks (NN). Basically, it consists of are an 
input layer and minimum one hidden layer followed by an 
output layer. When Input data is given as the input layer in 
to a NN, the neurons in the layer becomes active layer and 
the passes the output to the next layer until an output value 
is produced at each of the output layers neurons. Before 
passing the data to model the data collection and cleaning is 
also required which is part of feature engineering. 

 

Figure 2: Risky Requirement prediction model 

3. EXPLORATORY DATA ANALYSIS 

We have taken defects data from JIRA for the last 7 
years developed model and we analyze all those defects, 
during the fixing of defect development team put the 
feature/ requirement ID in the Jira’s so during the 
retrospection we were able to find out that which 
requirement results the exceeding defect counts from the 
defined goal of KPI. Total defect counts were ~7000 defects 
which were manually analyzed by SMEs.The dataset name is 
risky_requirements which is having almost 10,000 records. 
There is total ~250 unique requirements which are related 
to these defects and based on these defect analysis the 
different influencing factors were identified. 

 

Table 1: Sample data of featuring Data and Target 

3.1 Factor Identification  

At the very first stage in the risk prediction model, this is 
conducted using a checklist. SRS requirements having the 
influencing factors as identified by SMEs in last 7 years 
historical based data. There are several factors however only 
some could be applicable in a project so accordingly the 
factors are marked. The factors were identified after analysis 
the defects in the previous year’s projects. 

 

Figure3: Data collection and ANN model interaction 

3.2 Different Factors 

 

Table 2: Factors definition 

3.3 Preprocessing 

 

Table 3: Preprocessed Training data 
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Target label as 3 different Labels High_risky_feature, 
Medium_risky_feature, Low_risky_feature, so we need to 
convert these labels in to numeric values so that the machine 
can understand it. We perform feature encoding as the 
following table. Features and requirements are same. 

3.4 One hot Encoding 

 

Table 4: Feature Encoding on Target 

In the Multiclass classification, it is required to create target 
variable in to matrix of the class size. For example in our case 
it would be [1,0,0],[0,1,0],[0,0,1] corresponding to each of 
the target value. 

4. ANN IMPLEMENTATION 

In this implementation we have 9 inputs with 1 hidden layer 
and 1 output layer with 3 outputs.  We will have 18 neurons 
in first hidden layer and 3 neurons in second layer. This is our 
basic function which we will be changing in the fine tuning to 
improve the accuracy. The activation function used for the 
first hidden layer is ReLU; the reason of taking the ReLU is 
that in current neural networks, the usage of rectified linear 
unit or ReLU is recommended. 

Function g (z) = max {0, z} 

 

Figure 4: ReLU activation function 

In the output layer will be having Softmax as activation 
function the reason of using Softmax here is as we have to 
predict the probability of any of three targets. As it is a multi-
class classification so the output would be in terms of 
probability which is between [0, 1] Softmax for a vector x is 
calculated as per the formula below 

exp(x)/Sum(exp(x) 

 

Figure 5: Softmax activation function 

4.1 Evaluation Method 

The categorical cross entropy is used in multiclass 
classification. It easily distinguishes between two different 
probability distribution. 

Two parameters were analyzed. Suppose we have 
probabilities p1, p2, p3, p4………pn of different variables and 
variables Z1, Z2, ……….Zn are unnormalized probability. We 
define Softmax function Qi as below with exponentiation, 
division and summation operations.  

 

 

Figure 6: ANN Model 

In a situation when all Xi is equal to a constant C. Analytically 
all the output should be equal to 1/n. 

We construct a cross entropy loss J=-∑iPilogQi 

Dataset  

We have used another evaluation metric named K-fold 
cross validation which creates a process where every 
sample in the data is included in the dataset in the set at 
some test. K represents a number of folds, usually in 
ranges of 3 to 10. The data was split into K equal folds and 



          International Research Journal of Engineering and Technology (IRJET)       e-ISSN: 2395-0056 

                Volume: 11 Issue: 08 | Aug 2024              www.irjet.net                                                                         p-ISSN: 2395-0072 

  

© 2024, IRJET       |       Impact Factor value: 8.315       |       ISO 9001:2008 Certified Journal       |     Page 522 
 

their deviations for each running were analyzed. We found 
that data set was not imbalanced. Data distribution 

 

Table 5: Data Distribution 

Accuracy & Precision 

 We have run tree different sets for different combinations of 
epoch and the batch sizes also with input and output number 
of neurons. We have compared the accuracy and precision of 
the model for the probability of the output of the features.  

Following result is based on 25 epochs and batch size 32 
with 64 input neurons 

 

Table 6: Observation (Without Tuning) 

 

4.2 Fine Tuning 

Following fine tuning approaches were adopted to improve 
the accuracy of ANN 

Number of hidden layers 

We can take even a single hidden layer with many neurons 
this also can help us in extracting pattern in the dataset. It’s 
always better to have multiple layers with neurons than 
single layer with higher neurons. Since deep learning works 
on the representing layer mechanism, so first layer captures 
primitive features and then next layer links factors and then 
next layer identifies pattern. This also uses transfer 
learning. We can add hidden layer until overfitting does not 
occur. 

 

Number of neurons/layers to decide 

Number of neurons is like in pyramid shape, means from the 
initial hidden layers to the output layer the neuron count 
decreases. Like 64->32->16 As number of primitive features 
is more and then they make complex patterns which are 
lesser in count and further reduced. However, it is not having 
any impact on the performance so every layer can have same 
number of neurons or nodes, however the numbers should 
be sufficient. In the hidden layer we need to have sufficient 
number of neurons/nodes. 

Batch Size 

a) Batch gradient decent All rows and then weights are 
updated slow Training  

b) Stochastic gradient decent After one row the weights 
are updated. Very Fast  

c) Mini Batch gradient decent We decide the batch size, 
after how many rows the weights would be updated. After 
how many rows traversal the weights would be updated. 
Maximum we can have been 8192, however the best is to 
have smaller batch size like 8, 24 or 32. 

Activation function 

Sigmoid gives vanishing gradient problem. However, in our 
case it is unavoidable as we have multi-class classification 
problem. 

No of epochs 

Early stopping implementation, it automatically stops the 
model training or epoch’s when it finds that there is no more 
improvement. Using Keras callback APIs. 

Following result is based on 200 epochs and batch size 8 
with 64 input neurons 

 

Table 7: Observation (After Tuning Model) 

We have used ML based XG BOOST method on same 
dataset. 

 

Table 8: Observation (Comparison) 
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5. CONCLUSIONS 

The presented approach automatically predicts the risky 
feature for a project. There are few factors identified by 
SMEs and based on the presence of these factors the defects 
are estimated. If a feature is having higher than the 
estimated defects, then that features is considered risky 
feature and accordingly the testing team takes some 
corrective action by proactively planning of testing that 
feature. In this paper we train ANN Model based on this data 
and analyzes Risk and predicts the result. This information 
can be used by the development team to choose a proper 
preventive action. It can also be used by testing team to 
create a test suite or design for that specific feature. In 
addition, this approach could be utilized for building 
benchmarks of specific bug types. The dataset size was 
almost 1000 records with 3 outputs, in particular, 
High_risky_feature, Medium_risky_feature, and 
Low_risky_feature. 64 hidden nodes and batch size of 32 
with 25 epochs for the initial condition was used in this 
method. When evaluated using the categorical cross entropy 
and k-fold cross validation, this method has an accuracy of 
90% and if 200 epochs was used, the accuracy increased to 
approximately 95%. XGBoost was used to compare with the 
current method it has an accuracy of 87%. The ANN 
Multiclass outperforms this method and has an outstanding 
precision score of 94%. It can be concluded that the ANN 
method is more stable in terms of how the network is 
supposed to respond to a particular input. However further 
exploration could be done with respect to XG BOOST 
accuracy as compare o MLP. 

Threats to validation 

During the manual classification, we have noticed recurring 
fault patterns. Manually categorizing the root cause might be 
error-prone and the true root cause of the bug can only be 
determined by the original programmer. We indicated the 
confidence level for each bug we categorized and excluded 
bugs with a low confidence level. 
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