
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 11 Issue: 08 | Aug 2024 www.irjet.net p-ISSN: 2395-0072

© 2024, IRJET | Impact Factor value: 8.315 | ISO 9001:2008 Certified Journal | Page 636

Machine Learning vs Deep Learning Approach for Sentiment Analysis on

Twitter Data

Swapnil sonawane, Alisha Gaikwad, Sneha Thakur

--***---

Abstract- Sentiment Analysis is a process of categorizing
whether the text is positive, negative, or neutral. Not only
this, but it also includes emotions like happiness, sadness,
anger, fear, and surprise. Sentiment analysis can be used in
various fields, some well-known fields including online
shopping. Sentiment analysis can solve real-time issues and is
a crucial task in Natural Language Processing (NLP). We can
use traditional Machine Learning algorithms, such as
Support Vector Machine (SVM), Tree-based techniques, or
Naïve Bayes have been widely used for sentiment analysis.
The advent of deep learning (DL) techniques, like CNN, RNN,
or state-of-the-art methods, changed this field to capture the
more complex patterns in data. This paper presents the
comparative study of sentiment analysis using ML and DL
techniques. We used ML and DL algorithms against Twitter
Sentiment Analysis data and compared the algorithms based
on accuracy, computational efficiency, and ability to adopt
complex patterns in large datasets. This paper provides
insights into the trade-off between ML and DL approaches for
Sentiment Analysis, further guiding researchers and
practitioners in choosing the appropriate approach for their
specific tasks.

Key Words: Sentiment Analysis, Machine Learning, Deep
Learning, RNN, LSTM, GRU

1. INTRODUCTION

As the whole world connects to the internet, data is
everywhere, and the famous quote “Data is the new Oil” is
relevant to the current world. This data includes customer
feedback, reviews on the products they buy, and people’s
opinions on various topics on different social media
platforms. E-commerce websites like Amazon, Flipkart, and
Walmart, must analyze the customer's feedback and review
the product to increase the product sales. Also, the
manufacturer can improve and address the customer's
concerns, to enhance the customer's experience and
satisfaction by analyzing the sentiment of customers'
reviews and feedback. Sentiment analysis can help
businesses to monitor their reputation by tracking the
comments, and social media reviews. By understanding the
user's review, product developer can improve their
products. Companies like Twitter, Facebook, and Instagram
can analyze people’s opinions on current trending topics

like elections, and wars to keep the platform safe and make
sure that the platform stays neutral for all users and does
not get biased in a specific direction. These companies also
used sentiment analysis to monitor the tweets and posts to
make sure that they are appropriate and follow all the
community guidelines, and if someone goes against the
guidelines, they remove their content from the platform.
We can use Machine Learning and Deep Learning
algorithms to classify the sentiment. However, which
technique is suitable for problem statements, depends on
the data size and ability to adapt to new contexts.

There are a few observations on which the system
architecture is proposed.

2. LITERATURE REVIEW

2.1 Lexical or Rule-Based Approach

In “Twitter Sentiment Analysis Using Lexical or Rule-
Based Approach: A Case Study” [1], Sheresh Zahoor and
Rajesh Rohila use Lexical or Rule Based (unsupervised
technique) for Twitter sentiment analysis. Using the Twitter
API, they create 4 different datasets. 1. Haryana Assembly
Polls 2. ML Khattar 3. The sky is pink (movie) 4. United
Nations General Assembly (UNGA). The steps they follow to
collect the data and analyze the sentiments are:

1. Data Collection
2. Data pre-processing
3. Part of Speech tagging (POS)
4. Sentiment analysis using an in-built dictionary

A. Data Collection:

To collect data from Twitter, they use the Twitter API,
collect the tweet, and save it in CSV format. The CSV
file contains the date, text, retweet, hashtag, and
followers.

B. Data Pre-Processing:

To prepare data for sentiment analysis, they perform

various operations on data, including tokenization or

Bag-of-words, N-gram Extraction, Stemming and

Lemmatization, and StopWords removal.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 11 Issue: 08 | Aug 2024 www.irjet.net p-ISSN: 2395-0072

© 2024, IRJET | Impact Factor value: 8.315 | ISO 9001:2008 Certified Journal | Page 637

C. Part-of-Speech (POS):

Process of automatically tagging each word by their
grammatical feature, such as Noun, Pronoun, verb,
adverb, etc.

D. Model Evaluation:
They used TextBlob and VADER built-in libraries
available in Python. TextBlob is an open-source
NLTK-based library, whereas VADER (Valence Aware
Dictionary and Sentiment Reasoner) is used for
lexicon-based sentiment analysis. The result they
conclude is:

Sentiment
Haryana Assembly Polls ML Khattar
Text Blob VADER Text Blob VADER

Positive 29.7% 44% 58.5% 58.5%
Negative 12.0% 17.6% 9.6% 9.6%
Neutral 58.3% 38.5% 32% 20.5%

Sentiment
The sky is pink UNGA

Text Blob VADER Text Blob VADER
Positive 64.1% 62.8% 36.2% 33.4%
Negative 12.1% 12.7% 12.6% 40.1%
Neutral 23.8% 24.5% 251.2% 26.5%

The conclusion of this case study found that the results
obtained from unsupervised techniques are not accurate
and subject to change.

2.2 Deep Learning Approach

Vasily D. Derbentsev and Vitalii S. Bezkorovainyi et al.
published “A Comparative Study of Deep Learning Models
for Sentiment Analysis of Social Media Texts” [2] paper. The
author of this paper presents a comparative study of a deep
learning model for sentiment analysis of social media text.
They used Deep Neural Network (DNN), Convolutional
Neural Network (CNN), Long-Short Term Memory (LSTM)
architecture, and Logistic Regression classifier as a baseline.
They chose 2 datasets for their study: one is IMDB Movie
Reviews, and the other is Twitter Sentiment 140.

For Feature Extraction, they follow Bag of Words (BOW), N-
grams, TF-IDF, word embedding

A. Pre-processing and word embeddings
For the text-preprocessing task, they used the NLKT library,
and this task includes removing punctuations, markup tags,
HTML, and Tweet addresses, removing stopwords, and
converting all words into lowercase words.

B. DNN models design and hyperparameter settings
1. Used pre-trained GloVe embeddings of size 100 in the

first layer (embedding layer).

2. First model CNN with three convolutional layers with
different kernel sizes and used Maxpooling layers
between them and then flatten and Dense layer.

3. In the second approach, they combine the
CNN+LSTM.

4. Third, CNN + BiLSTM (forward and Backward LSTM).
5. To obstruct overfitting, Dropout layers are used.

C. Evaluation:

IMDB Dataset

Models LR CNN
CNN-
LSTM

CNN-BiLSTM

Precision 86.62% 90.04% 90.90% 83.08%
Recall 85.54% 90.31% 84.84% 93.25%

F1-Score 86.08% 90.18% 87.76% 87.87%
Accuracy 85.90% 90.09% 88.08% 87.03%

Twitter-140 dataset

Models LR CNN
CNN-
LSTM

CNN-BiLSTM

Precision 71.61% 76.17% 78.98% 79.54%
Recall 74.63% 79.47% 77.47% 84.41%

F1-Score 73.09% 77.78% 78.23% 81.91%
Accuracy 79.54% 77.24% 78.37% 82.10%

The experiment showed that LR (baseline) achieved 85.9%
(74.23%), CNN achieved 90.09% (77.24%), CNN-LSTM
reached 88.01% (78.36%), and BiLSTM-CNN attained
87.03% (82.10%).

2.3 Machine Learning Algorithms

In “Sentiment Analysis of Twitter Data: A Survey of
Techniques” [3], the paper’s authors, Vishal and S. Sonawane,
use machine learning algorithms on a comparatively small
dataset publicly made available by Stanford University. They
studied Naïve Bayes, Max Entropy, and Support Vector
Machine algorithms. Also, they compared the result with the
various data pre-processing techniques like stopwords
removal, Unigram, and Trigram.

A. Data Processing
StopWords: Words like I, am, you, your, etc. are removed
during the data processing step because these words do not
add much information to the text for sentiment analysis.

Bigram: It uses a combination of two words, e.g., “Not
happy” clearly indicating the negative sentiment.

B. Evaluation
1. They achieve 73.56% accuracy without using

StopWords removal, Unigram, and Bigram
techniques.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 11 Issue: 08 | Aug 2024 www.irjet.net p-ISSN: 2395-0072

© 2024, IRJET | Impact Factor value: 8.315 | ISO 9001:2008 Certified Journal | Page 638

2. Naï ve Bayes Algorithm

Algorithm Accuracy
Naï ve Bayes (Unigram) 74.56%
Naï ve Bayes (Bigram) 76.44%
Naï ve Bayes (trigram) 75.41%

3. Support Vector Machine (SVM)

Algorithm Accuracy
SVM with unigram 76.68%
SVM with bigram 77.73%

The paper concludes that the Support Vector Machine and
Naï ve Bayes algorithms give the highest accuracy, and in
some cases, lexicon-based methods are effective.

3. SYSTEM ARCHITECTURE

Dataset
We used the Sentiment140[4] dataset for our experiment.
The dataset contains 1.6 million tweets. The dataset has a
target, ids, date, flag, user, and text columns.

i. Target: the polarity of tweets (0: Negative, 4:
Positive)

ii. Ids: id of the tweet
iii. Date: date of the tweet
iv. Flag: query
v. User: The user who tweeted
vi. Text: text of the tweet.

The dataset has 0.8M positive and 0.8M negative tweets.

DATA PROCESSING

This dataset has no column names, so we manually give
names to each column for our better understanding to
make the process easy to understand the data. The column
names are target, ids, date, flag, user, and text. We then
checked if any column contained any null values or not and
found that there were no null values present in any of the
columns. The dataset has an equal number of Positive and
negative Tweets i.e.,0.8M tweets in each category. For the
target column, 0 represents Negative sentiment and 4
represents Positive sentiment. We replaced 4 with 1, as it
gives more context to the data. We apply the following data
pre-processing and data cleaning operations to data.

1. StopWords Remove: Use the NLTK library to remove
all the stopwords from the data, as these words do
not contribute much to prediction.

2. Removal of Special characters and converting all
words to a lowercase word: To remove any special
characters such as @, //, etc. from the data, we use a

regular expression library to find these characters
and remove them. We convert all words into
lowercase words.

3. Stemming: In natural language processing (NLP),
stemming is a text-preprocessing method. In
particular, it is the act of condensing a word's
inflected form into a single "stem," or basic form—
also referred to as a "lemma" in linguistics.

We used the PortStemmer function from the NLTK
library to perform the stemming operation. Then we
add the “stemmed_text” newly created column to our
dataset after performing the stemming step.

(The above operation is performed on “text” columns)

FEATURE EXTRACTION

After data processing, we extract only the “target” and the
newly added “stemmed_text” column for further
processing. All other columns are not required for
sentiment analysis. After this, the next step is to split the
data into train-test splits. For this, we used scikit-learn
train_test_split functions with the splitting ratio of 80:20,
i.e., 80% data for training purposes and 20% data for
testing purposes. To convert the text into vectors, we used
the TF-IDF technique.

TF-IDF: Term Frequency Inverse Document Frequency
(TF-IDF) is an algorithm to transfer text into a meaningful
representation of numbers (vectors)

1. Term Frequency (TF):
To measure how frequently a word (term) appears
in text.

TF(t, d) =
count of t in d

number of words in d

2. Inverse Document Frequency (IDF):
It measures how important a word is with entire
text corpus.

IDF = Log (
Total no of documetns in corpus D

No. of documents containig term t
)

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 11 Issue: 08 | Aug 2024 www.irjet.net p-ISSN: 2395-0072

© 2024, IRJET | Impact Factor value: 8.315 | ISO 9001:2008 Certified Journal | Page 639

3. TF-IDF Score:
TF − IDF(t, f, D) = TF(t, d) × IDF(t, D)

3.1 MODEL TRAINING AND RESULT

Machine Learning Algorithms

1. Logistic Regression

For classification issues, supervised machine learning
algorithms like logistic regression are employed. It is a
statistical algorithm. It is a statistical algorithm. For
predicting the output, it uses Sigmoid functions, which take
inputs and produce probability values between 0 and 1.

Sigmoid Function:

𝑧 = 𝑤. 𝑋 + 𝑏

𝜎(𝑧) =
1

1 + 𝑒−𝑧

2. NAI VE BAYES

Based on Baye's theorem, the Naï ve Bayes algorithm is used
for classification. The algorithm's presumptions are
indicated by the label "Naï ve." The algorithm assumes that
features(columns) are independent of each other.

Bayes Theorem:

P(y|X) =
P(X|y)P(y)

P(X)

Where, y=Class Labels and X= dependent features(columns)

3. XGBOOST CLASSIFIER

Extreme Gradient Boosting (XGBoost) is an ensemble
learning method that combines predictions of multiple
weak models to produce a stronger prediction (weaker →
stronger). It is widely used because it can handle a large
dataset and handling of missing values without requiring
significant pre-processing. It is an implementation of the
Gradient Boosted Decision Tree.

Deep Learning Architecture:

1. RNN ARCHITECTURE

RNNs are used for tasks that involve sequential data, such
as time series prediction, natural language processing
(NLP), and speech recognition.

RNNs are like networks that have a memory. They process
data one step at a time and remember information from
previous steps. Imagine reading a sentence word by word.

An RNN processes each word in order and keeps track of
the context from previous words to understand the
sentence better. This memory aspect helps RNNs make
decisions based on the sequence of data, such as predicting
the next word in a sentence or recognizing spoken words
over time. RNNs are very similar to feedforward neural
networks, except is also have a connection pointing
backward.

Fig 1.1 – RNN Network

Because of unstable gradients, RNN suffers from two major
problems: 1) Problem of long-term dependency and
(Vanishing gradient problem) 2) Stagnated Training
(Exploding gradient problem).

As sequence length increases, RNN struggles to remember
the initial time-step context, and this issue arises because of
the vanishing gradient problem, and because of the
exploding gradient, the stagnated training problem occurs.

2. LSTM AND BiLSTM ARCHITECTURE

To tackle the Long-Term dependency problem, Sepp
Hochreiter and Jurgen Schmihuber introduced the “Long-
Short-Term Memory (LSTM)” [5] architecture.

Fig 2.1 - LSTM Cell

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 11 Issue: 08 | Aug 2024 www.irjet.net p-ISSN: 2395-0072

© 2024, IRJET | Impact Factor value: 8.315 | ISO 9001:2008 Certified Journal | Page 640

From c(t-1) to c(t) the LSTM cell decides which part has to
remove (forget) and what to add based on input (x(t))

LSTM Cell has two states:

1. c(t) (Cell state) → Long Term State, for remembering
information for a longer duration

2. h(t) (Hidden state) → Short Term State, for
remembering information for short durations

The key idea behind these two states is what to keep and
what to discard.

Type of gates in LSTM:

1. Forget gate (f(t)): It determines which elements of the
permanent state should be removed.

2. Input gate (i(t)): it controls which parts of g(yt) should
be added to long-term state.

3. Output gate(o(t)): it controls which part of the long-
term state should be read and output at this time
step, both to h(t) and y(t).

LSTM computations:

i(t) = σ(Wxi
TX(t) + Whi

T h(t−1) + bi)

f(t) = σ(Wxf
T X(t) + Whf

T h(t−1) + bf)

o(t) = σ(Wxo
T X(t) + Who

T h(t−1) + bo)

g(t) = tanh(Wxg
T X(t) + Whg

T h(t−1) + bg)

c(t) = σ(𝑓(t) ⊗ c(t−1) + i(t) ⊗ g(t))

y(t) = h(t) = o(t) ⊗ tanh(c(t))

Here,

wxi, wxf, wxo, and wxg are the weight matrices of each of the
four layers for their connections to the input vector x(t).
whi, whf ,who, and whg are the weight matrices of each of the
four layers for their connection to the previous short-term
state h(t-1).
bi, bf, bo, and bg are the biases for each of the four layers.

BiLSTM

To improve the performance of LSTM, the BiLSTM
architecture is introduced, which captures the
dependencies in both forward and backward directions of
sequence. It uses two LSTM layers:

1. Forward LSTM: It processed the sequence from left
to right (Start to End) direction.

2. Backward LSTM: It processes the sequence from
right to left (end to start)

Then, output from both LSTMs is combined, which allows
the model to consider the context from both directions at
each time step.

3. GRU ARCHITECTURE

The Gated Recurrent Unit (GRU) cell was proposed by
Kyunghyun Cho et al. in a 2014 paper titled “Learning
Phrase Representations using RNN Encoder-Decoder for
Statistical Machine Translation.” [6]

GRU is a reduced version of the LSTM cell, and it claims to
achieve similar results to LSTM. The simplifications are:

1. A single vector h(t) is a combination of both state
vectors.

2. A single gate controller x(t) controls the forget gate
and input gate.

3. Full state vector h(t) is the output of every time step
h(t)=y(t)

4. New gate controller r(t) that controls which part of the
previous state will be shown to the layer g(t).

Fig 4.1 GRU Cell

GRU Computations

z(t) = σ(Wxz
T X(t) + Whz

T h(t−1) + bz)

r(t) = σ(Wxr
T X(t) + Whr

T h(t−1) + br)

g(t) = tanh(Wxg
T X(t) + Whg

T (𝑟𝑡 ⊗ (𝑡−1)) + bg)

h(t) = z(t) ⊗ (𝑡−1) + (1 − 𝑧(𝑡)) ⊗ 𝑔(𝑡))

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 11 Issue: 08 | Aug 2024 www.irjet.net p-ISSN: 2395-0072

© 2024, IRJET | Impact Factor value: 8.315 | ISO 9001:2008 Certified Journal | Page 641

3.2 TRAINING AND RESULT

Machine Learning Algorithms

We used Logistic Regression (LR) as a baseline model to
compare the accuracy of the other models.

Models LR MNB XGBoost
Precision 75.62% 75.28% 75.62%
Recall 78.96% 75.12% 78.96%

F1-Score 77.25% 75.2% 77.25%
Accuracy 76.75% 75.23% 76.75%

Deep Learning Algorithms

For each architecture, we used the Adam optimizer with a
learning rate of 0.001, the sigmoid activation function for
the output (last) layer, binary cross-entropy as the loss
function, accuracy as the metric, 50 epochs, and a batch size
of 128.

For the LSTM, BiLSTM, and GRU architectures, we used the
ReLU activation function in the Dense layer and to avoid
overfitting, we applied L2 regularization.

Model Summary

Models Layers Parameters

Simple
RNN

Embedding
input_dim=5000,
output_dim=100,
input_length=50

simpleRNN 128, return_sequence=True
Dropout 0.5
simpleRNN 64, return_sequence=True
Dropout 0.5
simpleRNN 32
dense 1, activation=” Sigmoid”

LSTM

Embedding
input_dim=5000,
output_dim=100,
input_length=50

LSTM
128, return_sequence=True
kernel_regularizer=l2(0.001)

Dropout 0.4
LSTM 64
Dropout 0.4

Dense
64, activation='relu',
kernel_regularizer=l2(0.001)

dropout 0.4
dense 1, activation=’sigmoid’

BiLSTM
Embedding

input_dim=5000,
output_dim=100,
input_length=50

Bidirectional
(LSTM)

128, return_sequence=True
kernel_regularizer=l2(0.001)

Dropout 0.4
Bidirectional
(LSTM)

64

Dropout 0.4

Dense
64, activation='relu',
kernel_regularizer=l2(0.001)

dropout 0.4
dense 1, activation=’sigmoid’

GRU

Embedding
input_dim=5000,
output_dim=100,
input_length=50

Bidirectional
(LSTM)

128, return_sequence=True
kernel_regularizer=l2(0.001)

Dropout 0.4
Bidirectional
(LSTM)

64

Dropout 0.4

Dense
64, activation='relu',
kernel_regularizer=l2(0.001)

dropout 0.4
dense 1, activation=’sigmoid’

RESULT

Models RNN LSTM BiLSTM GRU
Precision 76.47% 77.41% 76.52% 77.84%
Recall 75.75% 78.27% 77.96% 78.01%

F1-Score 77.6% 77.84% 77.55% 77.92%
Accuracy 77.19% 77.64% 77.5% 77.83

In this paper, we apply both machine learning and deep
learning techniques to the sentiment140 dataset. This large
dataset (1.6M tweets) is best for comparing the ML and DL
algorithms. We found that the machine learning algorithm
achieved a maximum of 76.75% accuracy, whereas with
only 50 epochs we crossed 77% accuracy with a simple
RNN model with a limited number of parameters, and with
LSTM we crossed 82% training accuracy. Hence, we can
conclude that deep learning architecture outperforms
machine learning techniques. As with limited resources, we
are not able to do much experimentation. For future
studies, we plan to increase the epoch size, increase the
LSTM and GRU layers, and compare the results.

REFERENCES

[1] Sheresh Zahoor, Rajesh Rohilla “Twitter Sentiment
Analysis Using Lexical or Rule-Based Approach: A
Case Study”.

4. CONCLUSION

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 11 Issue: 08 | Aug 2024 www.irjet.net p-ISSN: 2395-0072

© 2024, IRJET | Impact Factor value: 8.315 | ISO 9001:2008 Certified Journal | Page 642

[2] Vasily D. Derbentsev, Vitalii S. Bezkorovainyi et al. “A
comparative study of deep learning models for
sentiment analysis of social media texts.”

[3] Vishal A. Kharde, S.S. Sonawane “Sentiment Analysis
of Twitter Data: A Survey of Techniques.”

[4] www.kaggle.com/datasets/kazanova/sentiment140

[5] Sepp Hochreiter and Jurgen Schmihuber “Long-
Short-Term Memory.”

[6] Kyunghyun Cho et al. “Learning Phrase
Representations using RNN Encoder-Decoder for
Statistical Machine Translation”

[7] Mayur Wankhade, Annavarapu Chandra Sekhara Rao
& Chaitanya Kulkarni “A survey on sentiment
analysis methods, applications, and challenges”

[8] Dr. Manjula Bairam, R Lakshman Naik “A Study of
Sentiment Analysis: Concepts, Techniques, and
Challenges”

[9] Xing Fang & Justin Zhan “Sentiment analysis using
product review data”

