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Abstract- Sentiment Analysis is a process of categorizing 
whether the text is positive, negative, or neutral. Not only 
this, but it also includes emotions like happiness, sadness, 
anger, fear, and surprise. Sentiment analysis can be used in 
various fields, some well-known fields including online 
shopping. Sentiment analysis can solve real-time issues and is 
a crucial task in Natural Language Processing (NLP). We can 
use traditional Machine Learning algorithms, such as 
Support Vector Machine (SVM), Tree-based techniques, or 
Naïve Bayes have been widely used for sentiment analysis. 
The advent of deep learning (DL) techniques, like CNN, RNN, 
or state-of-the-art methods, changed this field to capture the 
more complex patterns in data. This paper presents the 
comparative study of sentiment analysis using ML and DL 
techniques. We used ML and DL algorithms against Twitter 
Sentiment Analysis data and compared the algorithms based 
on accuracy, computational efficiency, and ability to adopt 
complex patterns in large datasets. This paper provides 
insights into the trade-off between ML and DL approaches for 
Sentiment Analysis, further guiding researchers and 
practitioners in choosing the appropriate approach for their 
specific tasks. 
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1. INTRODUCTION 
 
As the whole world connects to the internet, data is 
everywhere, and the famous quote “Data is the new Oil” is 
relevant to the current world. This data includes customer 
feedback, reviews on the products they buy, and people’s 
opinions on various topics on different social media 
platforms. E-commerce websites like Amazon, Flipkart, and 
Walmart, must analyze the customer's feedback and review 
the product to increase the product sales. Also, the 
manufacturer can improve and address the customer's 
concerns, to enhance the customer's experience and 
satisfaction by analyzing the sentiment of customers' 
reviews and feedback. Sentiment analysis can help 
businesses to monitor their reputation by tracking the 
comments, and social media reviews. By understanding the 
user's review, product developer can improve their 
products. Companies like Twitter, Facebook, and Instagram 
can analyze people’s opinions on current trending topics 

like elections, and wars to keep the platform safe and make 
sure that the platform stays neutral for all users and does 
not get biased in a specific direction. These companies also 
used sentiment analysis to monitor the tweets and posts to 
make sure that they are appropriate and follow all the 
community guidelines, and if someone goes against the 
guidelines, they remove their content from the platform. 
We can use Machine Learning and Deep Learning 
algorithms to classify the sentiment. However, which 
technique is suitable for problem statements, depends on 
the data size and ability to adapt to new contexts. 

There are a few observations on which the system 
architecture is proposed. 
 

2. LITERATURE REVIEW 

2.1 Lexical or Rule-Based Approach 

In “Twitter Sentiment Analysis Using Lexical or Rule-
Based Approach: A Case Study” [1], Sheresh Zahoor and 
Rajesh Rohila use Lexical or Rule Based (unsupervised 
technique) for Twitter sentiment analysis. Using the Twitter 
API, they create 4 different datasets. 1. Haryana Assembly 
Polls 2. ML Khattar 3. The sky is pink (movie) 4. United 
Nations General Assembly (UNGA). The steps they follow to 
collect the data and analyze the sentiments are: 

1. Data Collection 
2. Data pre-processing 
3. Part of Speech tagging (POS) 
4. Sentiment analysis using an in-built dictionary 

 
A. Data Collection: 

To collect data from Twitter, they use the Twitter API, 
collect the tweet, and save it in CSV format. The CSV 
file contains the date, text, retweet, hashtag, and 
followers. 
 

B. Data Pre-Processing:   

To prepare data for sentiment analysis, they perform 

various operations on data, including tokenization or 

Bag-of-words, N-gram Extraction, Stemming and 

Lemmatization, and StopWords removal. 
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C. Part-of-Speech (POS): 

Process of automatically tagging each word by their 
grammatical feature, such as Noun, Pronoun, verb, 
adverb, etc. 
 

D.  Model Evaluation: 
They used TextBlob and VADER built-in libraries 
available in Python. TextBlob is an open-source 
NLTK-based library, whereas VADER (Valence Aware 
Dictionary and Sentiment Reasoner) is used for 
lexicon-based sentiment analysis. The result they 
conclude is: 

Sentiment 
Haryana Assembly Polls ML Khattar 
Text Blob VADER Text Blob VADER 

Positive 29.7% 44% 58.5% 58.5% 
Negative 12.0% 17.6% 9.6% 9.6% 
Neutral 58.3% 38.5% 32% 20.5% 

 

Sentiment 
The sky is pink UNGA 

Text Blob VADER Text Blob VADER 
Positive 64.1% 62.8% 36.2% 33.4% 
Negative 12.1% 12.7% 12.6% 40.1% 
Neutral 23.8% 24.5% 251.2% 26.5% 

 
The conclusion of this case study found that the results 
obtained from unsupervised techniques are not accurate 
and subject to change.  

2.2 Deep Learning Approach 

Vasily D. Derbentsev and Vitalii S. Bezkorovainyi et al. 
published “A Comparative Study of Deep Learning Models 
for Sentiment Analysis of Social Media Texts” [2] paper. The 
author of this paper presents a comparative study of a deep 
learning model for sentiment analysis of social media text. 
They used Deep Neural Network (DNN), Convolutional 
Neural Network (CNN), Long-Short Term Memory (LSTM) 
architecture, and Logistic Regression classifier as a baseline. 
They chose 2 datasets for their study: one is IMDB Movie 
Reviews, and the other is Twitter Sentiment 140.   

For Feature Extraction, they follow Bag of Words (BOW), N-
grams, TF-IDF, word embedding 

A. Pre-processing and word embeddings 
For the text-preprocessing task, they used the NLKT library, 
and this task includes removing punctuations, markup tags, 
HTML, and Tweet addresses, removing stopwords, and 
converting all words into lowercase words. 

B. DNN models design and hyperparameter settings 
1. Used pre-trained GloVe embeddings of size 100 in the 

first layer (embedding layer). 

2. First model CNN with three convolutional layers with 
different kernel sizes and used Maxpooling layers 
between them and then flatten and Dense layer. 

3. In the second approach, they combine the 
CNN+LSTM.  

4. Third, CNN + BiLSTM (forward and Backward LSTM). 
5. To obstruct overfitting, Dropout layers are used.  

 

C. Evaluation: 
 
IMDB Dataset 

Models LR CNN 
CNN-
LSTM 

CNN-BiLSTM 

Precision 86.62% 90.04% 90.90% 83.08% 
Recall 85.54% 90.31% 84.84% 93.25% 

F1-Score 86.08% 90.18% 87.76% 87.87% 
Accuracy 85.90% 90.09% 88.08% 87.03% 

 
Twitter-140 dataset 

Models LR CNN 
CNN-
LSTM 

CNN-BiLSTM 

Precision 71.61% 76.17% 78.98% 79.54% 
Recall 74.63% 79.47% 77.47% 84.41% 

F1-Score 73.09% 77.78% 78.23% 81.91% 
Accuracy 79.54% 77.24% 78.37% 82.10% 

 
The experiment showed that LR (baseline) achieved 85.9% 
(74.23%), CNN achieved 90.09% (77.24%), CNN-LSTM 
reached 88.01% (78.36%), and BiLSTM-CNN attained 
87.03% (82.10%). 

2.3 Machine Learning Algorithms 

In “Sentiment Analysis of Twitter Data: A Survey of 
Techniques” [3], the paper’s authors, Vishal and S. Sonawane, 
use machine learning algorithms on a comparatively small 
dataset publicly made available by Stanford University. They 
studied Naïve Bayes, Max Entropy, and Support Vector 
Machine algorithms. Also, they compared the result with the 
various data pre-processing techniques like stopwords 
removal, Unigram, and Trigram. 

A. Data Processing 
StopWords: Words like I, am, you, your, etc. are removed 
during the data processing step because these words do not 
add much information to the text for sentiment analysis. 

Bigram: It uses a combination of two words, e.g., “Not 
happy” clearly indicating the negative sentiment. 

B. Evaluation 
1. They achieve 73.56% accuracy without using 

StopWords removal, Unigram, and Bigram 
techniques. 
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2. Naï ve Bayes Algorithm 

Algorithm Accuracy 
Naï ve Bayes (Unigram) 74.56% 
Naï ve Bayes (Bigram) 76.44% 
Naï ve Bayes (trigram) 75.41% 

 
3. Support Vector Machine (SVM) 

Algorithm Accuracy 
SVM with unigram 76.68% 
SVM with bigram 77.73% 

The paper concludes that the Support Vector Machine and 
Naï ve Bayes algorithms give the highest accuracy, and in 
some cases, lexicon-based methods are effective. 

3. SYSTEM ARCHITECTURE 

Dataset 
We used the Sentiment140[4] dataset for our experiment. 
The dataset contains 1.6 million tweets. The dataset has a 
target, ids, date, flag, user, and text columns.  

i. Target: the polarity of tweets (0: Negative, 4: 
Positive) 

ii. Ids: id of the tweet 
iii. Date: date of the tweet 
iv. Flag: query 
v. User: The user who tweeted 
vi. Text: text of the tweet. 

The dataset has 0.8M positive and 0.8M negative tweets. 

DATA PROCESSING 

This dataset has no column names, so we manually give 
names to each column for our better understanding to 
make the process easy to understand the data. The column 
names are target, ids, date, flag, user, and text. We then 
checked if any column contained any null values or not and 
found that there were no null values present in any of the 
columns. The dataset has an equal number of Positive and 
negative Tweets i.e.,0.8M tweets in each category. For the 
target column, 0 represents Negative sentiment and 4 
represents Positive sentiment. We replaced 4 with 1, as it 
gives more context to the data. We apply the following data 
pre-processing and data cleaning operations to data. 

1. StopWords Remove: Use the NLTK library to remove 
all the stopwords from the data, as these words do 
not contribute much to prediction. 

2. Removal of Special characters and converting all 
words to a lowercase word: To remove any special 
characters such as @, //, etc. from the data, we use a 

regular expression library to find these characters 
and remove them. We convert all words into 
lowercase words. 

3. Stemming: In natural language processing (NLP), 
stemming is a text-preprocessing method. In 
particular, it is the act of condensing a word's 
inflected form into a single "stem," or basic form—
also referred to as a "lemma" in linguistics. 

 

We used the PortStemmer function from the NLTK 
library to perform the stemming operation. Then we 
add the “stemmed_text” newly created column to our 
dataset after performing the stemming step. 

(The above operation is performed on “text” columns) 

FEATURE EXTRACTION 

After data processing, we extract only the “target” and the 
newly added “stemmed_text” column for further 
processing. All other columns are not required for 
sentiment analysis. After this, the next step is to split the 
data into train-test splits. For this, we used scikit-learn 
train_test_split functions with the splitting ratio of 80:20, 
i.e., 80% data for training purposes and 20% data for 
testing purposes. To convert the text into vectors, we used 
the TF-IDF technique. 

TF-IDF:  Term Frequency Inverse Document Frequency 
(TF-IDF) is an algorithm to transfer text into a meaningful 
representation of numbers (vectors) 

1. Term Frequency (TF): 
To measure how frequently a word (term) appears 
in text. 

TF(t, d) =
count of t in d

number of  words in d
 

2. Inverse Document Frequency (IDF): 
It measures how important a word is with entire 
text corpus. 

IDF = Log (
Total no of documetns in corpus D

No. of documents containig term t
) 
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3. TF-IDF Score: 
TF − IDF(t, f, D) = TF(t, d)  ×  IDF(t, D) 

3.1 MODEL TRAINING AND RESULT 

Machine Learning Algorithms 

1. Logistic Regression 

For classification issues, supervised machine learning 
algorithms like logistic regression are employed. It is a 
statistical algorithm. It is a statistical algorithm. For 
predicting the output, it uses Sigmoid functions, which take 
inputs and produce probability values between 0 and 1. 

Sigmoid Function: 

𝑧 = 𝑤. 𝑋 + 𝑏 

𝜎(𝑧) =
1

1 + 𝑒−𝑧
 

2. NAI VE BAYES 

Based on Baye's theorem, the Naï ve Bayes algorithm is used 
for classification. The algorithm's presumptions are 
indicated by the label "Naï ve." The algorithm assumes that 
features(columns) are independent of each other. 

Bayes Theorem: 

P(y|X) =
P(X|y)P(y)

P(X)
 

Where, y=Class Labels and X= dependent features(columns) 

 

3. XGBOOST CLASSIFIER 

Extreme Gradient Boosting (XGBoost) is an ensemble 
learning method that combines predictions of multiple 
weak models to produce a stronger prediction (weaker → 
stronger). It is widely used because it can handle a large 
dataset and handling of missing values without requiring 
significant pre-processing. It is an implementation of the 
Gradient Boosted Decision Tree. 

Deep Learning Architecture: 

1. RNN ARCHITECTURE 

RNNs are used for tasks that involve sequential data, such 
as time series prediction, natural language processing 
(NLP), and speech recognition. 

RNNs are like networks that have a memory. They process 
data one step at a time and remember information from 
previous steps. Imagine reading a sentence word by word. 

An RNN processes each word in order and keeps track of 
the context from previous words to understand the 
sentence better. This memory aspect helps RNNs make 
decisions based on the sequence of data, such as predicting 
the next word in a sentence or recognizing spoken words 
over time. RNNs are very similar to feedforward neural 
networks, except is also have a connection pointing 
backward. 

  

Fig 1.1 – RNN Network 

Because of unstable gradients, RNN suffers from two major 
problems: 1) Problem of long-term dependency and 
(Vanishing gradient problem) 2) Stagnated Training 
(Exploding gradient problem). 

As sequence length increases, RNN struggles to remember 
the initial time-step context, and this issue arises because of 
the vanishing gradient problem, and because of the 
exploding gradient, the stagnated training problem occurs. 

2. LSTM AND BiLSTM ARCHITECTURE 

To tackle the Long-Term dependency problem, Sepp 
Hochreiter and Jurgen Schmihuber introduced the “Long-
Short-Term Memory (LSTM)” [5] architecture. 

 

Fig 2.1 - LSTM Cell 
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From c(t-1) to c(t) the LSTM cell decides which part has to 
remove (forget) and what to add based on input (x(t)) 

LSTM Cell has two states: 

1. c(t) (Cell state) → Long Term State, for remembering 
information for a longer duration 

2. h(t) (Hidden state) → Short Term State, for 
remembering information for short durations 

The key idea behind these two states is what to keep and 
what to discard. 

Type of gates in LSTM: 

1. Forget gate (f(t)): It determines which elements of the 
permanent state should be removed. 

2. Input gate (i(t)): it controls which parts of g(yt) should 
be added to long-term state. 

3. Output gate(o(t)): it controls which part of the long-
term state should be read and output at this time 
step, both to h(t) and y(t). 

LSTM computations: 

i(t) =  σ(Wxi
TX(t)  +  Whi

T h(t−1) + bi ) 

f(t) =  σ(Wxf
T X(t)  +  Whf

T h(t−1) + bf ) 

o(t) =  σ(Wxo
T X(t)  +  Who

T h(t−1) + bo ) 

g(t) = tanh(Wxg
T X(t)  +  Whg

T h(t−1) + bg ) 

c(t) =  σ(𝑓(t) ⊗  c(t−1) + i(t)   ⊗  g(t)) 

y(t) =  h(t) = o(t) ⊗  tanh(c(t)) 

Here, 

wxi, wxf, wxo, and wxg are the weight matrices of each of the 
four layers for their connections to the input vector x(t). 
whi, whf ,who, and whg are the weight matrices of each of the 
four layers for their connection to the previous short-term 
state h(t-1). 
bi, bf, bo, and bg are the biases for each of the four layers. 

 

BiLSTM 

To improve the performance of LSTM, the BiLSTM 
architecture is introduced, which captures the 
dependencies in both forward and backward directions of 
sequence. It uses two LSTM layers: 

1. Forward LSTM: It processed the sequence from left 
to right (Start to End) direction. 

2. Backward LSTM: It processes the sequence from 
right to left (end to start) 

Then, output from both LSTMs is combined, which allows 
the model to consider the context from both directions at 
each time step. 

3. GRU ARCHITECTURE 

The Gated Recurrent Unit (GRU) cell was proposed by 
Kyunghyun Cho et al. in a 2014 paper titled “Learning 
Phrase Representations using RNN Encoder-Decoder for 
Statistical Machine Translation.” [6] 

GRU is a reduced version of the LSTM cell, and it claims to 
achieve similar results to LSTM. The simplifications are: 

1. A single vector h(t) is a combination of both state 
vectors. 

2. A single gate controller x(t) controls the forget gate 
and input gate. 

3. Full state vector h(t) is the output of every time step 
h(t)=y(t) 

4. New gate controller r(t) that controls which part of the 
previous state will be shown to the layer g(t). 

 

Fig 4.1 GRU Cell 

GRU Computations 

z(t) =  σ(Wxz
T X(t)  +  Whz

T h(t−1) + bz ) 

r(t) = σ(Wxr
T X(t)  +  Whr

T h(t−1) + br ) 

g(t) = tanh(Wxg
T X(t)  +  Whg

T (𝑟𝑡 ⊗  (𝑡−1)) + bg ) 

h(t) = z(t) ⊗  (𝑡−1) + (1 − 𝑧(𝑡)) ⊗  𝑔(𝑡)) 
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3.2 TRAINING AND RESULT 

Machine Learning Algorithms 

We used Logistic Regression (LR) as a baseline model to 
compare the accuracy of the other models. 

Models LR MNB XGBoost 
Precision 75.62% 75.28% 75.62% 
Recall 78.96% 75.12% 78.96% 

F1-Score 77.25% 75.2% 77.25% 
Accuracy 76.75% 75.23% 76.75% 

Deep Learning Algorithms 

For each architecture, we used the Adam optimizer with a 
learning rate of 0.001, the sigmoid activation function for 
the output (last) layer, binary cross-entropy as the loss 
function, accuracy as the metric, 50 epochs, and a batch size 
of 128. 

For the LSTM, BiLSTM, and GRU architectures, we used the 
ReLU activation function in the Dense layer and to avoid 
overfitting, we applied L2 regularization. 

Model Summary 

Models Layers Parameters 

Simple 
RNN 

Embedding 
input_dim=5000, 
output_dim=100, 
input_length=50 

simpleRNN 128, return_sequence=True 
Dropout 0.5 
simpleRNN 64, return_sequence=True 
Dropout 0.5 
simpleRNN 32 
dense 1, activation=” Sigmoid” 

LSTM 

Embedding 
input_dim=5000, 
output_dim=100, 
input_length=50 

LSTM 
128, return_sequence=True 
kernel_regularizer=l2(0.001) 

Dropout 0.4 
LSTM 64 
Dropout 0.4 

Dense 
64, activation='relu', 
kernel_regularizer=l2(0.001) 

dropout 0.4 
dense 1, activation=’sigmoid’ 

BiLSTM 
Embedding 

input_dim=5000, 
output_dim=100, 
input_length=50 

Bidirectional 
(LSTM) 

128, return_sequence=True 
kernel_regularizer=l2(0.001) 

Dropout 0.4 
Bidirectional 
(LSTM) 

64 

Dropout 0.4 

Dense 
64, activation='relu', 
kernel_regularizer=l2(0.001) 

dropout 0.4 
dense 1, activation=’sigmoid’ 

GRU 

Embedding 
input_dim=5000, 
output_dim=100, 
input_length=50 

Bidirectional 
(LSTM) 

128, return_sequence=True 
kernel_regularizer=l2(0.001) 

Dropout 0.4 
Bidirectional 
(LSTM) 

64 

Dropout 0.4 

Dense 
64, activation='relu', 
kernel_regularizer=l2(0.001) 

dropout 0.4 
dense 1, activation=’sigmoid’ 

 

RESULT 

Models RNN LSTM BiLSTM GRU 
Precision 76.47% 77.41% 76.52% 77.84% 
Recall 75.75% 78.27% 77.96% 78.01% 

F1-Score 77.6% 77.84% 77.55% 77.92% 
Accuracy 77.19% 77.64% 77.5% 77.83 

In this paper, we apply both machine learning and deep 
learning techniques to the sentiment140 dataset. This large 
dataset (1.6M tweets) is best for comparing the ML and DL 
algorithms. We found that the machine learning algorithm 
achieved a maximum of 76.75% accuracy, whereas with 
only 50 epochs we crossed 77% accuracy with a simple 
RNN model with a limited number of parameters, and with 
LSTM we crossed 82% training accuracy. Hence, we can 
conclude that deep learning architecture outperforms 
machine learning techniques. As with limited resources, we 
are not able to do much experimentation. For future 
studies, we plan to increase the epoch size, increase the 
LSTM and GRU layers, and compare the results. 
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