
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 12 Issue: 03 | Mar 2025 www.irjet.net p-ISSN: 2395-0072

© 2025, IRJET | Impact Factor value: 8.315 | ISO 9001:2008 Certified Journal | Page 385

AI-Based Code Review and Optimization System

Nikhil Bhatnagar1, Anshika Shrivastava2, Harsh Daniel Xaxa3, Aneesh Sharma4, Anuyoksha

Singh Rajput5

1,2,3,4B.Tech Student, Department of Computer Science and Engineering, LCIT Bilaspur, CG, India
5Assistant Professor, Dept. of Computer Science and Engineering, LCIT Bilaspur, CG, India

---***---
Abstract - Software development is becoming increasingly
complex, necessitating robust code review and optimization
techniques to ensure code quality, security, and performance.
Traditional manual code review methods are time-consuming,
error-prone, and inconsistent. This paper presents an AI-based
code review and optimization system that automates code
analysis, detects vulnerabilities, and provides optimization
suggestions. The system integrates modern AI and web
technologies, utilizing Next.js and ShadCN for the front end,
Flask for the backend, and Gemini, CodeBERT, and machine
learning models from Hugging Face for intelligent code
assessment. Additionally, Python libraries such as Pandas,
NumPy, and Scikit-learn are leveraged for efficient data
handling and analysis. Cloudinary is used for file storage,
ensuring seamless management of code-related files. ESLint is
incorporated for best analysis practices, improving the
system’s ability to enforce coding standards and detect errors
effectively. Our proposed system streamlines the code review
process, reducing human effort while improving efficiency and
accuracy. The system demonstrates high accuracy in detecting
code defects through extensive testing, with a confusion matrix
analysis validating its performance. This research highlights
the system's architecture, implementation, and results,
showing its potential to transform software development
workflows.

Keywords: AI-powered code review, machine learning,
CodeBERT, software optimization, Gemini API, Next.js,
Flask, ESLint, Cloudinary.

1. INTRODUCTION

Code quality plays a crucial role in software development,
impacting performance, maintainability, and security.
Traditional code review methods rely heavily on manual
inspection, which is time-consuming, prone to human error,
and inconsistent across different reviewers. With the
increasing complexity of modern applications, automated
solutions powered by artificial intelligence (AI) and machine
learning (ML) are essential to streamline the review process,
ensuring efficiency and accuracy.

In recent years, AI-driven tools have emerged to assist in
various aspects of software engineering, including bug
detection, code optimization, and security vulnerability
assessment. However, existing solutions often lack flexibility,
comprehensive analysis, or seamless integration into

development workflows. Our proposed system addresses
these limitations by leveraging CodeBERT for syntax analysis,
Gemini for AI-driven code understanding, and machine
learning models for optimization and security
recommendations. The system is designed to provide
detailed feedback on code quality while minimizing false
positives, thereby enhancing developer productivity.

To create an efficient and scalable solution, we integrate
Next.js and ShadCN for a dynamic and user-friendly
interface, while Flask serves as the backend, managing AI
interactions and processing requests. ESLint is incorporated
to enforce coding best practices, ensuring consistent and
maintainable code. Additionally, Cloudinary is used for file
storage, allowing developers to securely manage code files
and related assets.

This paper explores the methodologies, architecture, and
implementation of the AI-based code review and
optimization system. The results demonstrate significant
improvements in defect detection and performance
optimization, reducing the manual effort required for code
review. The study also evaluates the system’s effectiveness
using a confusion matrix, providing insights into its precision
and recall.

2. LITERATURE REVIEW

The increasing reliance on artificial intelligence (AI) for
software engineering tasks has led to significant
advancements in automated code review, bug detection, and
optimization. This section explores key research
contributions that have influenced the development of AI-
based code analysis systems, covering deep learning models,
transformer-based architectures, and machine learning
techniques applied to software quality assessment.

2.1 AI and Machine Learning in Code Analysis

Several studies have highlighted the effectiveness of AI-
driven models in automating software analysis. BERT was
introduced as a transformer-based model capable of
understanding natural language and code representations,
laying the foundation for models like CodeBERT, which
specializes in software development tasks [1,2]. Similarly, the
naturalness of software has been explored, demonstrating
that machine learning models can predict code structures
with high accuracy [4].

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 12 Issue: 03 | Mar 2025 www.irjet.net p-ISSN: 2395-0072

© 2025, IRJET | Impact Factor value: 8.315 | ISO 9001:2008 Certified Journal | Page 386

A key advancement in this field is the development of deep
neural networks for code understanding and transformation.
A survey on machine learning for code analysis identified
trends in using AI to predict software defects and improve
maintainability [5]. More recently, studies have
demonstrated that transformer-based models significantly
enhance the accuracy of automated code review systems,
reducing human effort and increasing consistency [6].

2.2 Transformer Models for Code Optimization

The adoption of transformer architectures has greatly
improved code analysis tasks. CodeT5+ extends pre-trained
models for various programming-related tasks, including bug
detection, code summarization, and completion [8]. Similarly,
research has questioned whether deep neural networks are
the best approach for modeling source code, ultimately
supporting the use of transformers in software engineering
tasks [7].

Further studies examined the performance of pre-trained
transformer models for code representation, concluding that
such models significantly enhance program understanding
and optimization capabilities [13]. These findings align with
research that successfully applied machine learning
techniques to detect code clones, an essential feature in
maintaining software quality [11].

2.3 Automated Code Review and Bug Fixing

The use of AI for automated bug detection and program
repair has been widely studied. DeepFix was one of the first
neural network models designed to fix syntax errors
automatically [15]. Later research extended this approach,
applying neural machine translation techniques to generate
bug-fixing patches, showing that AI can generate accurate bug
fixes by learning from historical patches [3].

Neural networks have also been integrated into code review
workflows. Neural Code Review, a system that recommends
changes for developers based on learned patterns, improves
efficiency by automating common suggestions, reducing the
cognitive load on human reviewers [14].

2.4 Security and Vulnerability Detection

With increasing concerns over software security, AI-based
vulnerability detection has gained traction. Studies explored
the effectiveness of pre-trained code representations in
detecting security flaws, concluding that transformers
outperform traditional static analysis techniques [10].
Another study proposed a graph-based neural network for
program repair, demonstrating its ability to identify and fix
security vulnerabilities in source code [12].

2.5 Summary of Findings

The reviewed literature highlights the rapid evolution of AI-
driven code analysis, emphasizing:

1. The effectiveness of transformer models (CodeBERT,
CodeT5+) in understanding and optimizing source
code [1,2,8].

2. The success of deep learning techniques in bug
detection, syntax correction, and program repair
[3,15].

3. The integration of AI into automated code review
systems, reducing human effort and increasing
accuracy [6,14].

4. The role of machine learning models in security
vulnerability detection outperforms traditional
static analysis tools [10,12].

These studies are the foundation for our proposed AI-based
code review and optimization system, which builds upon
transformer models, machine learning, and automation
techniques to improve software quality, efficiency, and
security.

3. PROPOSED SYSTEM

The proposed AI-based code review and optimization system
aims to automate the process of code analysis, bug detection,
and performance optimization. The system enhances code
quality by leveraging machine learning models, transformer-
based AI architectures, and modern web technologies while
reducing human effort.

3.1 Objectives of the System

The main objectives of the proposed system are:

 Automated Code Review: Analyze source code for
syntax errors, vulnerabilities, and inefficiencies.

 Optimization Suggestions: Recommend
performance enhancements and best practices.

 Security Analysis: Identify potential security flaws
using AI-driven techniques.

 Seamless Developer Integration: Provide an
interactive UI for real-time feedback and
improvements.

3.2 Key Features

1. AI-Powered Code Analysis
 Uses CodeBERT and Gemini API to check code

syntax and logic.
 Supports multiple programming languages for

broader compatibility.
2. Error Detection and Bug Fixing

 Deep learning models detect syntax and logical
errors.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 12 Issue: 03 | Mar 2025 www.irjet.net p-ISSN: 2395-0072

© 2025, IRJET | Impact Factor value: 8.315 | ISO 9001:2008 Certified Journal | Page 387

 ESLint ensures adherence to best coding
practices.

3. Performance Optimization
 AI suggests ways to refactor code for better

efficiency.
 Detects redundant or inefficient code patterns.

4. Built with Next.js and ShadCN for a smooth and
modern user experience.

5. Cloud-Based File Storage
 Cloudinary securely stores uploaded code for

easy access.
 Ensures fast file retrieval and efficient data

management.

3.3 Working Process

The system follows a structured workflow:

1. Developers can either upload their code or paste it
directly into the web interface.

2. The system cleans up the code by parsing it and
removing any unnecessary elements.

3. CodeBERT and Gemini assess syntax, logic, and
security issues.

4. ML models provide bug fixes and optimization
suggestions.

5. ESLint Validation: Ensures adherence to best
practices.

6. Errors, vulnerabilities, and recommendations are
displayed to the user.

7. Suggestions for performance improvements are
provided.

8. The analyzed code and reports are stored in
Cloudinary for future access.

3.4 Advantages of the Proposed System

 Increased Efficiency: Automates time-consuming
manual code review tasks.

 Higher Accuracy: This reduces human errors by
leveraging AI-powered analysis.

 Scalability: It supports large code bases and multiple
programming languages.

 Enhanced Security: It detects vulnerabilities more
effectively than traditional static analysis.

 Developer-Friendly: It provides real-time feedback
through a clean and interactive UI.

4. SYSTEM ARCHITECTURE

5. RESULTS AND DISCUSSION

The proposed AI-based code review and optimization system
was evaluated on various programming code samples to
assess its effectiveness in error detection, performance
optimization, and security analysis. The results were
analyzed based on accuracy, efficiency, and usability.

5.1 Code Review Accuracy

The system was tested on a dataset containing 1,000+ code
snippets across multiple programming languages, including
Python, JavaScript, and Java. The AI-powered review
process demonstrated:

 87% accuracy in detecting syntax errors.
 82% accuracy in identifying logical errors.
 78% accuracy in recognizing security

vulnerabilities.

These results indicate that CodeBERT and Gemini
effectively analyze source code, but there is still room for
improvement in identifying complex logic errors.

5.2 Performance Optimization

The machine learning-based optimization module suggested
code refactoring techniques, such as reducing redundant
loops and improving variable usage, leading to an average
execution time reduction of 20% across selected test cases.
However, the effectiveness varied based on programming
language and complexity.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 12 Issue: 03 | Mar 2025 www.irjet.net p-ISSN: 2395-0072

© 2025, IRJET | Impact Factor value: 8.315 | ISO 9001:2008 Certified Journal | Page 388

5.3 Security Vulnerability Detection

The system successfully detected common security flaws
such as SQL injection, buffer overflow risks, and cross-site
scripting (XSS) in web applications. The security module
outperformed traditional static analysis tools, identifying
14% more vulnerabilities in the test dataset. However,
some false positives were noted, particularly in dynamic
and interpreted languages like JavaScript.

5.4 Usability and Developer Feedback

User feedback was collected from 20 software developers
who tested the system. Key observations:

 85% of users found the real-time feedback useful for
debugging.

 78% agreed that the performance optimization
suggestions improved code efficiency.

 65% noted that false positives in security warnings
need refinement.

Overall, the system provided valuable insights into code
quality and security, with most users finding it beneficial in
reducing manual review efforts.

5.5 Limitations of the System

Despite its strong performance, the system has certain
limitations:

1. False Positives and Negatives
 The security vulnerability detection

module occasionally flagged false positives,
leading to unnecessary corrections.

 Some logic-based errors were missed,
indicating that deep learning models require
further fine-tuning.

2. Scalability Issues
 The system struggles with large-scale

projects containing thousands of files,
leading to higher processing time.

 Optimizations are currently more effective on
small to medium-sized projects rather than
enterprise-level applications.

3. Limited Support for All Programming Languages
 While the system performs well for Python,

JavaScript, and Java, its accuracy drops for
less common languages like Rust or Golang.

 Expanding the training dataset could help
improve cross-language compatibility.

4. Dependence on Training Data
 The accuracy of AI-based analysis depends on

the quality and diversity of training data.
 Poorly documented or legacy codebases may

not be reviewed effectively.

5.6 Future Improvements

To overcome these limitations, we plan to:

 Enhance model fine-tuning to improve logical
error detection.

 Introduce hybrid analysis (AI + rule-based) to
reduce false positives.

 Improve multi-language support by training on
diverse code repositories.

 Optimize processing speed for large-scale projects
using parallel computing techniques.

5.7 Summary

The proposed AI-based system successfully automates code
review, detects security vulnerabilities, and suggests
performance optimizations with high accuracy. While
effective, it requires further improvements in handling
large code bases, reducing false positives, and supporting
more programming languages. These findings highlight the
potential of AI-driven code review systems in modern
software development.

6. CONFUSION MATRIX ANALYSIS

To evaluate the accuracy and reliability of the AI-based code
review system, a confusion matrix was used to analyze the
performance of the error detection, optimization
suggestions, and security vulnerability identification
models. The confusion matrix provides insights into true
positives (TP), false positives (FP), true negatives (TN),
and false negatives (FN), helping to assess the system’s
strengths and areas for improvement.

6.1 Confusion Matrix for Syntax Error Detection

Predicted / Actual Error Present
(Actual Positive)

No Error (Actual
Negative)

Error Detected
(Predicted Positive)

435 (TP) 52 (FP)

No Error Detected
(Predicted Negative)

63 (FN) 450 (TN)

 Precision: 89.3% (TP / (TP + FP))
 Recall: 87.3% (TP / (TP + FN))
 F1-score: 88.3%

Interpretation: The model correctly detects most syntax
errors but still flags some false positives, indicating a need
for better rule-based filtering in combination with AI.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 12 Issue: 03 | Mar 2025 www.irjet.net p-ISSN: 2395-0072

© 2025, IRJET | Impact Factor value: 8.315 | ISO 9001:2008 Certified Journal | Page 389

6.2 Confusion Matrix for Security Vulnerability
Detection

Predicted / Actual Vulnerability
Present

No
Vulnerability

Vulnerability Detected 210 (TP) 78 (FP)

No Vulnerability
Detected

35 (FN) 500 (TN)

 Precision: 72.9%
 Recall: 85.7%
 F1-score: 78.8%

Interpretation: While the system successfully detects
security vulnerabilities, false positives are relatively high
(FP = 78). Some flagged vulnerabilities were minor
warnings rather than critical risks, which can be improved
by refining the model's classification criteria.

6.3 Confusion Matrix for Performance Optimization
Suggestions

Predicted /
Actual

Improvement
Needed

No Improvement
Needed

Suggested
Optimization

380 (TP) 64 (FP)

No Suggestion
Given

47 (FN) 480 (TN)

 Precision: 85.6%
 Recall: 88.9%
 F1-score: 87.2%

Interpretation: The optimization suggestions were highly
accurate, with only 47 false negatives, meaning the system
missed very few actual optimization opportunities.
However, 64 false positives suggest that some optimizations
might not be necessary or efficient, requiring further
refinement.

6.4 Key Observations and Improvements Needed
1. Syntax Error Detection: High accuracy but needs

better differentiation between critical and minor
issues.

2. Security Vulnerability Detection: Strong recall but
high false-positive rate requires a better
classification model.

3. Performance Optimization Suggestions: It is
Reliable but can be further fine-tuned for real-world
efficiency improvements.

4. Overall Model Performance: The AI models
effectively reduce manual review efforts but require
additional refinements to lower false positives and
negatives.

Table: Comparison of Existing Work vs. Proposed
AI-Based Code Review System

Feature Existing Work Proposed System (Our
Work)

Code Analysis
Approach

Uses rule-based and
traditional AI models
like DeepFix,
CodeBERT, and
CodeT5+ [2,8,15]

Combines CodeBERT,
Gemini API, and ML
models for better
accuracy

Syntax Error
Detection
Accuracy

75-85% [2,6] 87% (improved
accuracy with hybrid
AI & ESLint validation)

Performance
Optimization
Accuracy

Optimization
suggestions are
limited to pre-
defined patterns
[5,13]

Uses ML to identify
inefficient code and
reduce execution time
by 20%

False
Negatives in
Code Review

~15% of errors
missed in complex
logic scenarios [6]

12% false negatives
(improved logic
detection with refined
AI training)

Execution
Speed

Slow when
processing large
codebases (>1000
files) [12]

Optimized processing
using Cloudinary for
storage & Flask for
lightweight API
handling

Usability &
Developer
Feedback

Some systems lack
an intuitive UI [7]

Developer-friendly UI
(Next.js + ShadCN)

Storage & File
Management

Local storage or
database-based [11]

Cloud-based storage
(Cloudinary) for easy
file retrieval and
scalability

7. CONCLUSION

This research presents an AI-based code review and
optimization system that enhances software quality by
automating error detection, performance optimization, and
security analysis. The system integrates CodeBERT, Gemini,
machine learning models, and ESLint alongside modern web
technologies such as Next.js, Flask, and Cloudinary for
seamless processing and storage.

Through extensive testing, the system demonstrated:

 High accuracy (87%) in syntax error detection.
 Effective performance optimization, reducing

execution time by 20%.
 Successfully identified security vulnerabilities,

outperforming traditional static analysis tools.
 Positive user feedback, with 85% of developers

finding real-time feedback useful.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 12 Issue: 03 | Mar 2025 www.irjet.net p-ISSN: 2395-0072

© 2025, IRJET | Impact Factor value: 8.315 | ISO 9001:2008 Certified Journal | Page 390

However, certain limitations remain, such as false positives in
security warnings, scalability challenges for large projects,
and limited support for all programming languages. Future
improvements will focus on reducing false positives,
enhancing multi-language support, and optimizing system
performance for large-scale applications.

Overall, this AI-powered system provides a fast, accurate, and
scalable solution for automated code review, significantly
reducing manual effort while improving software quality.
With continued refinement, AI-driven tools like this have the
potential to revolutionize the software development process

REFERENCES

[1] Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2018).
BERT: Pre-training of Deep Bidirectional Transformers for
Language Understanding. arXiv preprint arXiv:1810.04805.

[2] Ahmad, W., Chakraborty, S., Ray, B., & Chang, K.-W.
(2021). Unified Pre-training for Program Understanding and
Generation. arXiv preprint arXiv:2103.05247.

[3] Tufano, M., Watson, C., Bavota, G., White, M., Poshyvanyk,
D., & Oliveto, R. (2019). An Empirical Study on Learning Bug-
Fixing Patches in the Wild via Neural Machine Translation.
ACM Transactions on Software Engineering and
Methodology (TOSEM), 28(4), 1-29.

[4] Hindle, A., Barr, E. T., Gabel, M., Su, Z., & Devanbu, P.
(2016). On the Naturalness of Software. Communications of
the ACM, 59(5), 122-131.

[5] Allamanis, M., Barr, E. T., Bird, C., & Sutton, C. (2018). A
Survey of Machine Learning for Big Code and Naturalness.
ACM Computing Surveys (CSUR), 51(4), 1-37.

[6] Fischer, T., Wang, Y., & Godbole, A. (2023). Leveraging
Transformer-Based Models for Automated Code Review.
arXiv preprint arXiv:2301.06789.

[7] Hellendoorn, V. J., & Devanbu, P. (2017). Are Deep Neural
Networks the Best Choice for Modeling Source Code?
Proceedings of the 2017 International Symposium on
Software Testing and Analysis (ISSTA), 763-774.

[8] Lin, X., Ahmad, W., Chakraborty, S., Ray, B., & Chang, K.-W.
(2022). CodeT5+: Open Code Large Language Models for
Code Understanding and Generation. arXiv preprint
arXiv:2209.07642.

[9] Liu, C., Chen, L., Wang, X., et al. (2020). Deep Learning
Based Code Representation Learning: A Systematic Review.
Journal of Software: Evolution and Process, 33(3), e2332.

[10] Ren, S., Wan, Y., Zhang, H., Lo, D., & Liu, X. (2023).
Exploring the Effectiveness of Pretrained Code

Representations for Vulnerability Detection. IEEE
Transactions on Software Engineering, 49(1), 119-134.

[11] Rahman, M. M., Roy, C. K., & Schneider, K. (2019).
Automatic Detection of Code Clones via Machine Learning
Techniques. Proceedings of the 2019 ACM/IEEE
International Conference on Automated Software
Engineering (ASE), 487-498.

[12] Chen, X., Liu, C., Song, D., & Wang, W. (2021). Graph-
Based Neural Code Representation for Automated Program
Repair. Proceedings of the 2021 International Conference on
Software Engineering (ICSE), 1175-1187.

[13] Zhang, H., Zhang, L., & Gu, M. (2022). Understanding and
Improving the Performance of Transformer-Based Code
Representations. Proceedings of the 2022 ACM Joint Meeting
on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering
(ESEC/FSE), 132-143.

[14] Yefet, O., Yossef, A., & Feldman, M. (2021). Neural Code
Review: Learning to Recommend Changes for Code Review.
Proceedings of the 2021 Conference on Neural Information
Processing Systems (NeurIPS), 1-12.

[15] Gupta, S., Pradel, M., & Sen, K. (2020). DeepFix: Fixing
Syntax Errors with Neural Networks. Proceedings of the
2020 ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI), 145-159.

