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Abstract –The optimization technique for structural 

topology can be done by two methods, analytically and by 

using numerical technique. These days, FEA software 

packages are used for various analysis of designs which 

are purely based on numerical methods. In this paper 

ANSYS is used for structural analysis and topological 

optimization of a simple column fixed at bottom edge and 

central point load applied on upper edge, two point and 

three points supported pressurized short beams. This 

paper presents compliance, optimized shape, deformed 

and undeformedshape, displacements and stresses of the 

linearly elastic isotropic structures by using ANSYS 

software based on optimality criterion.   
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1. INTRODUCTION 

The paper presents the optimal design of a simple column, a 
two point supported pressurized short beam and three point 
supported short beam. The plane state of stress is assumed 
for the given structures. The optimal design is performed by 
ANSYS software which gives the optimum topology of the 
structures mainly it is achieved by reducing material in the 
design domain. For the optimization, the finite element 
method is used to discretize the structures and topology is 
performed by removing parts of elements to get a continuum 
design with holes. The models are considered to be linearly 
elastic isotropic structures whose analysis has not been done 
so far by using optimality criterion approach in ANSYS. The 
work presented in the paper is obtaining compliance value, 
optimal topology, deformed shape, displacements of 
optimized shapes with deformed and undeformed edges, 
stress distribution in the optimized topology and von-Mises 
stresses variation of the structures.  
Bendsoe and Kikuchi 1988,developed and applied 
homogenization scheme to structural optimization. Here a 
small cell structure was designed using a fixed grid 

finiteelement representation and then homogenization was 
used to calculate the effectiveproperties of a material 
composed of the individual cells. 
Suzuki and Kikuchi 1991,applied the homogenization 
method of Bendsoe and Kikuchi to extra problems inorder to 
validate it. 
Giles and Thompson 1973, noted that a process of 
optimizationleads almost inevitably to designs which exhibit 
the notorious failure characteristicsoften associated with the 
buckling of thin elastic shells". Thus removing 
materialdeemed unnecessary based on a given get of loading 
and boundary conditions maymake the structure subject to 
failure or collapse under loads. 
This has led to engineers wanting to impose extra 
constraints on the optimizationproblem in order to find 
optimal structures which are not unstable. This constraint 
isan eigenvalue constraint which is similar in mathematical 
structure to a constraint onthe harmonic (or resonant) 
modes of the structure. 
Haftka and Gurdal 1991,published their book on elements of 
structural optimization.They prescribe the derivative of an 
eigenvalue constraint for the case inwhich the eigenvalue is 
simple. However they completely neglect to give an 
expressionfor the derivative of the stress stiffness matrix, 
Neves et al. 1995,maximize the minimum buckling load of a 
continuum structuresubject to a volume constraint in an 
optimal reinforcement sense. They do findspurious buckling 
modes in which the buckling of the structure is concerned to 
the regionswhich are supposed to represent voids. Their 
solution to eradicate suchmodes was to set the stress 
contributions of low density elements in the stress 
stiffnessmatrix to zero. 
Also Neves et al. 2002, considered the problem of minimizing 
a linear combinationof the homogenized elastic properties of 
the structure subject to volume andbucking constraints 
applied to periodic microstructures. They do not use the 
SIMPmethod to penalize intermediate densities but instead 
add a penalty term to the objectivefunction considered. They 
also make some assumptions that all the eigenvalues ofthe 
buckling problem are positive which significantly simplifies 
the calculations. Theynote that the appearance of low-
density regions may result in non-physical localizedmodes in 
the low-density regions, which are an artefact of the 
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inclusion of theselow-density regions that represent void 
material in the analysis". 
Eschenauerand Olhoff 2001, described that the topology 
optimization is based on the usage of a SIMP material model. 
This paper presents short pressurized beams  subjected to 
static pressure. The presentation of the material is given in a 
2D context. 
Bendsoe and Sigmund 2003, described that the domain of 
high density then defines the shape of the mechanical 
element. For intermediate densities, material parameters 
given by an artificial material law can be used. 
According toloads conditions, the structural topology 
optimization can beclassified into two types: the topology 
optimization withfixed loads and that with design-
dependent loads. Most ofresearchers focused on the 
continuum structures designsubjected to the fixed loads. 
That is, the optimal materialdistribution is found upon the 
given design domain with theloads and the constraints 
specified. This class of optimizationproblem can be solved 
efficiently and satisfactorily now bythe present methods. 
Hammer and Olhoff 2000, the other class of topology 
optimizationproblem, that external loads depend on the 
shape andtopology of the structure itself, has hardly been 
studied andis still open to explore. 
Rozvany and Prager (1979),The main difficulty of this kind 
of problem, compared with the fixed load problem, is to 
identify the load surfaces of the structures during the 
optimization. 
Zheng and Gea (2005),a similarmethod by using other physical 

fields to identify the loadsurfaces. 

Hui Zhang &Xiong Zhang &ShutianLiuIn worked for a new 
simple element-basedsearch scheme is introduced to 
identify the load surface andthe formulation of topology 
optimization problems stayswith the context of the classical 
topology optimizationformulation based on the Solid 
Isotropic Material withPenalization (SIMP) material model. 
The load surfaces areformed by the connection of the real 
boundary of elements andthe pressures are transferred 
directly to corresponding elementnodes. 
Philip D. Browne 2013, worked for the minimization of 
compliance subject to maximum volume problem which is 
included for comparison with results. 
One advantage of the present method is the linear density-
stiffness relationship which has advantage for self weight or 
Eigen frequency problem. The topology optimization 
problem is solved through derived Optimality criterion 
method (OC), which is also introduced in the paper. Gunwant 
et al. obtained topologically optimal configuration of sheet 
metal brackets using Optimality Criterion approach through 
commercially available finite element solver ANSYS and 
obtained compliance versus iterations plots for various 
aspect ratio structures (brackets) under different boundary 
conditions. 
Chaudhuri, worked on stress concentration around a part 
through hole weakening a laminated plate by finite element 
method. Peterson has developed good theory and charts on 
the basis of mathematical analysis and presented excellent 

methodology in graphical form for evaluation of stress 
concentration factors in isotropic plates under in-plane 
loading with different types of abrupt change, but no results 
are presented for transverse loading. Patle et al. determined 
stress concentration factors in plate with oblique hole using 
FEM. Various angle of holes have been considered to 
evaluate stress concentration factors at such holes. The 
stress concentration factors are based on gross area of the 
plate. 
 
The goal of topological optimization is to find the best use of 
material for a body such that an objective criterion (i.e. 
global stiffness, natural frequency, etc.) attains a maximum 
or minimum value subject to given constraints (i.e. volume 
reduction).  
In this work, maximization of static stiffness has been 
considered. This can also be stated as the problem of 
minimization of compliance of the structure. Compliance is a 
form of work done on the structure by the applied load. 
Lesser compliance means lesser work is done by the load on 
the structure, which results in lesser energy is stored in the 
structure which in turn, means that the structure is stiffer.  
ANSYS employs gradient based methods of topology 
optimization, in which the design variables are continuous in 
nature and not discrete. These types of methods require a 
penalization scheme for evolving true, material and void 
topologies. SIMP (Solid Isotropic Material with Penalization) 
is a most commonly penalization scheme, and is explained in 
the next section. 
 

2. MATERIALS AND METHODS 
Topology optimization aims to answer the question, what is 
the best domain in whichto distribute material in order to 
optimize a given objective function subject to 
someconstraints? 
Topology optimization is an incredibly powerful tool in 
many areas of design suchas optics, electronics and 
structural mechanics. The field emerged from 
structuraldesign and so topology optimization applied in this 
context is also known as structuraloptimization. 
Applying topology optimization to structural design typically 
involves consideringquantities such as weight, stresses, 
stiffness, displacements, buckling loads and 
resonantfrequencies, with some measure of these defining 
the objective function and othersconstraining the system. 
For other applications aerodynamic performance, 
opticalperformance or conductance may be of interest, in 
which case the underlying stateequations are very different 
to those considered in the structural case. 
In structural design, topology optimization can be regarded 
as an extension ofmethods for size optimization and shape 
optimization. Size optimization considers astructure which 
can be decomposed into a finite number of members. Each 
memberis then parameterized so that, for example, the 
thickness of the member is the onlyvariable defining the 
member. Size optimization then seeks to find the optimal 
valuesof the parameters defining the members. 
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Shape optimization is an extension of size optimization in 
that it allows extra freedomsin the configuration of the 
structure such as the location of connections 
betweenmembers. The designs allowed are restricted to a 
fixed topology and thus can be writtenusing a limited 
number of optimization variables.The topology optimization 
is performed using optimality criteria method through 
ANSYS software. There are many approaches derived to 
solve pressure load problems in topology optimization. 
Structural analysis is used to assess the behaviour of 
engineering structures under the application of various 
loading conditions. Commonly used structural analysis 
method includes analytical methods, experimental methods 
and numerical methods. 
Analytical method provides accurate solutions with 
applications limited to simple geometries. Experimental 
methods are used to test prototypes or full scale models. 
However they are costly and may not be feasible in certain 
cases. Numerical methods are most sought-after technique 
for engineering analysis which can treat complex geometries 
also. Among many numerical methods, finite element 
analysis (FEM) is the most versatile and comprehensive 
numerical technique in the hands of engineers today. 
This process leads to a set of linear algebraic simultaneous 
equations for the entire system that can be solved to yield 
the required field variable (e.g., strains and stresses). As the 
actual model is replaced by a set of finite elements, this 
method gives an approximate solution rather than exact 
solution. However the solution can be improved by using 
more elements to represent the model.  
 

2.1 The Optimality Criterion approach 
The discrete topology optimization problem is characterized 
by a large number of design variables, N in this case. It is 
therefore common to use iterative optimization techniques 
to solve this problem, e.g. the method of moving asymptotes, 
optimality criteria (OC) method, to name two. Here we 
choose the latter. At each iteration of the OC method, the 
design variables are updated using a heuristic scheme.  
Optimality criteria (OC) method was analytically formulated 
by Prager and co-workers in 1960. It was later developed 
numerically and become a widely accepted structural 
optimization method (Venkaya et al. 1968).OC methods can 
be divided into two types. One type is rigorous mathematical 
statements such as the Kuhn-Tucker conditions. The other is 
algorithms used to resize the structure for satisfying the 
optimality criterion. Different optimization problems require 
different forms of optimality criterion. 
This paper considers the maximization of static stiffness 
through the inbuilt topological optimisation capabilities of 
the commercially available FEA software to search for the 
optimum material distribution in two plane stress 
structures.  
The optimum material distribution depends upon the 
configuration of the initial design space and the boundary 
conditions (loads and constraints).  

The goal of the paper is to minimize the compliance of the 
structure while satisfying the constraint on the volume of the 
material reduction.  
Minimizing the compliance means a proportional increase in 
the stiffness of the material. A volume constraint is applied 
to the optimisation problem, which acts as an opposing 
constraint.  
 
2.1.1 Element Type 
Selection of element type is one of the most important 
features in topology optimization through ANSYS. 
Topological optimization in ANSYS supports 2-D and 3-D 
solid elements. By this technique the model can be 
discretized into following element type: 
(a). 2-D Solids: Plane 82 
(b). 3-D Solids: Plane 95 
 
Plane 82: This is an 8-node element and is defined by eight 
nodes having two degree of freedom at each node. 
Translations in the nodal x and y directions (Figure 1). The 
element may be used as a plane element or as an 
axisymmetric element. The element has plasticity, creep, 
swelling, stress stiffening, large deflection, and large strain 
capabilities. 
 

 
 

Fig- 1:Plane82 element with quad and tri options 
 
Solid95: This element type has a quadratic displacement 
behavior and is well suited to model irregular meshes (such 
as produced from various CAD/CAM systems). The elements 
are defined by 20 nodes having three degrees of freedom at 
each node: translations in the nodal x, y, and z directions 
(Figure 2).The elements also have plasticity, creep, swelling, 
stress stiffening, large deflection and large strain capabilities. 
In the present paper structures are considered to be 2 D, so 
here plane 82 8-node type element is taken for 
discretization. 

 
Fig- 2:Rectangular domain meshing 
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To visualize, more the volume of material, lower will be the 
compliance of the structure and higher will be the structural 
stiffness of the structure. For implementation of this, APDL 
codes for various beam modelling and topological 
optimisation were written and run in ANSYS. 
 

2.2 Specimen Geometry and Boundary Conditions 
In the present investigation, three specimen geometries and 
boundary conditions applied have been used as shown in the 
figures below. The specimen 1 is taken from the research 
work ofPhilip Anthony Browne. Specimen 2 and specimen 3 
are taken from the research work of H. Zhang et al. All the 
three models are under plane state of stress. 
 

2.2.1 Centrally loaded column(Model 1):Example 1 is a 
stiffness topology optimization problem for a simple column 
structure.Here is presented a somewhat trivial optimization 
problem which is included for comparisonwith results of 
ANSYS based and another method. The design domain is 
square and a unit loadis applied vertically downwards at the 
centre of the top of the design domain and thebase is fixed, 
as shown in Figure-3.The properties for given problem are 
E=1 Pa and Poisson’s ratio is 0.3. 

 
Fig-3: Design domain of model column problem. This is a 

square domain witha unit load acting vertically at the 
midpoint of the upper boundary of the space. 

 
Fig-4: NAND SIMP solution to centrally loaded column 

problem on a 750 750mesh and Vfrac = 0.2 
 

2.2.2 Model 2: In this example, a simply supported short 
beam subjected tothe surface loading on the top is 
optimized. The admissibledesign domain, boundary 
conditions, and initial loadconditions are shown in Fig. 8a. 
The pressure is set to1.0. The design domain is discretized 

by 800 (40×20)square elements. The material properties are 
E=100 and ν= 0.3. The volume fraction of the solid material 
is 0.5. 

 
Fig-5: Geometry and boundary conditions of two point 

pressurized short beam 
The structure with the fixed load is optimized first as 
areference. The optimized topology is seen in Fig. 6 to be 
abridge-like result. The optimal topology result for 
thestructure with movable pressure is shown in Fig. 8c. 
Anarch-like structure is obtained and the compliance of the 
structure is 0.157. 

 
Fig-6: Optimal topology by using a new kind of element 

based search scheme of load surfaces method 
2.2.3 Model 3: A general case of more than two support 
points is considered. As shown in Fig. 7, another support 
point is added in the middle bottom of the beam. The elastic 
properties and volume fraction of solid material are the 
unchanged. Eight hundred square elements are used to 
discretize the design domain. The optimal topology of 
structure is shown in Fig. 8. The structural compliance is 
0.060, and it is much less than that of two-point supported 
structure. 

 
Fig-7:A three-point supportedshort beam design,a 

Pressurizedshort beam sketch. 
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Fig-8:The optimizedtopology with a new kind of element 

based search scheme of load surfaces method 
 

3.RESULTS 

In this section the optimal topology of structures are shown 
obtained from the Optimality Criteria Approach through 
ANSYS. Further the iteration versus values of compliances 
for all the structures are shown in the charts[1, 2& 3]. Chart 
shows the graph between Compliance and iterations. 
 
3.1 Structure Compared: 
In this section, final compliance and optimal shape of the 
models obtained with the help of ANSYS based Optimality 
Criterion. Model 1 (simple column) has been compared with 
the research paper of P.D. Browne (Minimization of 
Compliance Subjected to Maximum Volume) and Model 2 & 
Model 3 are compared with the research paper of Hui Zhang 
&Xiong Zhang &Shutian Liu (A new boundary search scheme 
for topology optimizationof continuum structures with 
design-dependent loads, 2008). 

 
3.2 Optimized Shape: 
Figure 6, Shows the topology optimization through NAND 
SIMP SolutionMethod which is nearly same as the 
topologically optimized shape as obtained for the beam 
structure under the given boundary conditions which is 
obtained by using optimality criteria using ANSYS. Figure 9, 
shows the topologically optimized shape through ANSYS for 
a Simple Column (Model 1). 

 

 

Fig-9: Optimal design for Model 1 using optimality criteria 
approach 

 
The topologically optimized shape as obtained for the two 
point supported pressurized short beam (model 2) under the 
given boundary conditions is obtained by using optimality 
criteria using ANSYS. Figure 10 shows the topologically 
optimized shape through ANSYS. 

 

 
Fig-10: Optimaldesign for Model 2 using optimality 

criteria approach 
The topologically optimized shape as obtained for the three 
point supported pressurized short beam (model 3) under the 
given boundary conditions is obtained by using optimality 
criteria using ANSYS. Figure 11 shows the topologically 
optimized shape through ANSYS. 

 
 

 
Fig-11: Optimaldesign for Model 3 using optimality 

criteria approach 
The optimal topology through ANSYS for all the three 
structures are nearly same as obtained in the research paper 
from which the problems are taken for validation. The 
topologies obtained by ANSYS shows the applied boundary 
conditions at bottom and pressure load on the top from 
figures of two point and three point pressurized short 
beams. 
 
3.3 Compliance: 
For structure 1, the initial value of compliance was 
77.9263Nmm and the final value as obtained after 16 
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iterations is 7.50157Nmm for mesh size of 200. A reduction 
of 70.42473Nmm from its initial value. Variation of 
compliance with iteration is shown in the graph 1 below. 
Vertical axis represents the compliance and the horizontal 
axis represents the iteration. 

 

Chart -1:Compliance and iteration plot for Simple Column 
structure (Model 1) 

 
For structure 2, the initial value of compliance was 
0.45281Nmm and the final value as obtained after 36 
iterations is 0.12743Nmm. A reduction of 0.32538Nmm from 
its initial value. Variation of compliance with iteration is 
shown in the graph 2 below. Vertical axis represents the 
compliance and the horizontal axis represents the iteration. 

 

Chart -2: Compliance and iteration plot for Two Point 
Supported Pressurized Short beam (Model 2) 

 
For structure 3, the initial value of compliance was 
0.20737Nmm and the final value as obtained after 24 
iterations is 0.0715953Nmm. A reduction of 0.1357747Nmm 
from its initial value. Variation of compliance with iteration 
is shown in the graph 3 below. Vertical axis represents the 
compliance and the horizontal axis represents the iteration. 

The compliance obtained by ANSYS is nearly same as that 
obtained by BESO method. 
 

 

Chart -3: Compliance and iteration plot for Three Point 
Supported Pressurized Short beam (Model 3) 

 
3.3.1 For structure 1: 
Compliance obtained by NAND SIMP Solution method= 
8.2047 Nmm.and iterations= 104 
Compliance obtained by ANSYS using optimality criteria 
method = 7.5017Nmm and iterations= 16 
Variation in two results= 8.5683% 
The optimized shape obtained by optimality criteria using 
ANSYS is nearly same as that by Nested Analysis and Design 
(NAND) SIMP solution method. 
 
3.3.2 For structure 2: 
Compliance obtained by a new kind of element based search 
scheme of load surfaces method= 0.157 Nmm. and 
iterations= 92 
Compliance obtained by ANSYS using optimality criteria 
method = 0.127428Nmm and iterations= 36 
Percent Reduction= 18.835% 
 
3.3.3For structure 3: 
Compliance obtained by a new kind of element based search 
scheme of load surfaces method= 0.060 Nmm. and 
iterations= 68 
Compliance obtained by ANSYS using optimality criteria 
method = 0.0715953Nmm and iterations= 24 
Percent Reduction= 19.325% 
 
As we have seen from the above problems that the optimized 
shape obtained for the linearly elastic isotropic structures 
with ANSYS are nearly same and comparablewith the 
methods mentioned in the research papers taken for 
validation. 
 
3.3.4 Structural Analysis (Nodal Solution using ANSYS) 
The structural analysis has been also done for the above 
mentioned structures. The table-1 given below shows the 
vector sum of displacement and von-Mises stress for all the 
three structures. From the figures 12, 13 and 14 we can see 
the deformed shapes with undeformed edge for the above 
mentioned problems and given boundary conditions. 
(a).Deformed Shape for structure 1: 
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Fig-12: Deformed shape with undeformed edge (Model 1) 
 

(b).Deformed Shape for Structure 2: 

 
Fig-13: Deformed shape with undeformed edge (Model2) 

(c).Deformed Shape for Structure 3: 

 

Fig-14: Deformed shape with undeformed edge (Model 3) 
 
 
 

 
 
 
 
 

Table -1: MaterialProperties of Structures andNodal 
Solutions (displacements and von-Mises stress) 

 

S.N. Structure E ʋ 
Displacement Stress 

Vector Sum 
von-

Mises 
1. Simple 

Column 
1 Pa 0.3 8.407 813.94 

2. Two Point 
Supported 
pressurized 
Short beam 

100 0.3 0.096059 99.23 

3. Three Point 
Supported 
pressurized 
Short beam 

100 0.3 0.55143 49.166 

 
 

3. CONCLUSIONS 
The optimized shape of model 1 using optimality criteria in 
ANSYS is nearly the same as that by the Nested Analysis and 
Design (NAND) SIMP solution method of topological 
optimization. Further the variation in compliance is very 
small for model 2. Also the compliance obtained from 
optimality criteria using ANSYS is comparable than that 
obtained by a new kind of element based search scheme of 
load surfaces method for model 3, which is our basic 
objective of topological optimization. Thus ANSYS is an 
effective tool for topological optimization and the results 
obtained by ANSYS are more effective than the result 
obtained by the other method taken for comparison in this 
paper but in some cases it is comparable. For further work 
structural analysis has been done for the above mentioned 
structures. 
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