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Abstract - Labeled training data be used for 

challenging medical image segmentation problems to 

learn different characteristics of the relevant domain. 

The Random Forest (RF) classifiers and their learned 

knowledge during training and ways to exploit it for 

improved image segmentation. Apart early learning 

discriminative features, RFs also quantify their 

importance in classification. Feature importance is use 

to design a feature selection strategy critical for high 

segmentation and classification accuracy, and also to 

propose a efficiency cost in a second-order MRF 

framework for graph cut segmentation. The cost 

function combines the contribution of different image 

skin texture like intensity, texture, and curving 

information. Experimental outcome on medical images 

show that this strategy leads to better segmentation 

accuracy than conventional graph cut algorithms that 

use only intensity information in the smoothness cost. 
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I. INTRODUCTION 

Medical image segmentation is challenging due to 

image modality, organ type and segmentation framework. 

The task is further complicated by varying scanner 

parameters from different modalities, low resolution, and 

image noise in many cases poor contrast. Two very 

popular approaches for medical image segmentation are 

active contour, and graph cuts. Initial works using these 

methods primarily relied on low level image information 

like intensity, texture and edge information to segment the 

target organ. However, image features alone were not 

sufficient for an accurate segmentation which fostered the 

exploration of ways to include prior knowledge from 

training datasets. Subsequently many works started 

incorporating prior shapes and statistical information into 

level sets and graph cut segmentation. 

  Another approach of exploiting training data is to 

learn image features that distinguish between organ and 

background structures as in Active Appearance Models 

(AAMs) and Active Shape Models (ASMs). In this work we 

propose a method that analyses the training process of 

Random Forest (RF) classifiers, and uses the learned 

knowledge to devise feature selection strategies and in 

segmenting medical images. Most methods for RF based 

segmentation use only the probability maps to segment 

the desired organ. Further, while imposing smoothness 

constraints they use only intensity information. However, 

RFs can provide much more knowledge from the training 

procedure. RFs allow us to examine the training procedure 

and quantify the importance of different features to the 

classification task. This knowledge is useful in many ways 

like designing an appropriate smoothness cost, or 

improved feature selection that could lead to higher 

segmentation accuracy. 

In the medical field, knowledge mainly builds 

upon the experience or the amount of evidences 

accumulated by medical experts in the hospitals all over 

the world. The human body is very complex machinery, 

that consists of many components, and which can be 

influenced by many factors. Hence, modeling its different 

functions or is a very difficult task. With its ability of 

generalizing from past observations and to perform 

predictions, machine learning seems to offer the perfect 

tools to integrate the experience and knowledge of 

medical experts into medical imaging applications. 
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Fig 1.1: Data Predication 

 

Since medical imaging became digital, machine learning 

can play a crucial role to support early diagnosis of cancer. 

The last decade, a lot of learning-based techniques have 

emerged, most of them based on a two-phases framework  

(1) Detection and/or segmentation of abnormalities,  

(2) Classification of the detected abnormality into benign 

or malignant. 

 

II. Related work 

To Shape prior segmentation method using graph 

cuts capable of segmenting multiple objects. The shape 

prior energy is based on a shape distance popular with 

level set approaches. We also present a multiphase graph 

cut framework to simultaneously segment multiple, 

possibly overlapping objects [3]. The multiphase 

formulation differs from multi way cuts in that the former 

can account for object overlaps by allowing a pixel to have 

multiple labels. We then extend the shape prior energy to 

encompass multiple shape priors. Unlike variation 

methods, a major advantage of our approach is that the 

segmentation energy is minimized directly without having 

to compute its gradient, which can be a cumbersome task 

and often relies on approximations. Experiments 

demonstrate that our algorithm[1], The Mumford-Shah 

functional and its cartoon limit which facilitates the 

incorporation of a statistical prior on the shape of the 

segmenting contour. By minimizing a single energy 

functional, we obtain a segmentation process which 

maximizes both the grey value homogeneity in the 

separated regions and the similarity of the contour with 

respect to a set of training shapes[1]. We propose 

closedForm, parameter-resolution for incorporating 

invariance with respect to similarity transformations in 

the variation framework. We show segmentation results 

on artificial and real-world images with and without prior 

shape information. In the cases of noise, occlusion or 

strongly cluttered background the shape prior 

significantly improves segmentation [2].  

 

2.1. Profile Based Personalization 

Previous works on profile-based PEL mainly focus 

on improving the search utility. The basic idea of these 

works is to tailor the search results by referring to, often 

implicitly, a user profile that reveals an individual 

information goal. In the remainder of this section, we 

review the previous solutions to PEL on two aspects, 

namely the representation of profiles, and the measure of 

the effectiveness of personalization. 

Many profile representations are available in the literature 

to facilitate different personalization strategies. Earlier 

techniques utilize term lists/vectors or bag of words to 

represent their profile. However, most recent works build 

profiles in hierarchical structures due to their stronger 

descriptive ability, better scalability, and higher access 

efficiency. 

2.1. Variation Integration of Shape Statistics and 

Segmentation 

The combine image information and previously acquired 

shape information in one variation framework. For a given 

contour C we define energy.  The functional Ei measures 

how well the contour and the associated segmentation u 

approximate the input grey value information. Ec favors 

contours which are familiar from a learning process. The 

parameter α allows to define the relative weight of the 

prior. In the propose for Ei a modification of the Mumford-

Shah functional and its cartoon limit, which facilitates a 

parameterization of the contour as a closed spine curve. 

Shape learning and shape statistics are then conveniently 

defined on the distribution of spline control points. 

2.2. Interactive Graph Cut Based Segmentation with 

Shape Priors 

Interactive or semi-automatic segmentation is a 

useful alternative to pure automatic segmentation in many 

applications. While automatic segmentation can be very 

challenging, a small amount of user input can often resolve 

ambiguous decisions on the part of the algorithm. In this 

work, we devise a graph cut algorithm for interactive 

segmentation which incorporates shape priors. While 

traditional graph cut approaches to interactive 

segmentation are often quite successful, they may fail in 

cases where there are diffuse edges or multiple similar 

objects in close proximity to one another. Incorporation of 
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shape priors within this framework mitigates these 

problems. 

III. PREVIOUS IMPLEMENTATIONS  

Random Forests are an ensemble learning method 

(also thought of as a form of nearest neighbor predictor) 

for classification and regression that construct a number 

of decision trees at training time and outputting the class 

that is the mode of the classes output by individual trees 

(Random Forests is a trademark of Leo Bremen and Adele 

Cutler for an ensemble of decision trees). Random Forests 

are a combination of tree predictors where each tree 

depends on the values of a random vector sampled 

independently with the same distribution for all trees in 

the forest. The basic principle is that a group of “weak 

learners” can come together to form a “strong learner”. 

Random Forests are a wonderful tool for making 

predictions considering they do not over fit because of the 

law of large numbers. Introducing the right kind of 

randomness makes them accurate classifiers and 

repressors. 

 The Random Forests algorithm was developed by 

Leo Bremen and Adele Cutler 

1. If the number of cases in the training set is N, sample N 

cases at random but with replacement, from the original 

data. This sample will be the training set for growing the 

tree. 

2. If there are M input variables, a number M is specified 

such that at each node, m variable are selected at random 

out of the M and the best split on these m is used to split 

the node.  The value of m is held constant during the forest 

growing. Each tree is grown to the largest extent possible. 

There is no pruning..  

 

Fig 1.2 Decision Tree 

 

IV. SYSTEM IMPLEMETNATION  

At each node N l of the tree Ft, a splitting function 

fl permits to split the subset S l of the training set arriving 

in this node. As detailed in the previous section, the goal of 

node optimization is to find the best splitting function 

according to a predefined objective function. In 

classification tasks, several objective functions have been 

proposed that mostly aim at reducing the class 

uncertainty. In the following, we will define the most 

popular which the Information Gain is and a variant based 

on the Gain impurity. Information gain measures the 

difference between the class uncertainty before and after 

the splitting. A common measure of uncertainty is the so-

called Shannon’s entropy which is defined for discrete 

random variables as follows: 

The random forests algorithm (for both classification and 

regression) is as follows:  

1. Draw tree bootstrap samples from the original data.  

2. For each of the bootstrap samples, grow an un pruned 

classification or regression tree, with the following 

modification: at each node, rather than choosing the best 

split among all predictors, randomly sample m try of the 

predictors and choose the best split from among those 

variables. (Bagging can be thought of as the special case of 

random forests obtained when m try = p, the number of 

predictors). 

3. Predict new data by aggregating the predictions of the n 

tree trees (i.e., majority votes for classification, average for 

regression). An estimate of the error rate can be obtained, 

based on the training data, by the following: 

 1. At each bootstrap iteration, predict the data not in the 

bootstrap sample (what Breiman calls “out-of-bag”, or 

OOB, data) using the tree grown with the bootstrap 

sample. 

2. Aggregate the OOB predictions. (On the average, each 

data point would be out-of-bag around 36% of the times, 

so aggregate these predictions.) Calculate the error rate, 

and call it the OOB estimate of error rate. 
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Fig 1.3: Random Forest Algorithm 

4.1 Image Features 

 This section describes the features used in our 

method - intensity statistics, texture and curvature 

anisotropy, and spatial context features. Context features 

are a combination of intensity, texture and curvature 

values sampled using a template. ROI identification 

requires classification of super pixels for which we use 

intensity, texture and curvature features, (excluding 

context information) to ensure fast feature extraction and 

subsequent classification, as well as good generalization of 

the classifier. For generating ROI probability maps we 

employ the complete set of features (including context 

information). 

 

4.2 Intensity Statistics 

 It is not always easy to identify the edges of the 

RV blood pool and surrounding myocardium wall. 

Psychophysical experiments have established that the 

human visual system (HVS) is sensitive only to image 

features of the first and second order (mean and variance). 

However, MR images commonly contain regions that do 

not form distinct spatial patterns but differ in their higher 

order statistics, e.g. boundaries of some malignant tumors 

are diffuse and invisible to the naked eye. we propose to 

investigate features that are not discernible by the human 

eye but may provide discriminating information for our 

task. For every sub-region (super pixel or pixel 

neighborhood) we calculate the mean, variance, skewness 

and kurtosis of the intensity values. 

 

4.3 Texture Anisotropy 

 Texture is modeled as patterns distinguished by a 

high concentration of localized spatial frequencies. 2-D 

Gabor filter banks are used to generate texture maps for 

each image. Gabor filters have optimal joint localization in 

the spatial and frequency domains. Their multi-scale and 

multi orientation structure conforms to the receptive field 

profiles of simple cortical cells, and captures rich visual 

properties such as spatial localization, orientation 

selection and spatial frequency characteristics. Since 

Gabor filters incorporate Gaussian smoothing they are 

robust to noise.  

 
Texture maps are partitioned into 9 equal parts 

corresponding to 9 sectors of a circle, and the entropy of 

texture values is calculated for each sector. More sectors 

led to fewer samples per sector which jeopardizes 

estimation of stable higher order statistics. Too few  

 

4.4 Region of Interest Identification 

ROI identification is an important part of our 

method because:  

1) It reduces the total computation time since we need not 

classify each pixel; and  

2) The ROI gives an initial selection of likely RV pixels and 

reduces false positives in subsequent analysis. Intensity in 

homogeneity correction was performed using the 

nonparametric non uniform intensity normalization (N3) 

method. 

 
Denotes the probability distribution of curvature 

values in sector r, 0 denotes the curvature values. Similar 

to texture anisotropy, the curvature asymmetry measure 

is also a 9 dimensional feature vector for a region. 

 

 
Where x' is the new intensity obtained from the 

original intensity value x; s1, s2 are the minimum and 

maximum intensities of the test image. This approach 

leads to good contrast of the different images. 
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4.5 Algorithm Implementation 

Algorithmic Analysis: 

 Generate the initial population of individuals 

 Calculate the fitness value for each individual in 

that population 

 Repeat on this generation until stop condition is 

met: (time limit, sufficient fitness achieved, etc.) 

 Select the best-fit individuals for reproduction 

 2Create new individuals by applying crossover 

and mutation operations 

Evaluate the individual fitness of new individuals 

Spatial Context Features: 

Since the human anatomy displays a high degree 

of regularity with only moderate variations, presence of 

one organ provides a strong cue about the presence of 

another organ in medical images. Through appropriately 

designed features we aim to capture the contextual 

relationship between RV and other tissues in the image. 

Context features have been used to segment brain 

structures in MRI. 

 

 

 

 

 

Fig1.4 (a) Sectors of circle for calculating 

texture and curvature anisotropy; (b) Sample 

locations for deriving context information 

Prostate from CT and MR images, cardiac structures from 

MRI, localizing anatomical structures and segmenting the 

cardiac chamber. Basically context features derive 

information of one set of objects from another set of 

objects. Since contextual information depends on relative 

orientation and distance we sample regions at fixed 

positions from a pixel the circle center is the pixel in 

question and the sampled points are identified by a red ‘X’. 

At each point corresponding to a ‘X’ we extract a 5×5 

region and calculate the mean intensity, texture and 

curvature values. The texture values were derived from 

the texture maps at 90◦ orientation and scale 1. 

 

EVALUATION RESULT:  

Probability maps and Graph Cut Segmentation 

 Probability maps are generated for all ROI pixels 

using a second set of RF classifiers. Approximately equal 

number of samples from RV and background pixels is 

taken from the training datasets. Intensity, texture, 

curvature and context features derived from these 

samples were used to train a RF classifier (different from 

the one trained on super-pixel features). The features 

were extracted from a 31 × 31 neighborhood of each pixel. 

The training set varies with each round of cross validation. 

The trained classifier is used to generate probability maps 

for every pixel within the identified ROI. Each pixel has 3 

probability values corresponding to the blood pool, 

myocardium and background. The probability maps serve 

as penalty costs in a second order MRF cost function.  

 

Figure 1.4: VOI Detection 

Errors in ROI identification lead to inaccurate RV 

segmentation. ROI detection is a classification problem 

where we need to identify those super-pixels that contain 

RV regions. If a superpixel has even one RV pixel it is 

denoted as RV, while background superpixels have all 

background pixels. Table 3 summarizes the superpixel 

classification performance for different feature 

combinations using 5-fold cross validation. Over the 32 

patients we have 630 RV blood pool super-pixels, 612 

myocardium superpixels and 653 background superpixels. 

AllFeatures indicates the combination of intensity, texture 
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and curvature features. Note that context features were 

not derived from super pixels. 

 

Fig 1.5: RV Segmentation results (a) RF;(b) RFnC; 

(c)RFnVC ; and (d) RFnVT 

EXPERIMENTS AND RESULTS 

 Cardiac MR Examinations were performed at 1.5T 

(Symphony Tim, Siemens Medical Systems, Erlangen, 

Germany) using a eight-element phased-array cardiac coil 

and repeated breath-holds of 10 − 15 s. A total of 8 − 12 

contiguous cine short axis slices were performed. 

Sequence parameters were as follows: TR = 50 ms; TE = 

1.7 ms; flip angle = 55; slice thickness = 7 mm; matrix size 

= 256×216; Field of view = 360−420 mm; 20 images per 

cardiac cycle; spatial resolution of 0.75mm/pixel. There 

were 32 datasets and we use a leave-one-out strategy to 

evaluate our method. 
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Table 2 Change in segmentation accuracy with 

different values of λ (Eqn. 3). 

N 300-600 600-900 900-1200 

AccBP (%) 77.9±1.6 89.8±2.9 83.5±2.7 

AccMyo (%) 75.1±2.8 88.5±2.3 80.8±3.2 

AccB (%) 74.7±2.8 89.3±2.8 80.0±2.7 

 

 

 

Figure 6.4 Liver Segmentation Results 

 

Figure 6.5 Performance of Random Forest 

CONCLUSION  

We have proposed an image segmentation method 

that exploits knowledge from the training process of 

Random forest classifiers. Apart from learning 

discriminative features, RFs allow us to examine the role of 

different features and their contribution toward 
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classification accuracy. Hence we are able to quantify the 

importance of different features to the classification task. 

These importance measures are used to design a 

smoothness cost for graph cut segmentation by weighing 

different features like intensity, texture and curvature 

according to their importance in classification. This strategy 

allows us to segment challenging cases where the desired 

organ in MR images has similar appearance to its 

surrounding regions. It results in higher segmentation 

accuracy than conventional graph cut approaches that use 

only intensity information in the smoothness cost. Thus we 

are able to weight different features automatically and avoid 

the shortcomings of ad-hoc weighting strategies. This 

knowledge is particularly useful when the number of 

samples is low when compared with the number of feature 

elements. In such a case the trained RF may not generalize 

well to novel samples. We can choose to discard those 

feature elements that have minimal influence on the 

classification performance. In doing so we can achieve better 

generalization of the RF in spite of very few samples. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

REFERENCES: 

1. M. Kass, A. Witkin, and D. Terzolpopulos, “Snakes: 

Active contour models,” Int. J. Comput. Vis., 1988. 

2. Y. Boykov and G. Funka-Lea, “Graph cuts and 

efficient N-D image segmentation,” Int. J. Comput. 

Vis., 2006. 

3. M. Leventon, E. Grimson, and O. Faugeras, 

“Statistical shape influence in geodesic active 

contours,” in Proc. IEEE CVPR, Jun. 2000. 

4. D. Cremers, F. Tischhauser, J. Weickert, and C. 

Schnorr, “Diffusion snakes: Introducing statistical 

shape knowledge into the Mumford-Shah 

functional,” Int. J. Comput. Vis. 2002. 

5. N. Paragios, “A variation approach for the 

segmentation of the left ventricle in cardiac image 

analysis,” Int. J. Comput. Vis., 2002. 

6. G. Slabaugh and G. Unal, “Graph cuts segmentation 

using an elliptical shape prior,” in Proc. IEEE ICIP, 

Sep. 2005, 

7. D. Freedman and T. Zhang, “Interactive graph cut 

based segmentation with shape priors,” in Proc. 

IEEE CVPR, Jun. 2005. 

8. N. Vu and B. Manjunath, “Shape prior 

segmentation of multiple objects with graph cuts,” 

in Proc. IEEE CVPR, Jun. 2008. 

 

 
 
 
 


