
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 02 Issue: 04 | July-2015 www.irjet.net p-ISSN: 2395-0072

© 2015, IRJET.NET- All Rights Reserved Page 754

Design and Verification of High performance Aligning-Dividers and Its

Testing by BIST Method

Bhanu Rekha.S1, Jayakumar.R2, Chandrashekar.H3

1 M.tech student, Department of Electronics and Communication (PG), VEMU IT, Andhra Pradesh, India
 2Ass Prof, Department of Electronics and Communication, VEMU IT, Andhra Pradesh, India
 3Asst Prof, Department of Electronics and Communication, VEMU IT, Andhra Pradesh, India

---***---
Abstract-With the increasing demand for faster
computing methods that are also optimum in power
and area constraints, it becomes necessary to look at
approaches that enhance the existing operations or
bring out new methods to satisfy the constraints. A SRT
or a digit recurrence schemes tend to use a larger look
up table to store the quotient digit this results in a large
area, missing of bits while transferring to hardware
and also increase the overall size of the design, hence
cannot be incorporated in smaller devices like signal
processors, cryptographic processors and floating point
units, to overcome this drawbacks the proposed method
uses a different approach so called Data Dependent
Dividers[2][7], which aims to develop and design of
various data dependent architecture such as the Self
aligning, Direct aligning and the Hybrid aligning
architectures, which execute in variable time and also
tend to use lesser number of resources that is in terms
of flip-flops, adders and MUXes, which are the
important resources of FPGA[9].

The proposed work attempts to bring out the
advantages of the above mentioned dividers, over one
another. An algorithm for self testing the circuit for
functionality using BIST is designed. The proposed work
has been classified broadly into two parts1. Non-
floating point dividers – includes three algorithms,
namely Self-Aligning Division, Direct-Aligning Division
and Hybrid aligning division and brings out the
differences, the advantages and disadvantages of each;
2. BIST – A circuit self-test to test any of the non-floating
point dividers. All algorithms developed is
synthesizable and are targeted for vertex 5 FPGAII.

Key Words: Self-Aligning Division, Direct-Aligning

Division, Hybrid aligning division, BIST (built-in self test),
SRT etc…

1. INTRODUCTION
Division is the most complex of the four basic arithmetic
operations and, in general, does not produce an exact
answer, since the dividend is not necessarily a multiple of
the divisor [6]. Therefore, the corresponding quotient and

remainder are usually obtained through performing a
sequence of iterations until the desired precision is
reached. This procedure is called sequential division and
serves as the basic principle for many practical
implementations Based on sequential division, the most
prevalent representatives are radix-β dividers, Where β
denotes the radix, typically chosen to be a power of 2.In
order to compute the answer, many of these dividers
perform a constant number of iterations, which makes
them very attractive for fully pipelined architectures.
However, several concepts have been developed to speed
up the exhaustive sequential process.

Hardware dividers are needed in many areas of
applications like cryptography, signal processing,
communication systems, computer floating-point units,
etc. The performance requirements of these applications
differ regarding data and architectural issues. High-speed
dividers[1] are usually too large in area to be incorporated
in small architectures Like signal processors. This
circumstance and the rapidly growing demand for small
and fast hardware dividers greatly encourage the search
for more sophisticated solutions.

Regarding practical implementations of sequential
division, there are two fundamental concepts: the
subtract-and-shift approach and division by
multiplication. The first method addresses the technique
of performing successive subtractions and shifts, which
serves as the underlying principle for all dividers
proposed in this paper

1.1 Built In Self Test(BIST)
BIST is a design-for-testability technique in which testing
is accomplished through built-in hardware features. It is a
mechanism that permits a system to test itself. BIST is
designed to meet requirements such as high reliability,
lower repair cycle times. The main purpose of BIST is to
reduce the complexity, and thereby decrease the cost and
reduce reliance upon external test equipment. In a
nutshell, BIST is the technique of designing additional
hardware and software features into integrated circuits to
allow them to perform self-testing, i.e., testing of their own
operation (functionally, parametrically, or both) using

http://en.wikipedia.org/wiki/Reliability_engineering
http://en.wikipedia.org/wiki/Repair_cycle

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 02 Issue: 04 | July-2015 www.irjet.net p-ISSN: 2395-0072

© 2015, IRJET.NET- All Rights Reserved Page 755

their own circuits, thereby reducing dependence on an
external Automated Test Equipment (ATE).

The main advantages of implementing BIST are lower cost
of test, since the need for external electrical testing using
an ATE will be reduced, if not eliminated; better fault
coverage, since special test structures can be incorporated
onto the chips; shorter test times if the BIST [4][10] can be
designed to test more structures in parallel; it’s capability
to perform tests outside the production electrical testing
environment. This allows the users to test the chips prior
to mounting or even after these are in the application
boards

1.2 Hardware Description Language
HDLs are used to write executable specifications for
hardware. A program designed to implement the
underlying semantics of the language statements and
simulate the progress of time provides the hardware
designer with the ability to model a piece of hardware
before it is created physically. It is this executability that
gives HDLs the illusion of being programming languages,
when they are more precisely classified as specification
languages or modeling languages.

Hardware Description Languages include VHDL [6],
Verilog [5], System C and Handle-C are frequently used for
FPGA programming. VHDL and Verilog are matured as
industry standards. Behavioral, RTL and structural levels
of description can be used inter-changeably in these
languages. Synthesis tools for System C are emerging, but
do not approach the maturity of VHDL or Verilog synthesis
products. Among the hardware description languages
mentioned, a mix of VHDL and verilog is used.

2. RELATED WORK
SRT [2] is named after its inventors Sweeney, Robertson
and Tocher In their method,

1/2 <|D|<1
is assumed, which means that the divisor is a normalized
fraction in the form 0.1d2 . . .dn

Also assumed as

1/2<|2R(j)<1,|
This means that all the partial dividends are normalized
fractions.

qj+1ϵ{-1,0,1}

now here the divisor is shifted or added to or subtracted
from the partial dividend

2.1. RESTORING DIVISION: 0 ≤R (j+l) < D
In the conventional restoring division 0 ≤R (j+l) < D The
quotient digit qj+l, j = 0, l. 1. n - 1 is selected by performing
a sequence of subtractions and shifts. Each time D is
subtracted from the partial remainder r x R (j), until the
difference becomes negative. Then D is added back to that
negative difference, which is so called restoring. The last

 subtraction is canceled by the addition here. the quotient
digit, which is determined by the number of subtractions
as qj+l = (number of subtractions -1). In general: qj+l + 1
subtractions and 1 addition are required to find qj+l in the
worst case. Figure 3.3 shows an example. For a binary
number system in which r = 2, the worst case scenario can
be greatly improved.

R (j+l) = r x R (j) - qj+l x D
Becomes

R (j+l) = 2R (j) - qj+l x D,
With qj+1∊ (0, l}, 0 ≤R (j+l) < D The quotient digit can be
determined as follows

Fig: 2.1.Example of Restoring Procedure

The partial remainder can be obtained by one left shift of
R (j), and the trial process can be implemented by one
subtraction:

R (j+l) = 2R (j) - D.
Then the “sign” of R (j+l) is checked ,If it is positive, qj+l = 1,
else qj+l = 0 and one restoring [1] addition is to be
performed. So the binary restoring division requires at
most one subtraction and one addition to determine one
quotient digit. The addition is needed to restore the
correct partial remainder:

R (j+l) = R (j+l) + D = 2R (j).

The hardware implementation of this binary restoring
division is shown in Figure 2.1. Three registers are
included each with n bits: (1) accumulator (AC), (2)
auxiliary register (AX) and the quotient-multiplier
register (QM), which was used to store the multiplier in
multiplication , and to hold the final quotient in division
operations under discussion. The 2n-bit dividend is

http://en.wikipedia.org/wiki/Programming_languages
http://en.wikipedia.org/wiki/Specification_language
http://en.wikipedia.org/wiki/Specification_language
http://en.wikipedia.org/wiki/Modeling_language

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 02 Issue: 04 | July-2015 www.irjet.net p-ISSN: 2395-0072

© 2015, IRJET.NET- All Rights Reserved Page 756

initially stored in registers AC concatenating QM. The n-bit
divisor is stored in the AX register. The content of AC
concatenating QM can be left shifted. The quotient digit
qj+l can be shifted in from the right end, and the bit shifted
out from the left end of AC can be stored in a buffer
register T.It can be seen that the similar hardware
performing multiplication can be applied for division
except the differences made on the following issues. First,
the direction of register shift was shift to right in
multiplication, while in division it is shift to left. Second,
the adder actually performs subtraction now, that is add
the 2’s complement number of the divisor. In Figure 2.2,
the input AX’ to the right side of the Adder is

Fig: 2.2: Hardware Of Restoring Logic

the 1’s complement of the dividend.

With the Cin, set to 1, AC +AX ‘+ 1 = AC – AX this is
choosen to inspect whether 2R (j) is < D or ≥ D. Cout is the
carry out. Quotient digit q j+l is obtained by Qj+l = T v Cout.

2.2 Binary Non-Restoring Division|R (j+l) |≤|D |
An improved division method is the binary non-restoring
division which does not need the “restoring addition”
mentioned previously. The assumption that D > 0 and |R

(j+l)| < D remain the same, while the partial remainder, R

(j+l), is allowed to have either a positive or a negative value.
The operation to be performed can be either subtraction
or addition, depending on the partial remainder.

The binary non-restoring division (B.N.D.) is performed in
Figure 2.2 in contrast to the binary restoring division
(B.R.D.) of that shown in Figure2.3.in the binary non-
restoring division, no restoration is needed and thus the
MUX in Figure 3. 4 can be eliminated. Consequently, the
division time is improved.

Fig2.3: Division Performed By Non-Restoring

Algorithms

3. Alinging Dividers
The integer divider becomes the back bone of any divider
whether floating point or non floating point because even
in floating point divider there is a integer divider
operating on mantissa and adders acting on exponents.
there exists architectures like SRT[1] where in they use
look up tables for selection of quotient and remainder, as
the radix increases there is a tendency in increase in look
up table size which ultimately requires more area, to avoid
such look-up based design it is precise to go for data
dependent dividers so called aligning dividers.

Non-floating point dividers are those that take two integer
values as inputs for the dividend and divisor and produce
the result in two parts, namely the quotient and the
remainder. Among non-floating point dividers, the paper
explore three algorithms in particular:

1. Self-Aligning Divider
2. Direct-Aligning Divider
3. Hybrid-Aligning Divider

The first two dividers follow the usual steps of subtraction
and shifting the divisor right. However, there is an
additional step of alignment in the beginning after which
the iterative subtraction begins. In the third divider, the
structure of it reduces the execution time which is
increased in the predecessor divider.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 02 Issue: 04 | July-2015 www.irjet.net p-ISSN: 2395-0072

© 2015, IRJET.NET- All Rights Reserved Page 757

3.1. Self-Aligning Divider
The usual methods of division involve shifting the divisor
right in iteration and subtracting it from the dividend
repeatedly until the process is completed. In the self
aligning divider, these steps are preceded by the process
of alignment. This involves aligning the divisor with
respect to the dividend

3.1.1. The Self-Aligning Division Algorithm
The algorithm for the self-aligning divider is no doubt a
combination of the above explained steps, namely,
alignment and iterative subtraction.

Hence the overall algorithm of self-aligning divider can be
summarized as follows.
1. Store the dividend in a register R, the divisor in register
HW (higher word) and the constant (0000 0001)2 in LW
(lower word).
2. Set a bit M to indicate the carry out (CO) in shift
operations. Initialize M to 0.
3. For alignment, perform subtraction as R-HW, and store
the carry out bit of the twos complement addition.
4. Shift HW and LW left by one bit and add 0 to LSB of LW,
store Most Significant Bit in M
5. If M=1 or CO=0, alignment is complete, hence go to step
6. If M=0 and CO=1, then the alignment is still in progress,
hence continue the next iteration and go back to step 3.
7. For subtraction, shift HW and LW to the right by one bit
and store the Least Significant Bit in M
8. Perform subtraction as R-HW and store the carry in CO.
9. If CO=1, the result is positive, hence store the result of
subtraction in R. If CO=0, the result is negative, hence
retain the previous value of R.
10. Shift HW and LW right and store LSB in M
11. If M=1, stop division, else return to step 7 to proceed
with the next iteration.

The quotient bit in each iteration is stored as the Most
Significant Bit of the register in which the count value is
initially stored.Hence,with each iteration in the
subtraction, the register is shifted to the right. This would
mean that the latest quotient bit is stored to the left of the
previous quotient bit. Generally, the result is stored with
each bit being written o the right of the previous bit. Since
this is just the opposite of what happens in the self-
aligning division procedure, it indicates that the quotient
is stored in the reverse order as compared to what is
required. Hence there is a requirement to reverse the
quotient after obtaining the final result.

3.1.2. Block Diagram of the Self-Aligning Divider
From the algorithm mentioned, a simple block diagram of
the self-aligning divider can be developed as shown in fig
3.1.In the block diagram, the registers are as follows:

 The remainder register initially holds the
dividend before alignment. After alignment, it

holds the aligned value of dividend. In
subtraction, it holds either the result of
subtraction or the previous value itself

 The divisor register is shifted to the left for
alignment and to the right during subtractions

 The quotient register initially holds the value ‘1’
and later on holds the quotient in the reverse
order

Fig. 3.1. Block Diagram of the Self-Aligning Divider
An example of the self-aligned division is shown below.
Example 1: 200/18 = 11+2 in decimal Or
1100 1000 / 0001 0010 = 0000 1101 + 0000 0010 in
binary

 R HW LW
 1100 1000 0001 0010 0000 0001
 +1110 1110
(1) 1011 0110 0010 0100 0000 0010
 1100 1000
 +1101 1100
 (1)1010 0100 0100 1000 0000 0100
 1100 1000
 + 1011 1000
(1)1000 0000 1001 0000 0000 1000
 1100 1000
 +0111 0000
(1) 0011 1000 (1) 0010 0000 0001 0000
 1001 0000 0000 1000 1100 1000
 0111 0000
(1) 0011 1000 0100 1000 1000 0100
 0011 1000 0100 1000 1000 0100
 1011 1000
(0) 1110 0000 0010 0100 0100 0010
 0011 1000
 1101 1100
(1) 0001 0100 0001 0010 1010 0001
 0001 0100
 1110 1110
(1) 0000 0010 0000 1001 1101 0000

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 02 Issue: 04 | July-2015 www.irjet.net p-ISSN: 2395-0072

© 2015, IRJET.NET- All Rights Reserved Page 758

3.2. Direct-Aligning Divider
Designing a first divider that integrates the aligner is a
pretty straightforward task. The generated divisor is
always aligned correctly to the partial remainder
regarding data sizes. However, both operands might
contain any possible combination of trailing bits after the
leading non-zero bit

The algorithm for direct-aligning divider can be
summarized in the following steps:

1. Store the dividend in registers S1 and S2
2. Store the divisor in register AD
3. Store the binary value (00000001)2 in

register PQ
4. Align divisor AD and register PQ with

respect to dividend S1 by shifting left
5. Shift AQ once to the right and store the

resulting value in PQ
6. Perform the subtractions: S1-AQ and S2-PQ

and store the carry out CO and the result of
the subtraction in register T1 and S

7. If CO = 1, store S in S1 and S2, else shift AD
and PQ once to the right and store S2 in S1

8. Perform OR operation of PQ and Q and
store the result in Q to get the updated
value of the quotient

9. Align AD and PQ by shifting right and store
LSB of PQ in bit M

10. Repeat steps 6 through 10 till the
subtraction in right alignment gives
negative bits to be shifted

Alignment
1. For initial left alignment, find the position of the first 1
in S1 and AQ, and find the difference between the two
positions
2. If the difference is positive, shift left the divisor AD and
PQ by the difference number of positions
3. For right alignment during division, find the difference
of the position of the first one in S1 and AD. If the
difference is positive, shift the divisor right by those many
bits, otherwise, division is complete.

This method of using two adders in parallel is realized in
the direct-aligning (DA)[2] divider shown in Figure 3.2.
Note that the design does not contain a 2n-bit shift
register, and therefore, theoretically any available
registers can be utilized. Adder 1 is supplied with the full
n-bit inverted AD as second operand, whereas Adder 2 is
supplied with a constant non-zero MSB combined with the
n-1 high-order bits of the inverted AD, which implies a
wired right-shift by one position. The CO signal of Adder 1
is used to control the two multiplexors. In case the
primary subtraction underflows, mux 1 selects the result
of Adder 2 and mux 2 selects the right-shifted PQ, which is
OR-ed with the quotient register.

Fig. 3.2. Schematic Diagram Of Direct-Aligning Divider

The operational sequence of the DA divider is illustrated in
Example 2, again, for solving 200/18 = 11 + 2.
Solving 110010002/100102 = 10112 +102 with direct-
aligning divider. Note that AD and PQ are produced by
pure combinational logic.
 R (S1) R(S2) AD PQ Q
1100 1000 1100 1000 ………. ………. 0000 0000
1100 1000 1100 1000 1001 0000 0000 1000
- 1001 0000 - 0100 1000
(0)0011 1000 1000 0000
 0011 1000 ………. ………. 0000 1000
 0011 1000 0011 1000 0010 0100 0000 0010
- 0010 0100 - 0001 0010
(0)0001 0100 0010 0110
0001 0100 ………. ………. 0000 1010
 0001 0100 0001 0100 0001 0010 0000 0001
-0001 0010 -0000 1001
(0)0000 0010 0000 1011
 0000 0010 ………. ………. 0000 1011

3.2Hybrid Aligning Divider
The direct aligning divider uses only n iterations while
compared to 2n iteration in case of self aligned divider. but
the execution time is increased further in case of direct
aligning divider this worst case execution time can be
reduced by the use of hybrid aligning divider, that is by
making the worst case delay to become fast, this can be
achieved by invoking the two adders in a short critical
path instead of invoking them in extended aligner path.
this is done by using temporary registers and multiplexors
this is as shown in figure 3.3.
The operational sequence of the HA divider is illustrated
in Example 3, again, for solving 200/18 = 11 + 2.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 02 Issue: 04 | July-2015 www.irjet.net p-ISSN: 2395-0072

© 2015, IRJET.NET- All Rights Reserved Page 759

Solving 110010002/100102 = 10112 +102.Note that AD and
PQ are stored in temporary registers.

R(S1) R(s2) AD PQ Q Step
1100
1000
1100
1000
-1001
0000

1100
1000
1100
1000
 -0100
1000

00000000
10010000

0000
0000
0000
1000

0000
0000

Load
dividen
d into
R, reset
all load
AD and
PQ into
register
s
Subtrac
t AD
and
{0,AD[7
:1]}

(0)001
11000
0011
1000
-0100
1000

(0)100
00000

-0010
0100

01001000

0000
0100

0000
1000

S1 is
positive
, select
PQ,
write
S1 shift
AD and
PQ
Subtrac
t AD
and{0:A
D[7:1]}

(1)111
10000

-0010
0100

(0)000
10100
0001
0100
-0001
0010

00100100

0000
0010

0000
1010

S2 is
positive
,shift
PQ first
write
S2 shift
AD
Subtrac
t AD
and
{0AD[7:
1]}

(1)111
10000

(0)000
00010
0000
0010

00010010

0000
0001

0000
1011

S2 is
positive
, shift
PQ first
write
S2,R<D
=Done

Temporary registers
The two temporary registers are capable of performing a
wired right shift through a multiplexor, it is loaded with
the existing AD and PQ generated from the aligner ,and
from now on the divider works with the contents of TR's,
which are loaded-shifted during each subtraction. the CO

signal is used to control the MUX which is the carry out
from the adder.

Fig 3.3 Hybrid aligning divider

if the initial subtraction doesn't underflows then the
quotient register is written before the PQ-TR and the
contents of PQ-TR or OR-ed with the quotient register. the
ambiguity of whether PQ-TR is sifted before or after its
contents is used is decided by the control signals
generated from the two adders which are NOR-ed to
control the MUXes which are responsible for loading and
shifting the temporary registers.

Parallel Adders
the adders[8] are initiated in the short critical path by
using the contents of AD-TR until the secondary
subtraction also underflows, in such case the TRs are
loaded with the contents form the aligner this results in
deriving a new partial remainder without an iteration

4. BIST Implementation
A generic approach to BIST is shown in Figure 4.1. On a
very basic level, BIST needs a stimulus (the Test Pattern
Generator (TPG))[10], a circuit to be tested (CUT) and
Output Response Analyzer (ORA)- a way to analyze the
results, and a way to compress those results for simplicity
and handling. However, BIST designs can differ in many
ways. Each method has its own set of tradeoffs and design
considerations.

The general block diagram of any BIST system is as shown
in Figure 4.1. Each of the individual blocks may be
implemented in different ways. The overall structure,

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 02 Issue: 04 | July-2015 www.irjet.net p-ISSN: 2395-0072

© 2015, IRJET.NET- All Rights Reserved Page 760

however, remains more or less as what is shown in the
figure 4.1.

 Fig 4.1.General structure of BIST.

5. SYNTHESIS AND SIMULATION RESULTS
The various simulations and outputs that have been
performed for the circuits designed, coded and
implemented and the outputs thereof are illustrated here.
All the simulations are carried out with the following
environmental setup:
Operating System: Microsoft Windows XP(Professional &
Home Edition)
Coding Language: VHDL
Software Tool: Xilinx version 12.4
Simulator: Xilinx ISE
Specifications used for simulation:
Dividend, Divisor, Quotient, Remainder 8 bit binary
numbers
Family: Virtex 5
Device: Virtex 5 : XC5VLX30T
Hadware tool:ULK Kit,FPGA-Virtex.

5.1. Self – Aligning Divider
Inputs:
 Dividend = 1010 = 000010102
 Divisor = 0210 = 000000102

Outputs:
 Quotient =0510 = 000001012
 Remainder = 0010 = 000000002

Fig 5.1.Screenshot of Simulation Output for Self-

Aligning Divider

5.2. Direct – Aligning Divider
Inputs :
 Dividend = 20010 = 110010002
 Divisor = 1810 = 000100102

Outputs:
 Quotient =1110 = 000010112
 Remainder = 210 = 000000102

Fig 5.2.Screenshot of Simulation Output for Direct-
Aligning Divider.

5.3. Hybrid – Aligning Divider
Inputs :
 Dividend = 20010 = 110010002
 Divisor = 1810 = 000100102

Outputs:
 Quotient =1110 = 000010112
 Remainder = 210 = 000000102

Fig 5.3.Screenshot of Simulation Output for Hybrid-
Aligning Divider

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 02 Issue: 04 | July-2015 www.irjet.net p-ISSN: 2395-0072

© 2015, IRJET.NET- All Rights Reserved Page 761

5.4. BIST for Aligning Divider

Fig 5.4. Screenshot of Simulation Output of BIST for
Aligning Divider

5.5. HDL Synthesis Report
Xilinx[5] Synthesis Technology (XST) generates the
following files as outputs:
Synthesis Report: This report contains the results from
the synthesis run, timing estimation which is maximum
combinational path delay and macro statics.
RTL schematic: This is a schematic representation of the
pre-optimized design shown at the Register Transfer Level
Technology schematic: This is a schematic
representation of an NGC file shown in terms of logic
elements optimized to the target architecture or
"technology," for example, in terms of LUTs[8], carry logic,
I/O buffers, and other technology-specific components.

Table 5.1. HDL synthesis report for Virtex 5

.

6. Conclusions and future enhancements.
Among the dividers, it has been observed that:

 The self-aligning divider has
 a longer aligning scheme
 increased number of steps
 repetitive steps

 large delay
 The direct aligning divider has
 reduced number of steps in alignment
 increased complexity
 large combinational delay

 The hybrid aligning divider has
 execution time reduced
 increased complexity
 longer critical path

it was also observed that the functionality error bit is
always ‘0’ for the designed CUTs in BIST which implies
that CUTs are functionally error less. Each divider
proposed here can be enhanced by improving the internal
components. As was already mentioned earlier, dividers
find wide applications in Network Security in encryption,
in DSP, and in general ALU operations. Considering these
applications, the dividers may be enhanced based on
particular operations or constraints for which they are
used.

REFERENCES
[1] A. De Vora, M. Ley, E. Ofner, and H. Grunbacher, “A

High-Speed Radix 4 Hardware Divider For ASIC’s”,
Tagungsb and Mikroelektronik 2003.

[2] Rainer Trummer1, Peter Zinterhof1, Roman Trobec,
“A High-Performance Data-Dependent Hardware
Divider”, University of Salzburg, Department of
Scientific Computing, May 2005.

[3] Alaaeldin Amin, M. Waleed Shinwari “High-Radix
Multiplier-Dividers: Theory, Design, and Hardware”
IEEE Transactions on Computers, Vol. 59, No. 8,
August, 2010.

[4] Michael L Bushnell, Vishwani D Agarwal, “Essentials
of Electronic testing for Digital, Memory and Mixed
Signal VLSI Circuits” , Kluwer Academic Publishers,
2002 Edition.

[5] Michael D. Ciletti, “Advanced Digital Design with the
Verilog HDL”, PrenticeHall, Upper Saddle River, New
Jersey, 2003.

[6] Peter J. Ashenden, “VHDL Tutorial”, Ashenden
Designs Ltd. Publications, Elsevier Science (USA),
2004.

[7] Gaurav Agarwal, Ankit Khandelwal,“A Newton
Raphson Divider Based on Improved Reciprocal”,
Project Report on High Speed Computer Arithmetic
submitted on Dec 4, 2006.

[8] Mi Lu “Arithmetic and Logic in Computer Systems”
John Wiley & Sons, Inc., Hoboken, New Jersey.

[9] Donald G. Bailey, “Space Efficient Division on FPGAs”,
Massey University, Palmerston North, Electronics
New Zealand Conference 2006.

[10] Doshi N. A., Dhobale S. B., and Kakade S. R. ,“LFSR
Counter Implementation in CMOS VLSI”, World
Academy of Science, Engineering and Technology 48,
2008.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 02 Issue: 04 | July-2015 www.irjet.net p-ISSN: 2395-0072

© 2015, IRJET.NET- All Rights Reserved Page 762

BIOGRAPHIES

Bhanu Rekha.S pursuing
M.Tech(final year) in VLSI Design
in Vemu Institute of
Technology,Chitoor. My area of
interest are VLSI System design,
low power design and
electromagnetics

Jayakumar.R is currently working
as Asst. Prof at VEMU Institute of
Technology,Chitoor. His research
interests are Cryptography and
Network Security.

Chandrashekar.H Asst. Prof. E&C
Dept.VEMU IT,Chitoor. His
research interest are VLSI
circuits,Testing & testability.He
has International Journal papers
& Conference Publications to his
Credit.

Author’s
Photo

