Design and Verification of High performance Aligning-Dividers and Its Testing by BIST Method

Bhanu Rekha. ${ }^{1}$, Jayakumar. $\mathbf{R}^{\mathbf{2}}$, Chandrashekar. $\mathbf{H}^{\mathbf{3}}$
${ }^{1}$ M.tech student, Department of Electronics and Communication (PG), VEMU IT, Andhra Pradesh, India
${ }^{2}$ Ass Prof, Department of Electronics and Communication, VEMU IT, Andhra Pradesh, India
${ }^{3}$ Asst Prof, Department of Electronics and Communication, VEMU IT, Andhra Pradesh, India

Abstract

With the increasing demand for faster computing methods that are also optimum in power and area constraints, it becomes necessary to look at approaches that enhance the existing operations or bring out new methods to satisfy the constraints. A SRT or a digit recurrence schemes tend to use a larger look up table to store the quotient digit this results in a large area, missing of bits while transferring to hardware and also increase the overall size of the design, hence cannot be incorporated in smaller devices like signal processors, cryptographic processors and floating point units, to overcome this drawbacks the proposed method uses a different approach so called Data Dependent Dividers[2][7], which aims to develop and design of various data dependent architecture such as the Self aligning, Direct aligning and the Hybrid aligning architectures, which execute in variable time and also tend to use lesser number of resources that is in terms of flip-flops, adders and MUXes, which are the important resources of FPGA[9].

The proposed work attempts to bring out the advantages of the above mentioned dividers, over one another. An algorithm for self testing the circuit for functionality using BIST is designed. The proposed work has been classified broadly into two parts1. Nonfloating point dividers - includes three algorithms, namely Self-Aligning Division, Direct-Aligning Division and Hybrid aligning division and brings out the differences, the advantages and disadvantages of each; 2. BIST - A circuit self-test to test any of the non-floating point dividers. All algorithms developed is synthesizable and are targeted for vertex 5 FPGAII.

Key Words: Self-Aligning Division, Direct-Aligning Division, Hybrid aligning division, BIST (built-in self test), SRT etc...

1. INTRODUCTION

Division is the most complex of the four basic arithmetic operations and, in general, does not produce an exact answer, since the dividend is not necessarily a multiple of the divisor [6]. Therefore, the corresponding quotient and
remainder are usually obtained through performing a sequence of iterations until the desired precision is reached. This procedure is called sequential division and serves as the basic principle for many practical implementations Based on sequential division, the most prevalent representatives are radix- β dividers, Where β denotes the radix, typically chosen to be a power of 2.In order to compute the answer, many of these dividers perform a constant number of iterations, which makes them very attractive for fully pipelined architectures. However, several concepts have been developed to speed up the exhaustive sequential process.

Hardware dividers are needed in many areas of applications like cryptography, signal processing, communication systems, computer floating-point units, etc. The performance requirements of these applications differ regarding data and architectural issues. High-speed dividers[1] are usually too large in area to be incorporated in small architectures Like signal processors. This circumstance and the rapidly growing demand for small and fast hardware dividers greatly encourage the search for more sophisticated solutions.

Regarding practical implementations of sequential division, there are two fundamental concepts: the subtract-and-shift approach and division by multiplication. The first method addresses the technique of performing successive subtractions and shifts, which serves as the underlying principle for all dividers proposed in this paper

1.1 Built In Self Test(BIST)

BIST is a design-for-testability technique in which testing is accomplished through built-in hardware features. It is a mechanism that permits a system to test itself. BIST is designed to meet requirements such as high reliability, lower repair cycle times. The main purpose of BIST is to reduce the complexity, and thereby decrease the cost and reduce reliance upon external test equipment. In a nutshell, BIST is the technique of designing additional hardware and software features into integrated circuits to allow them to perform self-testing, i.e., testing of their own operation (functionally, parametrically, or both) using
their own circuits, thereby reducing dependence on an external Automated Test Equipment (ATE).

The main advantages of implementing BIST are lower cost of test, since the need for external electrical testing using an ATE will be reduced, if not eliminated; better fault coverage, since special test structures can be incorporated onto the chips; shorter test times if the BIST [4][10] can be designed to test more structures in parallel; it's capability to perform tests outside the production electrical testing environment. This allows the users to test the chips prior to mounting or even after these are in the application boards

1.2 Hardware Description Language

HDLs are used to write executable specifications for hardware. A program designed to implement the underlying semantics of the language statements and simulate the progress of time provides the hardware designer with the ability to model a piece of hardware before it is created physically. It is this executability that gives HDLs the illusion of being programming_languages, when they are more precisely classified as specification languages or modeling_languages.

Hardware Description Languages include VHDL [6], Verilog [5], System C and Handle-C are frequently used for FPGA programming. VHDL and Verilog are matured as industry standards. Behavioral, RTL and structural levels of description can be used inter-changeably in these languages. Synthesis tools for System C are emerging, but do not approach the maturity of VHDL or Verilog synthesis products. Among the hardware description languages mentioned, a mix of VHDL and verilog is used.

2. RELATED WORK

SRT [2] is named after its inventors Sweeney, Robertson and Tocher In their method,

$$
1 / 2<\mathrm{D} \mid<1
$$

is assumed, which means that the divisor is a normalized fraction in the form $0.1 \mathrm{~d}_{2} \ldots . \mathrm{d}_{\mathrm{n}}$
Also assumed as

$$
1 / 2<2 \mathrm{R}^{(\mathrm{j})}<1,
$$

This means that all the partial dividends are normalized fractions.
$\mathrm{q}_{\mathrm{j}+1} \in\{-1,0,1\}$
now here the divisor is shifted or added to or subtracted from the partial dividend

2.1. RESTORING DIVISION: $0 \leq R\left({ }^{(j+1)}<\right.$ D

In the conventional restoring division $0 \leq \mathrm{R}{ }^{(j+1)}<\mathrm{D}$ The quotient digit $q_{j+1,}, j=0,1.1 . n-1$ is selected by performing a sequence of subtractions and shifts. Each time D is subtracted from the partial remainder $\mathrm{r} \times \mathrm{R}(\mathrm{j})$, until the difference becomes negative. Then D is added back to that negative difference, which is so called restoring. The last
subtraction is canceled by the addition here. the quotient digit, which is determined by the number of subtractions as $\mathrm{q}_{\mathrm{j}+1}=$ (number of subtractions -1). In general: $\mathrm{q}_{\mathrm{j}+1}+1$ subtractions and 1 addition are required to find q_{j+1} in the worst case. Figure 3.3 shows an example. For a binary number system in which $r=2$, the worst case scenario can be greatly improved.

$$
R(j+1)=r \times R(j)-q_{j+1} \times D
$$

Becomes

$$
R^{(j+1)}=2 R^{(j)}-q_{j+1} \times D,
$$

With $\mathrm{q}_{\mathrm{j}+1 \in}(0, \mathrm{l}\}, 0 \leq \mathrm{R}{ }^{(\mathrm{j}+1)}<\mathrm{D}$ The quotient digit can be determined as follows

Fig: 2.1.Example of Restoring Procedure
The partial remainder can be obtained by one left shift of $R(j)$, and the trial process can be implemented by one subtraction:

$$
R^{(j+1)}=2 R^{(j)}-D .
$$

Then the "sign" of $R^{(j+1)}$ is checked ,If it is positive, $q_{j+1}=1$, else $\mathrm{q}_{j+1}=0$ and one restoring [1] addition is to be performed. So the binary restoring division requires at most one subtraction and one addition to determine one quotient digit. The addition is needed to restore the correct partial remainder:

$$
R^{(j+1)}=R^{(j+1)}+D=2 R^{(j)} .
$$

The hardware implementation of this binary restoring division is shown in Figure 2.1. Three registers are included each with n bits: (1) accumulator (AC), (2) auxiliary register (AX) and the quotient-multiplier register (QM), which was used to store the multiplier in multiplication, and to hold the final quotient in division operations under discussion. The 2 n -bit dividend is
initially stored in registers AC concatenating QM. The n-bit divisor is stored in the AX register. The content of AC concatenating QM can be left shifted. The quotient digit $q j+l$ can be shifted in from the right end, and the bit shifted out from the left end of AC can be stored in a buffer register T.It can be seen that the similar hardware performing multiplication can be applied for division except the differences made on the following issues. First, the direction of register shift was shift to right in multiplication, while in division it is shift to left. Second, the adder actually performs subtraction now, that is add the 2's complement number of the divisor. In Figure 2.2, the input AX' to the right side of the Adder is

Fig: 2.2: Hardware Of Restoring Logic
the 1 's complement of the dividend.
With the Cin, set to $1, A C+A X '+1=A C-A X$ this is choosen to inspect whether $2 \mathrm{R}^{(\mathrm{j})}$ is $<\mathrm{D}$ or $\geq \mathrm{D}$. Cout is the carry out. Quotient digit $\mathrm{q}_{\mathrm{j}+1}$ is obtained by $\mathrm{Q}_{\mathrm{j}+1}=\mathrm{Tv}$ cout.

2.2 Binary Non-Restoring Division $\left|R{ }^{(j+1)}\right| \leq|\mathbf{D}|$

An improved division method is the binary non-restoring division which does not need the "restoring addition" mentioned previously. The assumption that $\mathrm{D}>0$ and $\mid \mathrm{R}$ ${ }_{(j+1)} \mid<D$ remain the same, while the partial remainder, R ${ }_{(j+1)}$, is allowed to have either a positive or a negative value. The operation to be performed can be either subtraction or addition, depending on the partial remainder.

The binary non-restoring division (B.N.D.) is performed in Figure 2.2 in contrast to the binary restoring division (B.R.D.) of that shown in Figure2.3.in the binary nonrestoring division, no restoration is needed and thus the MUX in Figure 3. 4 can be eliminated. Consequently, the division time is improved.

Initially	A 00000 M 00011	Q 1000	Add 2's
Shift	00001	$000 \square$	complement
Substract	11101		
Set LSB	11110		First cycle
Restore	11		
	00001	0000	
Shift	00010	$000 \square$	Second
Subtract	11101		cycle
Set LSB	(11111	0000	
Restore	11	000	
	00010	0001	Third cycle
Shift	00100	$001 \square$	
Subtract	11101		
Set LSB	(0)0001		Fourth
Shift	00010	0010	
Subtract	11101	1	
Set LSB	11111	Quotient	
Restore	11	Remainder	
	00010		

Fig2.3: Division Performed By Non-Restoring Algorithms

3. Alinging Dividers

The integer divider becomes the back bone of any divider whether floating point or non floating point because even in floating point divider there is a integer divider operating on mantissa and adders acting on exponents. there exists architectures like SRT[1] where in they use look up tables for selection of quotient and remainder, as the radix increases there is a tendency in increase in look up table size which ultimately requires more area, to avoid such look-up based design it is precise to go for data dependent dividers so called aligning dividers.

Non-floating point dividers are those that take two integer values as inputs for the dividend and divisor and produce the result in two parts, namely the quotient and the remainder. Among non-floating point dividers, the paper explore three algorithms in particular:

1. Self-Aligning Divider
2. Direct-Aligning Divider
3. Hybrid-Aligning Divider

The first two dividers follow the usual steps of subtraction and shifting the divisor right. However, there is an additional step of alignment in the beginning after which the iterative subtraction begins. In the third divider, the structure of it reduces the execution time which is increased in the predecessor divider.

3.1. Self-Aligning Divider

The usual methods of division involve shifting the divisor right in iteration and subtracting it from the dividend repeatedly until the process is completed. In the self aligning divider, these steps are preceded by the process of alignment. This involves aligning the divisor with respect to the dividend

3.1.1. The Self-Aligning Division Algorithm

The algorithm for the self-aligning divider is no doubt a combination of the above explained steps, namely, alignment and iterative subtraction.

Hence the overall algorithm of self-aligning divider can be summarized as follows.

1. Store the dividend in a register R , the divisor in register HW (higher word) and the constant (0000 0001) $)_{2}$ in LW (lower word).
2. Set a bit M to indicate the carry out (CO) in shift operations. Initialize M to 0 .
3. For alignment, perform subtraction as R-HW, and store the carry out bit of the twos complement addition.
4. Shift HW and LW left by one bit and add 0 to LSB of LW, store Most Significant Bit in M
5. If $M=1$ or $\mathrm{CO}=0$, alignment is complete, hence go to step

6 . If $\mathrm{M}=0$ and $\mathrm{CO}=1$, then the alignment is still in progress, hence continue the next iteration and go back to step 3.
7. For subtraction, shift HW and LW to the right by one bit and store the Least Significant Bit in M
8. Perform subtraction as R-HW and store the carry in CO.
9. If $\mathrm{CO}=1$, the result is positive, hence store the result of subtraction in R . If $\mathrm{CO}=0$, the result is negative, hence retain the previous value of R.
10. Shift HW and LW right and store LSB in M
11. If $M=1$, stop division, else return to step 7 to proceed with the next iteration.

The quotient bit in each iteration is stored as the Most Significant Bit of the register in which the count value is initially stored.Hence,with each iteration in the subtraction, the register is shifted to the right. This would mean that the latest quotient bit is stored to the left of the previous quotient bit. Generally, the result is stored with each bit being written o the right of the previous bit. Since this is just the opposite of what happens in the selfaligning division procedure, it indicates that the quotient is stored in the reverse order as compared to what is required. Hence there is a requirement to reverse the quotient after obtaining the final result.

3.1.2. Block Diagram of the Self-Aligning Divider

From the algorithm mentioned, a simple block diagram of the self-aligning divider can be developed as shown in fig 3.1.In the block diagram, the registers are as follows:

- The remainder register initially holds the dividend before alignment. After alignment, it
holds the aligned value of dividend. In subtraction, it holds either the result of subtraction or the previous value itself
- The divisor register is shifted to the left for alignment and to the right during subtractions
- The quotient register initially holds the value ' 1 ' and later on holds the quotient in the reverse order

Fig. 3.1. Block Diagram of the Self-Aligning Divider
An example of the self-aligned division is shown below. Example 1:200/18 $=11+2$ in decimal Or $11001000 / 00010010=00001101+00000010$ in binary

R	HW	LW
11001000	00010010	00000001
+1110 1110		
(1) 10110110	00100100	00000010
11001000		
+11011100		
(1)1010 0100	01001000	00000100
11001000		
+ 10111000		
(1)1000 0000	10010000	00001000
11001000		
+01110000		
(1) 00111000	(1) 00100000	00010000
10010000	00001000	11001000
01110000		
(1) 00111000	01001000	10000100
00111000	01001000	10000100
10111000		
(0) 111100000	00100100	$\underline{\mathbf{1 1}} 000010$
00111000		
11011100		
(1) 00010100	00010010	10100001
00010100		
11101110		
(1) 00000010	00001001	$\underline{1101} 0000$

3.2. Direct-Aligning Divider

Designing a first divider that integrates the aligner is a pretty straightforward task. The generated divisor is always aligned correctly to the partial remainder regarding data sizes. However, both operands might contain any possible combination of trailing bits after the leading non-zero bit

The algorithm for direct-aligning divider can be summarized in the following steps:

1. Store the dividend in registers S1 and S2
2. Store the divisor in register AD
3. Store the binary value $(00000001)_{2}$ in register PQ
4. Align divisor AD and register PQ with respect to dividend S 1 by shifting left
5. Shift AQ once to the right and store the resulting value in PQ
6. Perform the subtractions: S1-AQ and S2-PQ and store the carry out CO and the result of the subtraction in register T1 and S
7. If $\mathrm{CO}=1$, store S in S 1 and S 2 , else shift AD and PQ once to the right and store S 2 in S 1
8. Perform OR operation of PQ and Q and store the result in Q to get the updated value of the quotient
9. Align AD and PQ by shifting right and store LSB of PQ in bit M
10. Repeat steps 6 through 10 till the subtraction in right alignment gives negative bits to be shifted
Alignment
11. For initial left alignment, find the position of the first 1 in S1 and AQ, and find the difference between the two positions
12. If the difference is positive, shift left the divisor AD and PQ by the difference number of positions
13. For right alignment during division, find the difference of the position of the first one in S1 and AD . If the difference is positive, shift the divisor right by those many bits, otherwise, division is complete.

This method of using two adders in parallel is realized in the direct-aligning (DA)[2] divider shown in Figure 3.2. Note that the design does not contain a 2 n -bit shift register, and therefore, theoretically any available registers can be utilized. Adder 1 is supplied with the full n -bit inverted AD as second operand, whereas Adder 2 is supplied with a constant non-zero MSB combined with the $\mathrm{n}-1$ high-order bits of the inverted AD , which implies a wired right-shift by one position. The CO signal of Adder 1 is used to control the two multiplexors. In case the primary subtraction underflows, mux 1 selects the result of Adder 2 and mux 2 selects the right-shifted PQ, which is OR-ed with the quotient register.

Fig. 3.2. Schematic Diagram Of Direct-Aligning Divider
The operational sequence of the DA divider is illustrated in Example 2, again, for solving 200/18=11+2.
Solving $11001000_{2} / 10010_{2}=1011_{2}+10_{2}$ with directaligning divider. Note that AD and PQ are produced by pure combinational logic.

R (S1)	R(S2)	AD	PQ	Q
11001000	11001000			00000000
11001000	11001000	10010	0000	
-1001 0000-01001000				
(0)0011 1000		00000		
00111000				00001000

00111000001110000010010000000010

- 0010 0100-00010010
(0)0001 010000100110

00010100 00001010
00010100000101000001001000000001
$-00010010-00001001$
(0)0000 001000001011

00000010
00001011

3.2Hybrid Aligning Divider

The direct aligning divider uses only n iterations while compared to 2 n iteration in case of self aligned divider. but the execution time is increased further in case of direct aligning divider this worst case execution time can be reduced by the use of hybrid aligning divider, that is by making the worst case delay to become fast, this can be achieved by invoking the two adders in a short critical path instead of invoking them in extended aligner path. this is done by using temporary registers and multiplexors this is as shown in figure 3.3.
The operational sequence of the HA divider is illustrated in Example 3, again, for solving 200/18 = $11+2$.

Solving $11001000_{2} / 10010_{2}=1011_{2}+10_{2}$.Note that AD and PQ are stored in temporary registers.

R(S1)	R(s2)	AD	PQ	Q	Step
1100	1100	00000000	0000	0000	Load
1000	1000	10010000	0000	0000	dividen
1100	1100		0000		d into
1000	1000		1000		R , reset
-1001	-0100				all load
0000	1000				AD and
					PQ into register
					S
					Subtrac tAD
					and
					\{0,AD[7
					:1]\}
(0)001	(0)100				S1 is
11000	00000				positive
0011		01001000	0000	0000	, select
1000			0100	1000	PQ,
-0100	-0010				write
1000	0100				S1 shift
					AD and
					PQ
					Subtrac
					t AD
					and $\{0: A$
					D[7:1]\}
(1)111	(0)000		0000		S2 is
10000	10100		0010		positive
	0001	00100100		0000	,shift
	0100			1010	PQ first
-0010	-0001				write
0100	0010				S2 shift
					AD
					Subtrac
					t AD
					and
					\{0AD[7:
					1]\}
(1)111	(0)000		0000		S2 is
10000	00010	00010010	0001		positive
	0000			0000	, shift
	0010			1011	PQ first
					write
					S2,R<D
					=Done

Temporary registers

The two temporary registers are capable of performing a wired right shift through a multiplexor, it is loaded with the existing AD and PQ generated from the aligner , and from now on the divider works with the contents of TR's, which are loaded-shifted during each subtraction. the CO
signal is used to control the MUX which is the carry out from the adder.

Fig 3.3 Hybrid aligning divider
if the initial subtraction doesn't underflows then the quotient register is written before the $\mathrm{PQ}-\mathrm{TR}$ and the contents of $\mathrm{PQ}-\mathrm{TR}$ or OR-ed with the quotient register. the ambiguity of whether PQ-TR is sifted before or after its contents is used is decided by the control signals generated from the two adders which are NOR-ed to control the MUXes which are responsible for loading and shifting the temporary registers.

Parallel Adders

the adders[8] are initiated in the short critical path by using the contents of AD-TR until the secondary subtraction also underflows, in such case the TRs are loaded with the contents form the aligner this results in deriving a new partial remainder without an iteration

4. BIST Implementation

A generic approach to BIST is shown in Figure 4.1. On a very basic level, BIST needs a stimulus (the Test Pattern Generator (TPG))[10], a circuit to be tested (CUT) and Output Response Analyzer (ORA)- a way to analyze the results, and a way to compress those results for simplicity and handling. However, BIST designs can differ in many ways. Each method has its own set of tradeoffs and design considerations.

The general block diagram of any BIST system is as shown in Figure 4.1. Each of the individual blocks may be implemented in different ways. The overall structure,

International Research Journal of Engineering and Technology (IRJET)
e-ISSN: 2395-0056
Volume: 02 Issue: 04 | July-2015
www.irjet.net
p-ISSN: 2395-0072
however, remains more or less as what is shown in the figure 4.1.

Fig 4.1.General structure of BIST.

5. SYNTHESIS AND SIMULATION RESULTS

The various simulations and outputs that have been performed for the circuits designed, coded and implemented and the outputs thereof are illustrated here.
All the simulations are carried out with the following environmental setup:
Operating System: Microsoft Windows XP(Professional \& Home Edition)
Coding Language: VHDL
Software Tool: Xilinx version 12.4
Simulator: Xilinx ISE
Specifications used for simulation:
Dividend, Divisor, Quotient, Remainder 8 bit binary numbers
Family: Virtex 5
Device: Virtex 5 : XC5VLX30T
Hadware tool:ULK Kit,FPGA-Virtex.

5.1. Self - Aligning Divider

Inputs:
Dividend $=10_{10}=00001010_{2}$
Divisor $=02_{10}=00000010_{2}$
Outputs:
Quotient $=05_{10}=00000101_{2}$
Remainder $=00_{10}=00000000_{2}$

5.2. Direct - Aligning Divider

 Inputs:Dividend $=200_{10}=11001000_{2}$
Divisor $=18_{10}=00010010_{2}$
Outputs:
Quotient $=11_{10}=00001011_{2}$
Remainder $=2_{10}=00000010_{2}$

Fig 5.2.Screenshot of Simulation Output for DirectAligning Divider.

5.3. Hybrid - Aligning Divider

Inputs :
Dividend $=200_{10}=11001000_{2}$
Divisor $=18_{10}=00010010_{2}$
Outputs:
Quotient $=11_{10}=00001011_{2}$
Remainder $=2_{10}=00000010_{2}$

Fig 5.3.Screenshot of Simulation Output for HybridAligning Divider

Fig 5.1.Screenshot of Simulation Output for SelfAligning Divider

International Research Journal of Engineering and Technology (IRJET)
e-ISSN: 2395-0056
Volume: 02 Issue: 04 | July-2015
www.irjet.net
p-ISSN: 2395-0072
5.4. BIST for Aligning Divider

Fig 5.4. Screenshot of Simulation Output of BIST for Aligning Divider

5.5. HDL Synthesis Report

Xilinx[5] Synthesis Technology (XST) generates the following files as outputs:
Synthesis Report: This report contains the results from the synthesis run, timing estimation which is maximum combinational path delay and macro statics.
RTL schematic: This is a schematic representation of the pre-optimized design shown at the Register Transfer Level Technology schematic: This is a schematic representation of an NGC file shown in terms of logic elements optimized to the target architecture or "technology," for example, in terms of LUTs[8], carry logic, I/ O buffers, and other technology-specific components.

Table 5.1. HDL synthesis report for Virtex 5

divider	Selfaligned	Directaligning	Hybrid aligning
Macro stastics	```# Adders/Subtractors :1 8-bitadder carry out: 1 # Registers:36 Flip-Flops:36```	\#Adders/Subtracto rs :2 8-bitadder carry in/out:2 \# Registers :16 Flip-Flops:16 \# Comparators:1 8-bit comparator less:1 \# Multiplexers:1 8-bit 4-to-1 multiplexer:1	\#Adders/Subtracto rs:2 8 -bitadder carry in/out:2 \# Registers: 32 Flip-Flops: 32 \# Comparators:1 8-bit comparator less:1

6. Conclusions and future enhancements.

Among the dividers, it has been observed that:

- The self-aligning divider has
> a longer aligning scheme
$>$ increased number of steps
> repetitive steps

> large delay

- The direct aligning divider has
> reduced number of steps in alignment
> increased complexity
> large combinational delay
- The hybrid aligning divider has
> execution time reduced
> increased complexity
> longer critical path
it was also observed that the functionality error bit is always ' 0 ' for the designed CUTs in BIST which implies that CUTs are functionally error less. Each divider proposed here can be enhanced by improving the internal components. As was already mentioned earlier, dividers find wide applications in Network Security in encryption, in DSP, and in general ALU operations. Considering these applications, the dividers may be enhanced based on particular operations or constraints for which they are used.

REFERENCES

[1] A. De Vora, M. Ley, E. Ofner, and H. Grunbacher, "A High-Speed Radix 4 Hardware Divider For ASI's's", Tagungsb and Mikroelektronik 2003.
[2] Rainer Trummer1, Peter Zinterhof1, Roman Trobec, "A High-Performance Data-Dependent Hardware Divider", University of Salzburg, Department of Scientific Computing, May 2005.
[3] Alaaeldin Amin, M. Waleed Shinwari "High-Radix Multiplier-Dividers: Theory, Design, and Hardware" IEEE Transactions on Computers, Vol. 59, No. 8, August, 2010.
[4] Michael L Bushnell, Vishwani D Agarwal, "Essentials of Electronic testing for Digital, Memory and Mixed Signal VLSI Circuits", Kluwer Academic Publishers, 2002 Edition.
[5] Michael D. Ciletti, "Advanced Digital Design with the Verilog HDL", PrenticeHall, Upper Saddle River, New Jersey, 2003.
[6] Peter J. Ashenden, "VHDL Tutorial", Ashenden Designs Ltd. Publications, Elsevier Science (USA), 2004.
[7] Gaurav Agarwal, Ankit Khandelwal,"A Newton Raphson Divider Based on Improved Reciprocal", Project Report on High Speed Computer Arithmetic submitted on Dec 4,2006.
[8] Mi Lu "Arithmetic and Logic in Computer Systems" John Wiley \& Sons, Inc., Hoboken, New Jersey.
[9] Donald G. Bailey, "Space Efficient Division on FPGAs", Massey University, Palmerston North, Electronics New Zealand Conference 2006.
[10] Doshi N. A., Dhobale S. B., and Kakade S. R. "LFSR Counter Implementation in CMOS VLSI", World Academy of Science, Engineering and Technology 48, 2008.

BIOGRAPHIES

Bhanu Rekha.S pursuing
M.Tech(final year) in VLSI Design in Vemu Institute of Technology,Chitoor. My area of interest are VLSI System design, low power design and electromagnetics

Jayakumar.R is currently working as Asst. Prof at VEMU Institute of Technology,Chitoor. His research interests are Cryptography and Network Security.

Chandrashekar.H Asst. Prof. E\&C
Dept.VEMU IT,Chitoor. His research interest are VLSI circuits,Testing \& testability.He has International Journal papers \& Conference Publications to his Credit.

