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Abstract - Abstract The  problem  of  reflection of  

surface water  waves  by  a  rigid  curved  wall,  in 

deep water,  is considered assuming  linear  theory.  

A method essentially based on standard perturbation 

technique along with the application of Havelock’s 

expansion [1] of water wave potential is employed 

here to solve the problem, analytically, up to first   

order. The effect of surface tension (ST) at the free 

surface (FS) is taken into consideration. For two 

special shapes of the curved wall, first order   

corrections to the velocity potential and reflection 

coefficient are obtained. 
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1. INTRODUCTION 
 
The objective of the present paper is to find an 
analytical solution for the reflection of surface water 
waves by a rigid curved wall, in deep water, in the 
presence of ST.  Total reflection of waves by the wall is 
assumed, and this assumption is, perhaps, realistic since 
there is no mechanism to absorb the incoming energy in 
the inviscid fluid system. 
 
Wave reflection from beaches is a subject of major 
importance to understanding the near shore zone and to 
improving coastal structure design. The level of energy 
flux dissipation that occurs on a beach is dependent on 
the magnitude of the wave reflection from the beach.  
Thus, in an indirect manner, wave reflection influences 
many coastal processes such as run-up which, in turn, 
determines coastal design criteria such as the height of a 
sea wall or flood protection dune ([2]). A curved wall is 
perhaps the simplest  model of this kind of beach. 
 
It is well known that when a vertical wall exists on one 
side of an ocean, a beach problem reduces to the problem 
involving a vertical cliff.  Few attempts have been made 
to study the problem of progressive waves in an ocean and 
bounded on one side by a rigid vertical cliff since long 
back.  Ignoring the effect of ST at the FS, the solution for 

the corresponding two-dimensional problem has been 
obtained by Stoker [3,4] using a complicated, but 
powerful, method based on the theory of analytic 
functions of complex variables. The corresponding three-
dimensional problem has also been considered, by Stoker 
[3,4], by extending the basic idea of the method used for 
the two-dimensional problem. The effect of ST at the FS 
for the two-dimensional vertical cliff problem has been 
studied by Packham [5] by a method that is based on a 
reduction procedure ([6]) along with the application of 
Fourier sine transform technique ([7]). Since then, 
attempts have been made to study this class of water 
wave problems associated with Laplace’s equation and 
few of its generalizations by employing different 
mathematical methods ([8]-[13]).  It should be mentioned 
here that all these solutions were obtained by assuming no 
reflection of waves by the wall which is quite unrealistic 
and thus leading to a purely mathematical problem. 
 
The problem under consideration is attacked for solution 
by a standard perturbation technique along with the 
application of Havelock’s expansion [1] of water wave 
potential. Corrections upto first order, for the reflection 
coefficient as well as the velocity potential, are obtained 
for the general problem considered here. Assuming two 
special shapes of the curved wall, these corrections for the 
velocity potential and reflection coefficient are also 
obtained. Making the coefficient of ST to be equal to 
zero, results for the corresponding problem in the absence 
of ST are recovered. 
 

2. MATHEMATICAL FORMULATION 
 
Cartesian coordinates are chosen so that y axis is 
vertically downwards and assume that the water is 
bounded on the left by the curved wall x = ϵ c(y),  y > 
0, where ϵ > 0 is a small dimensionless quantity and, c(y) 
is a bounded and continuous  function of y with  c(0) = 0, 
so that y = 0,  x > 0 is the undisturbed FS. 
 
The usual assumptions of the fluid being inviscid, 
incompressible and the irrotational flow are adopted 
which ensure the existence of a velocity potential Φ(x, y, 
t). For simple harmonic motions, we can assume 
 
Φ(x, y, t) = Re{ϕ(x, y) exp(−iσt)} 
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where  σ is the frequency of the incident waves.  Thus 

assuming linear theory, the time independent potential 

ϕ(x, y) satisfies the following boundary value problem 

(BVP):   

Laplace equation:  

∇2ϕ = 0, in the flow domain,   (2.1)   

where ∇2 is the two-dimensional Laplacian. 
Linearized   FS condition: 

   on ,  (2.2) 

where K  = σ2/g  , g is the  acceleration due  to gravity, and  

M = T /(ρg), T is the coefficient  of  ST  and ρ is the 

density of the liquid. 

Rigid body condition: 

  on ,                                           (2.3) 

where n is the unit normal to the surface of the 

curved  wall pointing  out of the fluid. 

 Sea-bed condition: 
∇ϕ → 0      as  y → ∞.    (2.4) 
In addition to the above conditions, ϕ is also required to 
satisfy the following: 
ϕ   exp(−k0y − ik0 x) + R  exp(−k0y + ik0x)     

as  x → ∞,                                                                     (2.5) 
where a train of surface  waves  represented by exp(−k0y − 

ik0x)  is incident from positive infinity on the curved wall, 

R  is the reflection coefficient, and k0 is the unique real 

root  ([14]) of the cubic equation k (1 + M k2) − K  = 0. 
Since we have assumed that 0 < ϵ << 1, thus neglecting 

0(ϵ2) terms, the boundary condition (2.3) on the wall  
x  = ϵ c(y),  y >  0,  can be expressed, approximately,  on 
x = 0    ([15], [16]) as 

  for .                            (2.6) 

 

3. SOLUTION OF THE PROBLEM 
       x → ∞,                  (2.5) 
The form of the boundary condition (2.6) suggests that the 
time independent potential function ϕ(x,y) and the 
unknown physical constant R, representing the reflection 
coefficient, may be expressed in terms of the small 

parameter  as 

    (3.1) 

 
In the present analysis, we confine our attention with 
the determination of ϕ0, R0 and ϕ1, R1, as we are 

interested in evaluating only up to the first order 

corrections to the velocity potential and reflection 
coefficient. Substituting the expansion (3.1) into the 
original BVP, described by (2.1), (2.2), (2.4)-(2.6) and 

equating coefficients of ϵ2 and ϵ from both sides of the 
results derived thus, we find that the functions ϕ0(x, y)     

and ϕ1(x, y) must be the solution of the following two 

independent BVPs: 
 
BVP-I: The problem is to determine the function ϕ0(x, y)   

satisfying 

∇2ϕ = 0 in the fluid region, 
 

   on , 

,  on , 

   as  , 

ϕ0    exp (−k0y − ik0x) + R0 exp (−k0y + ik0 x)    

as        x → ∞. 

Obviously, 
ϕ0  = exp  (−k0y − ik0 x)  +  exp  (−k0y + ik0x), (3.2) 

so that we find  R0    =  1. 

 
BVP-II: The problem is to determine the function       
ϕ1 (x, y) satisfying 

∇2ϕ1 = 0 in the fluid domain, 

   on , 

,  on ,  (3.3) 

   as  , 

ϕ1     exp (−k0y +  ik0x)    as        x → ∞. 

 
In  BVP-II,  ϕ1  and R1 are the first order corrections  to 

the velocity potential and reflection coefficient,  
respectively, and are to be determined. 
Assume that 

   on .  (3.4) 

Thus,   f (y)   can be regarded as a known function and the 
boundary  condition (3.3) can be expressed as 

  on .   (3.5) 

 
Following  Havelock [1], we can expand ϕ1 (x, y)   as 

 . (3.6) 
Exploiting the boundary condition (3.5) we have 

. 
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Hence, Havelock’s [1] inversion theorem give 

    (3.7) 

and 

.     (3.8) 
Thus, if c(y) is known, f(y) can be found via (3.4) and 
hence R1 and A(k) can be determined from the above 

relations.  Thus, the general expression for R1   and   ϕ1, 

the first order corrections to the reflection coefficient R 
and velocity potential ϕ, can be found, in principle, 
when the ST effect is taken into consideration. 
 

4.  SPECIAL SHAPES OF THE CURVED WALL 
 

To illustrate the general results obtained in the 
previous section we have considered two special shapes 
of the curved wall, viz.   c(y) = a sin λy and c(y) = y 
exp(−λy). 
 
CASE-I: Assume that c(y) = a sin  λy 
In this case (see Appendix-I) 
f (y) = 2ak0 (k0  sin λy − λ cos λy) exp (−k0y),       (4.1) 

so that we obtain 

                    (4.2) 

and 

        (4.3) 
 
CASE-II: Assume that c(y) = y  exp  (−λy) 
In this case (see Appendix-II) 
f (y)  = 2k0 {(λ+k0)y − 1 }exp {−(λ +k0 )y},   (4.4) 

so that we find 

       (4.5) 

and 

 .      (4.6) 

 

5. PARTICULAR CASE: NO SURACE TENSION 
EFFECT 
 
In the absence of ST  at the FS,  which leads to T  = 0 so 
that k0  = k. Thus substituting T = 0 and k0  = k in 

(3.7) and (3.8) we obtain 
 

                                      (5.1) 

and 

  (5.2) 

 
Hence in the absence of ST, first order corrections, R1 and 

ϕ1, to the reflection coefficient and velocity potential, 

respectively, for a plane wave train incident on a curved 
wall, can be deduced. 
 
On the other hand, simply by the substitution of T  = 0 
so that M = 0 and k0  = K  in (4.2)-(4.6), respectively, 

we find 

 

 
when  c(y) = a  sin λy  and 

, 

, 

if we take c(y) = y  exp  (−λy). 
 

6. DISCUSSION 
 
Analytical expressions representing the first order 
corrections to the reflection coefficient and velocity 
potential have been obtained in this paper, for the 
reflection of surface water waves incident on a curved 
wall, in the presence of ST at the FS.  A simple and 
relatively straight-forward perturbation technique along 
with the application of Havelock’s expansion [1] for the 
water wave potential have been used to tackle the 
problem, using linear theory.  Assuming two different 
shapes of the curved wall these corrections, R1 and ϕ1, to 

the reflection coefficient and velocity potential, 
respectively, have been deduced. In absence of the ST 
effect corresponding results have also been derived, as a 
particular case, simply by putting the coefficient of ST,  T 
= 0. 
 
The problem discussed in the present  paper seems to 
have some applications in coastal design criteria and to 
derive the solution of the problem considered here, total 
reflection of waves by the rigid wall is assumed since there 
is no mechanism to absorb (or dissipate) the incoming 
energy in the inviscid fluid. Thus the reflection of waves 
is a physically possible phenomenon in any non-
dissipating system. 
 
APPENDIX-I 
 
Noting (3.2), we have 
ϕ0  (0, y)  = 2 exp (−k0y).   (A.1.1) 
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Thus, for c(y) = a sin λy  , we get, using (A.1.1) into (3.4) 

 
.  (A.1.2) 

Using (A.1.2) in (3.7) we find 

  

 . 

Thus, the simplified form of R1   is given by (4.2). 

To find A(k),  we have to evaluate the integral 

         (A.1.3) 

where f(y) is given by (A.1.2). 
Introducing (A.1.2) into (A.1.3), we have 

I =  2ak0  {K I1 − k(1  − M k2) I2 },  (A.1.4) 

where 

  

  

                                            (A.1.5) 

and 

  

  

                                                (A.1.6) 

Utilizing (A.1.5) and (A.1.6) into (A.1.4), the integral 
given by (A.1.3) can be found, and hence by (3.8), A(k) 
can be determined which is given by (4.3). 
 

APPENDIX-II 
 
Assuming c(y) = y exp  (− λy),  and using (A.1.1) into 
(3.4), we get 

  

= − 2k0 {1 − (λ + k0) y } exp {−(λ + k0)y } . (A..2.1) 

Exploiting (A.2.1) into (3.7) we find 

  

 . 

Hence R1  can be found and is given by (4.5). 

To find A(k),  we have to evaluate the integral given by 
(A.1.3),  and in this case f(y) is given by (A.2.1). Using 
(A.2.1) in (A.1.3), we obtain 
I =  − 2k0    (J1  − J2  − J3  + J4),   (A.2.2) 

where 

  

 .                                                  (A.2.3) 

  

 .   (A.2.4) 

  

 .     (A.2.5) 

  

 .                                                                   (A.2.6) 

Introducing (A.2.3)-(A.2.6) into (A.2.2) we find the 
integral (A.1.3) and thus we obtain finally the expression 
for A(k) given by (4.6). 

 
 
 
REFERENCES 
 
[1] T.H.Havelock, Forced surface waves on water, Phil.  

Mag.  vol.  8, pp.  569-576, 1929.  
[2] T.L.Walton Jr., Wave reflection from natural beaches, 

Ocean Engng.  vol.  19(3), pp. 239-258, 1992. 
[3] J.J.Stoker, Surface waves in water of variable depth, 

Quart.  Appl.  Maths.  vol.  5, pp. 1-54, 1947. 
[4] J.J.Stoker, Water waves: The mathematical 

theory with applications, Interscience, New York, 
1957. 

[5] B.A.Packham, Capillary gravity waves against a 
vertical cliff, Proc.  Camb.  Phil.  Soc. vol.  64, pp.  827-
832, 1968. 

[6] W.E. Williams, Note on the scattering of water 
waves by a vertical barrier, Proc. Camb.  Phil.  Soc.  
vol.  62, pp. 507-509, 1966. 

[7] I.N.Sneddon, The use of integral transform, McGraw-
Hill, New York, 1972. 

[8] L.Debnath and U. Basu, Capillary gravity waves 
against a vertical cliff, Indian J. Maths. vol.  26, pp.  
49-56, 1984. 

[9] A.Chakrabarti, Capillary gravity waves against a 
corrugated vertical cliff, Appl.  Sci. Res.  vol.45, pp.  
303-317, 1988. 

[10] P.K.Kundu, Internal waves against a vertical cliff at 
the interface between two super- posed fluids, Int.  J. 
Engng. Sci.  vol.  27(10), pp.  1211-1216, 1989. 

[11] B.N.Mandal and P.K.Kundu, Incoming water waves 
against a  vertical cliff,  Appl. Math.  Lett.  vol.  3(1), 
pp.  33-36, 1990. 

[12] P.K.Kundu and P.Agasti, A note on the effect of the 
ST on the source potential in the presence of a vertical 
cliff, Acta Mech.  vol.  191(3,4), pp.  231-237, 2007. 

[13] P.K.Kundu and P.Agasti, On the waves in two 
superposed liquids in the presence of a wall, 
Appl.Math.Letters. vol.  22(1), pp.  115-120, 2009. 

[14] P.F.Rhodes-Robinson,  On  the forced surface waves 
due to a vertical wave maker in the presence of 
surface tension, Proc.  Camb.  Phil.  Soc.  vol.  70, pp.  
323-337, 1971. 

[15] D.C.Shaw, Perturbational results for diffraction of 
water waves by nearly vertical barriers, I MA  J. 
Appl.  Math. vol.  34, pp.  99-117, 1985. 



          International Research Journal of Engineering and Technology (IRJET)      e-ISSN: 2395 -0056 

               Volume: 02 Issue: 04 | July-2015                       www.irjet.net                                                              p-ISSN: 2395-0072 

 

© 2015, IRJET.NET- All Rights Reserved  Page 781 
 
 

[16]  B.N.Mandal and A.Chakrabarti, A note on 
diffraction of water waves by a nearly vertical 
barrier, I MA  J. Appl. Math.  vol 43, pp.  157-165, 
1989. 

 
BIOGRAPHIES 
  

 
Mrs. Rina Sahoo is currently 
doing her PhD at the Department 
of Mathematics, Jadavpur 
University, Kolkata, West Bengal, 
India. Her area of interest is Fluid 
Dynamics. 

  
Dr. Partha Agasti did his PhD in 
Applied Mathematics from 
Jadavpur University, Kolkata, 
West Bengal, India. Presently 
he is at SBSS Mahavidyalaya, W. 
B., as an Assistant Professor in 
the Dept. of Mathematics. He 
has six publications in 
international journals with 
good impact factors and six 
presentations in IEEE 
international conferences. His 
area of interest is Fluid 
Dynamics. 
 

 Professor P. K. Kundu,                                      
Department of Mathematics. 
Jadavpur University, Kolkata-
700032, West Bengal, INDIA. 

 

 

 

 

Author’s 
Photo 

Author’s 
Photo 

Author’s 
Photo 


