
          International Research Journal of Engineering and Technology (IRJET)      e-ISSN: 2395 -0056 

               Volume: 02 Issue: 04 | July-2015                     www.irjet.net                                                                 p-ISSN: 2395-0072 

 

© 2015, IRJET.NET- All Rights Reserved  Page 868 
 

STRUCTURAL ANALYSIS AND TOPOLOGY OPTIMIZATION OF 

CONTINUOUS LINEAR ELASTIC ORTHOTROPIC STRUCTURES USING 

OPTIMALITY CRITERION APPROACH IN ANSYS 

Kishan Anand1, Anadi Misra2 

1 P.G. Student, Department of Mechanical Engineering, G.B.P.U.A.T., Pantnagar, U.S.Nagar, India 
 2 Professor, Department of Mechanical Engineering, G.B.P.U.A.T., Pantnagar, U.S.Nagar, Uttarakhand, India 

 

---------------------------------------------------------------------***---------------------------------------------------------------------
Abstract – The structural topology optimization of 

linear elastic continuous structures with orthotropic 

material properties is performed in this paper, for 

given design domain and boundary conditions of 

mentioned structures. The various parameters are 

obtained such as optimal topology, compliance, 

displacement and stresses using optimality criterion 

approach using ANSYS. The orthotropic material 

properties for all four structures are taken same as of 

Kelvar material. The present paper also consists of the 

comparison between the results of optimal topologies 

obtained for Isotropic Material and Orthotropic 

Material in ANSYS using O C approach. The study is 

done on four illustrative examples. 
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1. INTRODUCTION 
This paper presents the topology optimization of linear 
elastic continuous orthotropic material (OM) structures. 
The optimal design of a simple column, a beam, a three 
point supported pressurized short beam and a flat plate 
with a central circular hole are obtained in ANSYS. The 
plane state of stress condition is considered for the 
mentioned problems. The optimal design is performed by 
ANSYS software which gives the optimum topology of the 
structures mainly it is achieved by reducing material in the 
design domain. For the optimization, the finite element 
method is used to discretize the structures and topology is 
performed by removing parts of elements to get a 
continuum design with holes. The models are considered 
to be linearly elastic isotropic material (IM) structures 
whose analysis has not been done so far by using 
optimality criterion approach in ANSYS. The work 
presented in the paper is obtaining compliance value, 
optimal topology, deformed shape, displacements of 
optimized shapes with deformed and undeformed edges, 

stress distribution in the optimized topology and von-
Mises stresses variation of the structures.  
The research in the area of topology optimization is 
extremely active recent years. Several topology 
optimization methods have been proposed, and used for 
the design of practical problem. However, there still exist a 
number of problems such as checkerboard, mesh-
dependence, and local minima being investigated 
currently [1]. 
The topology optimization of continuum structures 
corresponds to finding the connectedness, shape and 
number of holes such that the objective-function is 
extremized [1]. 
Bendsøe and Kikuchi [2] introduced a periodic 
microstructure to the material through the use of so-called 
homogenization approach to topology optimization that 
allows the volume density of material to cover the 
complete range of values from 0 to 1 by changing the size 
of microstructure. To use this method, it is necessary to 
determine the effective material characteristic by 
homogenization, and results are obtained with large 
regions of perforated microstructure or composite 
materials (0< p <1, p is the density function, 0 is void and 1 
is material). Another approach that is called density 
function method [3] disregards the details of the 
microstructure and defines the elasticity tensor as a 
function of density of material directly. The SIMP (Simple 
Isotropic Material with Penalization) approach [4] is kind 
of density function method, in which the stiffness tensor of 
the intermediate density material is penalized with an 
exponential function of density to somehow approach a 0-
1 design. 
To control the value of p can control the speed of 
convergence and the rate of intermediate density material 
in the result design. It is a popular method and has also 
been widely used because of its simplicity. In this study, 
the SIMP approach is improved in order to be more 
efficient in optimization process. Using the concept of 
Michell truss, we assume material to be a pseudo 
orthotropic continuum and introduce new penalties to the 
Young’s modulus[5 & 6]. Four examples are attached for 
topology optimization using optimality criterion approach 
in ANSYS. 
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 Gunwant et al. (2013), obtained topologically optimal 
configuration of sheet metal brackets using Optimality 
Criterion approach through commercially available finite 
element solver ANSYS and obtained compliance versus 
iterations plots for various aspect ratio structures 
(brackets) under different boundary conditions [8]. 
Chaudhuri, worked on stress concentration around a part 
through hole weakening a laminated plate by finite 
element method. Peterson has developed good theory and 
charts on the basis of mathematical analysis. Patle et al. 
determined stress concentration factors in plate with 
oblique hole using FEM. Various angle of holes have been 
considered to evaluate stress concentration factors at such 
holes. The stress concentration factors are based on gross 
area of the plate[9]. 
The goal of topological optimization is to find the best use 
of material for a body such that an objective criterion (i.e. 
global stiffness, natural frequency, etc.) attains a maximum 
or minimum value subject to given constraints (i.e. volume 
reduction).  
In this work, maximization of static stiffness has been 
considered. This can also be stated as the problem of 
minimization of compliance of the structure. Compliance is 
a form of work done on the structure by the applied load. 
Lesser compliance means lesser work is done by the load 
on the structure, which results in lesser energy is stored in 
the structure which in turn, means that the structure is 
stiffer.  
ANSYS employs gradient based methods of topology 
optimization, in which the design variables are continuous 
in nature and not discrete. These types of methods require 
a penalization scheme for evolving true, material and void 
topologies. SIMP (Solid Isotropic Material with 
Penalization) is a most commonly penalization scheme, 
and is explained in the next section. 
 

2. MATERIALS AND METHODS 
Topology optimization aims to answer the question, what 
is the best domain in which to distribute material in order 
to optimize a given objective function subject to some 
constraints? 
Topology optimization is an incredibly powerful tool in 
many areas of design such as optics, electronics and 
structural mechanics. The field emerged from structural 
design and so topology optimization applied in this 
context is also known as structural optimization. 

Table-1: Nine Independent Elastic Constants for 
Orthotropic Material (Kelvar) [16] 

 
Orthotropic Properties of Kelvar 

Young’s Modulus 
(GPa) 

Poisson’s Ratio Shear Modulous 
(GPa) 

Ex 150 ʋxy 0.35 Gxy 1.5 
Ey 4.2 ʋyz 0.35 Gyz 2.9 
Ez 4.2 ʋxz 0.35 Gxz 1.5 

 

Applying topology optimization to structural design 
typically involves considering quantities such as weight, 
stresses, stiffness, displacements, buckling loads and 
resonant frequencies, with some measure of these 
defining the objective function and others constraining the 
system.  
In structural design, topology optimization can be 
regarded as an extension of methods for size optimization 
and shape optimization. Size optimization considers a 
structure which can be decomposed into a finite number 
of members. Size optimization then seeks to find the 
optimal values of the parameters defining the members. 
Shape optimization is an extension of size optimization in 
that it allows extra freedoms in the configuration of the 
structure such as the location of connections between 
members. The designs allowed are restricted to a fixed 
topology and thus can be written using a limited number 
of optimization variables. The topology optimization is 
performed using optimality criteria method through 
ANSYS software.  
Analytical method provides accurate solutions with 
applications limited to simple geometries. Experimental 
methods are used to test prototypes or full scale models. 
However they are costly and may not be feasible in certain 
cases.  
In this paper, we treat the problem of maximum stiffness 
of structures with the given amount of material. Design for 
maximum stiffness of statically loaded linearly elastic 
structures is equivalent to design for minimum 
compliance defined as the work done by the set of given 
loads against the displacements at equilibrium[1]. 
This process leads to a set of linear algebraic simultaneous 
equations for the entire system that can be solved to yield 
the required field variable (e.g., strains and stresses). As 
the actual model is replaced by a set of finite elements, this 
method gives an approximate solution rather than exact 
solution. However the solution can be improved by using 
more elements to represent the model.  
  

2.1 The Optimality Criterion approach    
The discrete topology optimization problem is 
characterized by a large number of design variables, N in 
this case. It is therefore common to use iterative 
optimization techniques to solve this problem, e.g. the 
method of moving asymptotes, optimality criteria (OC) 
method, to name two. Here we choose the latter. At each 
iteration of the OC method, the design variables are 
updated using a heuristic scheme.  
Optimality criteria (OC) method was analytically 
formulated by Prager and co-workers in 1960. It was later 
developed numerically and become a widely accepted 
structural optimization method (Venkaya et al. 1968).OC 
methods can be divided into two types. One type is 
rigorous mathematical statements such as the Kuhn-
Tucker conditions. The other is algorithms used to resize 
the structure for satisfying the optimality criterion. 
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Different optimization problems require different forms of 
optimality criterion. 
This paper considers the maximization of static stiffness 
through the inbuilt topological optimisation capabilities of 
the commercially available FEA software to search for the 
optimum material distribution in two plane stress 
structures.  
The optimum material distribution depends upon the 
configuration of the initial design space and the boundary 
conditions (loads and constraints).  
The goal of the paper is to minimize the compliance of the 
structure while satisfying the constraint on the volume of 
the material reduction.  
Minimizing the compliance means a proportional increase 
in the stiffness of the material. A volume constraint is 
applied to the optimisation problem, which acts as an 
opposing constraint [10].  
 
2.1.1 Element Type 
Selection of element type is one of the most important 
features in topology optimization through ANSYS. 
Topological optimization in ANSYS supports 2-D and 3-D 
solid elements. By this technique the model can be 
discretized into following element type: 
(a). 2-D Solids: Plane 82 
(b). 3-D Solids: Plane 95 
Plane 82: This is an 8-node element and is defined by eight 
nodes having two degree of freedom at each node. 
Translations in the nodal x and y directions (Figure-1a). 
The element may be used as a plane element or as an axi-
symmetric element. The element has plasticity, creep, 
swelling, stress stiffening, large deflection, and large strain 
capabilities. In the present paper structures are 
considered to be 2 D, so here plane 82 8-node type 
element is taken for discretization. Figure-1b shows the 
discretization for three dimensional structures [11]. 

   
(a) Plane 82                                 (b) Plane 95 

Fig-1: Element type (a) for 2 D and (b) for 3 D 
To visualize, more the volume of material, lower will be 
the compliance of the structure and higher will be the 
structural stiffness of the structure. For implementation of 
this, APDL codes for various beam modelling and 
topological optimisation were written and run in ANSYS 
[11]. 
 

2.2 Specimen Geometry and Boundary Conditions 
In the present investigation, the orthotropic material (OM) 
properties are used for topology optimization and 
structural analysis on all four specimen geometries and 

boundary conditions applied have been used as shown in 
the figures below. The specimen 1 is taken from the 
research work of Philip Anthony Browne [12], specimen 2 
is taken from Huang et al. [13], specimen 3 is taken from 
the research work of H. Zhang et al. [14] And specimen 4 is 
taken from Kishan Anand et al. [15]. All the four models 
are under plane state of stress. The used OM properties of 
Kelvar are given in table-1 [16]. 
 

2.2.1 Centrally loaded column (Model 1): Example 1 is 
a stiffness topology optimization problem for a simple 
column structure. Here is presented a somewhat trivial 
optimization problem which is included for comparison 
with results of OM and IM properties. The design domain 
is square and a unit load is applied vertically downwards 
at the centre of the top of the design domain and the base 
is fixed, as shown in Figure-2. 

 
Fig-2: Design domain of model column problem. This is a 

square domain with a unit load acting vertically at the 
midpoint of the upper boundary of the space. 

2.2.2 Model 2: Example 2 is a stiffness topology 
optimization problem for a beam structure which is 
supported by both ends and vertically loaded (P = 100 N) 
in the middle of its upper edge as depicted in Fig.3. The 
computations are performed in the domain with 200 × 
100 four-node plane stress elements. 

 
Fig-3: Geometry and boundary conditions of a beam 

(Model-2) 
2.2.3 Model 3: A general case of more than two support 
points is considered. As shown in Fig. 4, another support 
point is added in the middle bottom of the beam and unit 
pressure is applied on top surface of short beam. The 
elastic properties and volume fraction of solid material are 
the unchanged. Eight hundred square elements are used to 
discretize the design domain. The optimal topology of 
structure is shown in Fig. 8(a & b).  
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Fig-4: A three-point supported short beam design, a 

Pressurized short beam sketch. 
2.2.4 Model 4: In structure 4, the topology optimization 
and nodal analysis of a rectangular plate with a central 
circular hole of dimensions 400mm x 100mm with central 
hole of diameter 10mm under transversely downwards 
static load at right end of top edge of magnitude 1000 N 
has been analyzed using optimality criterion approach in 
ANSYS. In the fig-5, centre of plate depicts a fixed circular 
hole, taking hole as constraint in all DoF (considering it as 
fixed for some purpose). 

 
Fig-5: The optimized topology with a new kind of element 

based search scheme of load surfaces method 
 

3. RESULTS 

In this section the optimal topology of structures are 
shown obtained from the Optimality Criteria Approach 
through ANSYS. Further the iteration versus values of 
compliances for all the structures are shown in the charts 
[1, 2 & 3]. Chart shows the graph between Compliance and 
iterations. 
 
3.1 Structure Compared: 
In this section, final compliance and optimal shape of the 
models obtained with the help of ANSYS based Optimality 
Criterion for orthotropic material (OM) properties are 
compared with isotropic material (IM) properties. 

 
3.2 Optimized Shape: 
In this section, the optimal topologies are shown for 
orthotropic material properties and isotropic material 
properties (E & ʋ are shown in table-3) of the four 
structures which are mentioned above. 
Figure 6 (a), shows the topology optimization through OC 
method in ANSYS for OM and figure 6 (b) represents the 
optimized topology of same structure using isotropic 
material (IM) properties, which are nearly same, for the 
simple column structure under the given boundary and 
loading conditions.  

 

 
(a)OC in ANSYS for OM         (b) OC in ANSYS for IM 

Fig-6: Optimal design for Model 1 using optimality criteria 
approach 

 
The topologically optimized shape as obtained for the 
beam (model 2) under the given boundary conditions is 
obtained by using optimality criteria using ANSYS. Figure 
7 (a), shows the topologically optimized shape for OM and 
fig-7 (b), shows optimal shape for IM in ANSYS. 

 

 
(a)OC in ANSYS for OM         (b) OC in ANSYS for IM 

Fig-7: Optimal design for Model 2 using optimality criteria 
approach 

The topologically optimized shape as obtained for the 
three point supported pressurized short beam (model 3) 
under the given boundary conditions is obtained by using 
optimality criteria using ANSYS. Figure 8 (a), shows the 
topologically optimized shape for OM and fig-8 (b), shows 
optimal topology for IM in ANSYS. 

 

 
(a)OC in ANSYS for OM         (b) OC in ANSYS for IM 

Fig-8: Optimal design for Model 3 using optimality criteria 
approach 

The topologically optimized shape as obtained for the flat 
plate with central circular hole (model 4) under the given 
boundary conditions is obtained by using optimality 
criterion using ANSYS. Figure 9 (a & b), shows the 
topologically optimized shape for OM and IM respectively 
through ANSYS. 
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(a)OC in ANSYS for OM   

   
     (b) OC in ANSYS for IM 

Fig-9: Optimal design for Model 4 using optimality criteria 
approach 

The optimal topology through ANSYS for all the four 
structures are nearly same as obtained for structures with 
orthotropic material as well as isotropic material 
properties. 
 
3.3 Compliance: 
For structure 1, the initial value of compliance was 
0.372197 and the final value as obtained after 14 
iterations is 0.0427 for mesh size of 200. Variation of 
compliance with iteration is shown in the graph 1(a) 
below. Vertical axis represents the compliance and the 
horizontal axis represents the iteration for all cases. 

 
(a) Simple Column 

 
(b) Beam 

Chart -1: Compliance and iteration plot for (a) Model 1 
and (b) Model 2 

For structure 2, the initial value of compliance was 6518.5 
and the final value as obtained after 46 iterations is 
1222.3. Variation of compliance with iteration is shown in 
the graph 1(b) above.  

For structure 3, the initial value of compliance was 
0.141215 and the final value as obtained after 15 
iterations is 0.04805. Variation of compliance with 
iteration is shown in the graph 2(a) below.  

 

(a) Three Point Support Short Beam 

 
 (b)Plate with Central Circular Hole 

Chart -2: Compliance and iteration plot for (a) Model 3 
and (b) Model 4 

 
For structure 4, the initial value of compliance was 
1866840 and the final value as obtained after 29 iterations 
is 763574. Variation of compliance with iteration is shown 
in the graph 2(b) above. Vertical axis represents the 
compliance and the horizontal axis represents the 
iteration. 
The compliance obtained by ANSYS is nearly same as that 
obtained for OM and IM properties. 
 

Table-2: Comparison of Compliances between Optimal 
Topologies for Structures of Orthotropic Materials and 

Isotropic Materials for Given Volume Fraction 

S.
N. 

Structure 
Final Compliances by 

OC in ANSYS 
Volume 
Fraction 

OM IM 
1. Simple 

Column 
0.04272 7.50157 0.2 

2. Beam 1222.3 183.89 0.3 

3. Three Point 
Supported 
pressurized 
Short beam 

0.04805 0.07159 0.5 

4. Plate with 
Central Hole 

763574 489.87 0.5 
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As we have seen from the above problems that the 
optimized shape obtained for the linearly elastic isotropic 
structures with ANSYS are nearly same and comparable 
with the optimized shape obtained for the linearly elastic 
orthotropic structures. Thus, we can say that optimal 
topology is independent of material properties. 
 
3.4 Structural Analysis (Nodal Solution using ANSYS) 
The structural analysis has been also done for the above 
mentioned structures with orthotropic material 
properties. The table-3 given below shows the numerical 
values obtained by ANSYS software of vector-sum 
displacement (maximum deformation occurred) and von-
Mises stress for all the four structures.  

 
(a).Deformed Shape for Column (b).Deformed Shape for                     

Beam 
Fig-10: Deformed shape with un-deformed edges for OM 

(a) Model 1 & (b) Model 2 
From the figure-10 (a and b), we can see the deformed 
shapes with undeformed edge for the simple column and 
beam respectively. 

 

 
(a).Deformed Shape for Column  

 

 
(b).Deformed Shape for Beam 

Fig-11: Deformed shape with un-deformed edges for OM 
(a) Model 3 & (b) Model 4 

Figure- 11(a), shows the deformed shape with un-
deformed edge for three point support short pressurized 
beam and figure-11(b) represents the deformed shape for 
Model-4 (flat plate with central circular hole). 
The numerical values of maximum deformation and von-
Mises stresses are presented in the table-3 along with the 
Isotropic Material (IM) properties which are used to 
compare the optimal topology with that of Orthotropic 
material (OM) properties of all four structures mentioned 
in this paper. 

Table -3: Material Properties of Structures and Nodal 
Solutions (displacements and von-Mises stress) 

 

S.
N. 

Structure E ʋ 
Displacement Stress 

Vector Sum 
von-

Mises 
1. Simple 

Column 
1 Pa 0.3 0.048435 59.032 

2. Beam 1 GPa 0.3 15.185 168 

3. Three Point 
Supported 
pressurized 
Short beam 

100 
Pa 

0.3 0.038178 16.145 

4. Plate with 
Central 
Hole 

210 
Gpa 

0.3 851.748 641.636 

The table-3 shown above also shows Young’s modulus and 
Poisson’s ratio of the structures for Isotropic Material 
properties. The optimal topologies of all four structures 
with these IM properties are compared with the OM 
properties of same structures using OC approach in 
ANSYS. 
 

4. CONCLUSIONS 
The following conclusions can be drawn from the present 
investigation: 
 The optimized shape of all four models for the 

orthotropic material properties are nearly same as 
that of structures for isotropic material properties for 
same boundary and loading conditions. 

 Further the value of compliance is obtained and found 
enormous variations. Also the compliance obtained 
for isotropic as well as orthotropic always convergent 
for all the mentioned structures. Thus ANSYS is an 
effective tool for topological optimization and the 
results obtained by ANSYS for isotropic and 
orthotropic material properties are same for 
optimized topology but different in compliance values.  

 For further work structural analysis has been done for 
the above mentioned structures for orthotropic 
material properties. 

In this paper, a simple method for topology optimization 
of linearly elastic continuum structures with Orthotropic 
Material properties is presented. 
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