
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 02 Issue: 04 | Jul-2015 www.irjet.net p-ISSN: 2395-0072

© 2015, IRJET.NET- All Rights Reserved Page 1520

Analysis of a Recent Hash Based RFID Authentication Protocol

Intended for Telecare Medicine

Mehmet Hilal ÖZCANHAN1

1 Asst. Professor, Computer Engineering, Dokuz Eylul University, Izmir, Turkey

---***---
Abstract - Radio Frequency Identification (RFID) is

technologically one of the most popular batch

identification methods of our modern age. The low cost

RFID stickers (tags) are gradually replacing traditional

paper barcodes. However, the use of tags comes at a an

additional expense in terms of die area and clock cycle

resources needed for secure operation, through open

air. Contrarily, due to the cost competition with

traditional barcodes, limited resources can be spared

for security. Therefore, guaranteeing the integrity and

confidentiality of the transmitted information is a hard

challenge, in RFID technology. Since the cryptographic

algorithms used in computers cannot fit in tags, other

strong encryption functions are needed to protect the

exchanged information. This is the main reason behind

the RFID security community’s convergence on

alternative function proposals for obscuring the

exchanged information. Unfortunately, many of the

proposed schemes have been demonstrated to show

security weaknesses. One latest work relies on the

strength of hash functions, to recommend an

authentication protocol for the mission critical telecare

medicine. Naturally, any breach in the security of the

proposed protocol may mean a health or privacy risk

for its users. The present work uses a two stage analysis

to test the proposed protocol. An algebraic analysis is

supported by the rainbow tables approach to expose

the secrets of the protocol. The security evaluation

demonstrates multiple security weaknesses in the

protocol’s design. The weaknesses prove to be so grave

that the proposed authentication protocol may be

classified as insecure and unsafe for its telecare users.

Key Words: Hash function, mutual authentication,

rainbow tables, RFID security, traceability.

1. INTRODUCTION
Paper barcodes have long been used for identifying
commercial goods, in supply chains. But the wear and tear
of paper led to the more expensive plastic fortified

stickers. Furthermore, the new two-dimensional barcodes
require precise printing. The two above factors have
hindered reduction in the cost of the barcodes.
Additionally, the barcode stickers have to be read one by
one; clearly a time consuming and expensive operation. On
the other hand, there are the RFID tags. Basically, a tag is a
tiny size microcontroller with reduced memory and die
area [1, 2]. An antenna coil is attached to the
microcontroller for communication and electromagnetic
energy transfer. In other words, a reader energizes and
requests the unique identification number (ID or
Electronic Product Code (EPC)), which resides inside the
memory of the tag. The miniaturized electronics makes
reading as many as 1000 tags/sec possible [2]. The
operation distance and the batch reading of tags promote
obvious advantages over barcodes. For detailed
electronics and properties of RFID tags, the reader is
referred to works [1, 2].

In the rest of this paper, Section 2 summarizes Related
Works. Section 3 presents the analyzed proposal’s
authentication scheme. The exposure of the tag secrets is
demonstrated in Section 4. In Section 5, the security
analysis of the studied authentication is made and
multiple vulnerabilities are shown. There is Conclusion in
Section 6.

2. RELATED WORKS
The RFID authentication protocols are often classified
according to the computational cost of the functions they
support [3]. There are four classes named as “fully fledged,
simple, lightweight and ultra-lightweight”. At the lowest
level, ultra-lightweight protocols support only bitwise
operations like AND, OR, XOR, shift and modulo 2 addition.
Lightweight protocols support random number generators
and simple functions like cyclic redundancy code (CRC)
check. Simple class protocols go further and support hash
functions, in addition to random number generators. At
the top of the classification, the fully-fledged protocols
support the conventional cryptographic functions like
symmetric encryption and public key algorithms.
Examples of each class are given in work [3], but a
regularly updated list can be reached at
www.avoine.net/rfid/index.php. The focus of the present
work is on a protocol in the simple class, which relies on
the strength of the hash functions [4].

http://www.avoine.net/rfid/index.php

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 02 Issue: 04 | Jul-2015 www.irjet.net p-ISSN: 2395-0072

© 2015, IRJET.NET- All Rights Reserved Page 1521

Hash functions h() are defined as one-way. Obscuring a
given secret x, by calculating its hash value in M = h(x) is
easy. But, calculating the reverse function x = h-1(M) is
hard. Therefore, exposing x by calculation is accepted as
mathematically very difficult. Another property of the
hash functions is that it is hard to find a value x’, where
h(x) = h(x’). The above two properties guarantee that the
hash functions produce no collision in their outputs, i.e. a
unique input always produces a unique output. This
favorable characteristic can turn into a disadvantage, as it
will be revealed in Section 4. MD5 [5], SHA-1 [6] and the
latest winner of NIST hash function contest Keccak [7] are
popular examples for hash functions.

3. THE ANALYZED AUTHENTICATION SCHEME
The scheme of the analyzed authentication scheme of
work [4] and the used notation are given in Figure 1. For
simple reference, the scheme is named SAKM after its
authors’ names. The SAKM authentication protocol
proceeds as follows. Initially, the server database contains
the present and last session’s secret keys (SKs, SKs-1), the
unique identification number (IDk) and the hash values
h(SKs || IDk), h(SKs-1 || IDk) of every tag. The initial value of
the secret key SKs of every tag is zero. On the other hand,
each tag contains its unique identification number IDk and
the pre-shared session secret key SKs. When the reader
wants to acquire the IDk of a tag, it generates and sends a
random number Rr. Upon receiving the request, the tag
generates its own random number Rt and tries to obscure
its IDk before sending it to the reader, by computing A, B,
and C as given in Figure 1. Next, the tag sends A, C and its
timestamp T1 used in the calculations, to the reader. The
reader appends its random number and sends message A,
C, T1, Rr to the server.

TagReader
SKs, SKs-1, IDk, h(SKs || IDk)

Generate and send Rr

SKs, IDk

 Rr

A, C, T1

A = h(SKs || IDk) ⊕ Rt

Check T2 − T1 < ΔT if O.K. :
Use to h(SKs || IDk) compute:

Check C ?= C' If O.K. compute:

 E

SKs SKs+1
Notation:

IDk : The tag identification number.
Rr : The reader’s random number.

T1 : The tag’s timestamp.

SKs : The shared secret at the sth session.

Server

A, C, T1, Rr

Generate Rt and compute:

B = A ⊕ h(IDk || Rr|| Rt)
C = h(B ⊕ T1 ⊕ Rt)

Rt : The tag’s random number.

T2 : The server’s timestamp.

R't = A ⊕ h(SKs || IDk)
C' = h(A ⊕ h(IDk ⊕ T1 ⊕ R't) ⊕ T1 ⊕ R't)

D = h(A ⊕ h(IDk ⊕ Rr ⊕ Rt) ⊕ T2 ⊕ SKs)
E = Data || D

 D, T2
Check T3 − T2 < ΔT if O.K. compute:
D' = h(B ⊕ T2 ⊕ SKs)
Check D ?= D' If O.K. compute:
SKs+1 = h(SKs ⊕ Rr ⊕ Rt)

SKs SKs+1

SKs+1 = h(SKs ⊕ Rr ⊕ Rt)

⊕, || : The exclusive OR and concatenation operations.
h() : A one way hash function.

Fig -1: The authentication scheme of work [4].

Before going into the procedure of authenticating the tag,
the server checks the tag’s reply if it is within a legitimate
time delay. Then, using message A and the database hash
value h(SKs || IDk) of each tag, the server computes a value
Rʹt. Using the calculated Rʹt value the server computes a
value Cʹ and matches it with the received value C. A correct
match identifies the tag and the corresponding IDk in the

database can be used to compute the reply D, necessary to
authenticate the server. The server computes D given in
Figure 1, prepends the data of the tag to form E and sends
E to the reader. After sending E to the reader, without
waiting for an acknowledgment of the receipt of D, the
server updates SKs with SKs+1 and relegates used SKs to
SKs-1. In other words, the server finishes by losing the
original SKs-1, whether D reaches the tag or not.

The reader extracts the pre-fix “Data” and transmits
message D to the tag. The tag first verifies that the
response of the server is within a legitimate time delay.
But to do so, the tag needs the timestamp T2 of the server.
This is strangely forgotten in SAKM, but rightfully added in
Figure 1. T2 is also needed in computing Dʹ. If D and Dʹ
match, then the server is authenticated. As a last step, the
tag updates the session secret key like the server, but
drops the old session secret key. Hence, the mutual
authentication is completed.

4. ANALYSING THE SAKM PROTOCOL
The SAKM protocol contains three message exchanges
through air. During these exchanges Rr, A, C, T1, D and T2
are transmitted. Therefore, any adversary listening to the
exchanges can store the messages for offline analysis. In
fact, in a standard adversarial model the adversary can [8]:

• Query: Interrogate tags in the system.

• Send: Act as a tag in the system.

• Execute: Actively monitor the air channel.

• Block: Prevent a message reaching the intended receiver.

Using the above model, the following analysis of the SAKM
protocol is performed.

4.1 De-synchronization Attack on SAKM Protocol
In the SAKM protocol, the server prepares its reply D and
sends it inside message E, as shown in Figure 1. The
reader keeps the “Data” and sends only D and T2 to the tag.
The tag needs this information to authenticate the server
and update the secret key. Consider the case when
message D fails to reach the tag; due to intentionally
blocking of D, or not sending it at all. The server has
already updated the session secret key SKs to a new value
SKs+1, changed SK s-1 into the used SKs and dropped the
previous SKs-1. However, the tag still preserves the original
SKs. In the next authentication session the server identifies
the tag using the SKs-1 value in its database, which equates
to the SKs value in the tag. But, when message D is blocked
for a second consecutive time, the server goes through
another round of update and drops the tag’s SKs value
(recorded as SKs-1 value in its database). After this point,
the secret key in the tag’s memory does not match any of
the updated secret keys in the server database. Hence,
blocking the server’s reply two consecutive sessions from
reaching the tag, the server is persuaded not to recognize
a perfectly legitimate tag. The user of the tag is wrongly
eliminated from normal telecare medicine operations.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 02 Issue: 04 | Jul-2015 www.irjet.net p-ISSN: 2395-0072

© 2015, IRJET.NET- All Rights Reserved Page 1522

4.2 Full-Disclosure Attack on SAKM
The tag’s secrets are the session key SKs and the tag IDk.
Any disclosure of these secrets may turn the sessions into
public exchanges, which in turn can have devastating
results to the tag’s owner. In this section, an offline
analysis for disclosing the secrets of the tag, consisting of
two stages is demonstrated. The first stage is an algebraic
analysis of the eavesdropped messages. In the second
stage, the well-known rainbow table search method used
in attacking hash functions is applied to the outcome of the
first stage.

To start, consider the first session of brand new tags, when
the initial value of SKs is zero. With a rogue reader, the
tags can be challenged with a fabricated random number
Rr, for an unlimited number of sessions [1, 2, 8]. In our
analysis, the SAKM tag is challenged twice by playing Rr =
0 , but response D is given only in the second session. The
replies as A1, C1, T1

1, A2, C2, T2
1 are recorded, where the

superscripts notate the session number. Notice that the
shared session secret SKs remains the same, as it is not
updated as long as message D is blocked. After two
sessions, the adversary has the following four equations:

A1 = h(0 || IDk) ⊕ R1

t (1)
C1 = h{h(0 || IDk) ⊕ h(IDk || 0 || R1

t) ⊕ T1
1} (2)

A2 = h(0 || IDk) ⊕ R2
t (3)

C2 = h{h(0 || IDk) ⊕ h(IDk || 0 || R2
t) ⊕ T2

1} (4)

Observe that R1

t⊕R1
t, R2

t⊕R2
t canceled out in equations

(2) and (4), respectively. XORing (1) with (3) yields:

A1 ⊕ A2 = R1

t ⊕ R2
t (5)

The above strategy of challenging with Rr = 0 and
gathering an infinite set of equations (1 – 5) with new
values is possible [8]. Hence, it is possible to obtain
interesting values for equation (5) using any two sessions
y, z such that Ry

t ⊕ Rz
t = 2n, or zero, or all ones (FFFFH).

The first case means that Ry
t differs from Rz

t only at the nth
bit location. In the second case, a zero result means Ry

t =
Rz

t . In the third case, Ry
t = ¬Rz

t. In other words, if Ry
t is

captured, the exposure of Rz
t becomes trivial.

Taking equation (2), the analysis continues using the
popular “rainbow tables” technique. The rainbow tables
technique is a known attack aiming at finding the inverse
of one-way hash functions. It is known that computing the
inverse of a hash operation M = h(x) to find x = h-1(M) is
hard. But if, for every x the corresponding M is computed
and recorded in a look-up table, then finding the value of x
for a given M reduces to a single look-up in the prepared
table. Such look-up tables prepared for obtaining the input
of a hash function is named as rainbow tables [9]. It
requires 2n computations for preparing a full input-output
rainbow table for a given hash function, where n is the bit
length of x. Obviously, the rainbow table search method is

simpler than the brute force attack, where the
computation M = h(x) is performed until the correct M is
reached. The trade-off in time, power and memory space
needed for preparing rainbow tables is a hot topic in the
hash function analysis community [9, 10]. Present work’s
scope is to use the fast and spacious Field Programmable
Gate Arrays (FPGA) of work [11], because solving
equations (2) and (4) makes the capture of the secrets of
SAKM tags inevitable.

To prove our argument, let us consider the case when the
value of C1 of equation (2) is in a table similar to those
presented in works [1, 2, 9]. After a single look-up, the
corresponding input value “h(0 || IDk) ⊕ h(IDk || 0 || R1

t)
⊕ T1

1” is obtained. T1
1 was transmitted in cleartext and

recorded. XORing the obtained input with T1
1 yields the

value “h(0 || IDk) ⊕ h(IDk || 0 || R1
t)”. Following a similar

argument for C2 of equation (2), the value “h(0 || IDk) ⊕
h(IDk || 0 || R2

t)” is obtained. XORing the two obtained
values produces a new result R = h(IDk || 0 || R1

t) ⊕ h(IDk
|| 0 || R2

t), because “h(0 || IDk) ⊕ h(0 || IDk)” cancels out.
However, R is the result of the XOR of two values from the
output column of the rainbow table. R’s most significant
bit inputs (IDk) are identical, the middle bit inputs are zero
and only the least significant bit inputs (R1

t and R2
t) differ.

This condition reduces the space to be searched by one
third of the full rainbow table, as shown in Figure 2. As an
example, for a 6 bit length input (n=6) the number of
entries to be searched is 24, instead of 26.

Input = x (n bits) Output = h(x)

00

11

00all zeros 0

11

...
...

...

...
11all zeros 0

...0
0
0
0
0

output 1

output 2n

00all zeros 0
... ...

11all zeros 0

...

NOT all
zeros 0

11

..
h(IDk || 0 ||R2

t)

NOT all
zeros 0

..

00all zeros 0
... ...

11all zeros 0

...

11

NOT all
zeros 0

..

..

...

...

...

C
C
C
C

F
F
F
F

h(IDk || 0 ||R1
t)

Fig -2: The search space of our attack’s rainbow table.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 02 Issue: 04 | Jul-2015 www.irjet.net p-ISSN: 2395-0072

© 2015, IRJET.NET- All Rights Reserved Page 1523

The search for the inputs is not complicated due to the
property of the hash functions explained in Section 2:
Since every entry in the output column of the rainbow
table is unique, each of the two values h(IDk || 0 || R1

t) and
h(IDk || 0 || R2

t) is also unique. Therefore, there are exactly
two values that produce the final result R. By preparing a
second table of R values using the first tables 22n/3 number
of inputs, the search for R is still kept at a single look-up.
The inputs are XORed to get the corresponding R values
and the results are tabulated, after noting down the XORed
rows. Hence, finding the value of R reveals the values of
the values h(IDk || 0 || R1

t) and h(IDk || 0 || R2
t), as well as

the values of the inputs “IDk || 0 || R1
t” and “IDk || 0 || R1

t”.
Removing the zero bits, taking the most significant bits to
reveal the value of IDk and taking the least significant bits
to reveal the tag’s random numbers (R1

t and R2
t) is trivial.

The reader is referenced to a similar work proposing
custom made software using pre-calculated tables is
detailed in work [12].

Remembering that initially both SKs and Rr were zeros, the
message D in Figure 1 can be fabricated by using a fake
T2

2, where T2
2 > T2

1. This would lead the tag to update
SKs+1 to h(0 ⊕ 0 ⊕ R2

t), i.e. h(R2
t). Now all secrets of the

tag are exposed, hence the full-disclosure attack is
complete. The obtained values can be easily verified by
running a third session with the tag, using Rr = 0 and SKs =
h(R2

t). Our demonstrated attack is viable as long as the
rainbow table contains the searched output values. It
should be noted that the initial zero value of SKs is only a
simplification in the attack. As long as the tag is prevented
from updating, the attack methodology is the same for a
non-zero SKs.

5. THE SECURITY ANALYSIS OF SAKM PROTOCOL
The authors of SAKM argue that their protocol provides
high security against most common known attacks, mainly
because it is based on hash functions and a synchronized
shared secret. However, in the previous section it has been
demonstrated that the secrets of a tag can be exposed and
the server can be convinced to not recognize a fully
legitimate tag. Under the light of the above analysis the
security of the SAKM protocol is now re-evaluated.

5.1 Secret Disclosure Resistance
The first argument of the designers of SAKM is that
valuable information about the tag (tag secrets) cannot be
obtained; and hence an attacker cannot pass the
authentication steps. This argument is obviously unsound,
after the demonstration of the above full-disclosure attack.
Moreover, as shown an attacker can complete an
authentication run, by being able to fabricate message D.

5.2 De-synchronization Resistance:
As far as de-synchronization resistance is concerned, the
SAKM protocol relies on the argument that SKs+1 = h(SKs
⊕ Rr ⊕ Rt) cannot be computed by an attacker. But, the

de-synchronization analysis demonstrated in the previous
section proves that blocking two consecutive D messages
from reaching the tag leads to an unshared secret. This is
because the server updates twice, drops the originally
shared value; while the tag holds on to a value that is no
longer existent in the server database. Therefore, contrary
to its designers’ arguments SAKM’s server falls into de-
synchronization with its tags.

5.3 Forward Secrecy Resistance
It was demonstrated in our full-disclosure attack that if
the second session is continued with fabricated D and T2

2
values; then the tag updates to SKs+1 = h(R2

t). Such a result
puts the forward secrecy and tracking resistance of the
SAKM protocol into danger. Because, in the next tag
authentication sessions, the recorded SKs+1 and IDk pairs in
the attacker’s database can be used to decrypt the
exchanges of between the tags and the server. Starting
with A in Figure 1, after obtaining a value for R1

t the
attacker simply goes after a match of computed Cʹ and
transmitted C values. As observed, the attacker uses the
already exposed session secret key to blow the forward
secrecy resistance of the SAKM protocol. However, the
attack is not successful if the attacker misses a successfully
completed session, because the originally exposed SKs+1
would be changed during the missed session. Hence, the
attacker can never find matching C values.

5.4 Traceability Resistance
With the SKs+1 and IDk pairs in the attacker’s database, an
attacker can identify a tag, by listening to an
authentication session between a server and a tag. Using
every entry in its database, one by one the attacker tries to
find a match for computed Aʹ, Cʹ values and transmitted A,
C values. A match means a previously exposed tag is
identified. The attack is not successful if the attacker
misses a SKs+1 value update during a completed session,
because the originally exposed SKs+1 is no longer valid.
Nevertheless, tracking new SAKM tags is quite possible
and that represents a violation to user privacy.

6. CONCLUSIONS
The present work focuses on a recent work that
recommends RFID tags with a hash based authentication
protocol for telecare medicine. The health of patients
being the most critical entity in medical projects, the
proposed authentication protocol needs to be analyzed
very carefully. Our detailed analysis shows that the
security of the proposed protocol is not as strong as it is
claimed by its authors. Two types of known attacks have
been demonstrated, in present work. The simple de-
synchronization attack forces the server and the tag to fall
out of synchronization to a point where the server no
longer recognizes a legitimate tag. Our second attack feeds
the results of algebraic manipulations of transmitted
messages to the popular rainbow table search
methodology to fully disclose the secrets of a tag. A

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 02 Issue: 04 | Jul-2015 www.irjet.net p-ISSN: 2395-0072

© 2015, IRJET.NET- All Rights Reserved Page 1524

software project like in work [12] can automate the
exposure of the secrets of the SAKM tags. Exposed tag
secrets pose serious threats on the privacy and health of
the patients who are using the protocol. As a conclusion,
the weaknesses of the analyzed protocol render its use
insecure and unsafe in telecare medicine.

REFERENCES

[1] M. H. Ozcanhan, G. Dalkilic and S. Utku, "Analysis of

two protocols using EPC Gen-2 tags for safe inpatient
medication," IEEE International Symposium on
Innovations in Intelligent Systems and Applications
(INISTA), 2013.

[2] M. H. Ozcanhan, G. Dalkilic and S. Utku, "Is NFC a
better option instead of EPC Gen-2 in safe medication
of inpatients," Radio Frequency Identification. Berlin,
Germany: Springer, 2013, p. 19-33.

[3] H.Y. Chien, "SASI: A new ultralightweight RFID
authentication protocol providing strong
authentication and strong integrity," Dependable and
Secure Computing, p. 337-340, 2007.

[4] K. Srivastava et al. "A hash based mutual RFID tag
authentication protocol in telecare medicine
information system," Journal of medical systems, vol.
 39.1, p. 1-5, 2015.

[5] R. Rivest. “The MD5 Message-Digest Algorithm,” RFC
1321, 1992.

[6] Bruce Schneier, Applied Cryptography, 1995, ISBN:0-
471-11709-9.

[7] G. Bertoni, M. Peeters, G. Van Assche,
"Keccak," Advances in Cryptology, EUROCRYPT 2013.
Berlin Germany: Springer, p. 313-314, 2013.

[8] M.H. Ozcanhan, “Analysis of a Recent Quadratic
Residue Based Authentication Protocol for Low-Cost
RFID tags,” International Journal of Novel Research in
Engineering and Science, vol. 2, issue 1, p. 7-13,
March 2015.

[9] J. Gómez et al. "Cryptanalysis of hash functions using
advanced multiprocessing," Distributed computing
and artificial intelligence. Berlin, Germany: Springer,
p. 221-228, 2010.

[10] A. Gildas and X. Carpent, "Optimal Storage for
Rainbow Tables," Information Security and
Cryptology (ICISC) 2013, Springer International, p.
144-157, 2014.

[11] K. Theocharoulis, I. Papaefstathiou, and C. Manifavas,
"Implementing rainbow tables in high-end fpgas for
super-fast password cracking," International
Conference on Field Programmable Logic and
Applications (FPL), IEEE, 2010.

[12] M.H. Ozcanhan, "Improvement of a Weak RFID
Authentication Protocol Making Drug Administration
Insecure," Life Science Journal, vol. 11, issue 10
(2014).

BIOGRAPHIES

The author is a Turkish Cypriot
who has a Ph.D. in Computer
Engineering (Dokuz Eylul
University, 2011). The main
research interest of the author is
in security in embedded systems,
specifically in RFID.

