
          International Research Journal of Engineering and Technology (IRJET)               e-ISSN: 2395-0056 

               Volume: 02 Issue: 09 | Dec-2015           www.irjet.net                                                      p-ISSN: 2395-0072 

 

© 2015, IRJET                                                          ISO 9001:2008 Certified Journal                                                           Page 832 
 

A Survey on Task Checkpointing and Replication based Fault Tolerance 

in Grid Computing 

Mr.M.Nakkeeran1. 

1 Assistant Professor, Dept. of CSE, SVS College of Engineering, Tamil Nadu, India 
 

Abstract -    A grid is a distributed computational 

and storage environment often composed of 

heterogeneous autonomously managed 

subsystems. As a result, varying resource 

availability becomes commonplace, often resulting 

in loss and delay of executing jobs. To ensure good 

grid performance, fault tolerance should be taken 

in to account. Commonly utilized techniques for 

providing fault tolerance in distributed systems 

are periodic job Checkpointing and replication. 

While very robust, both techniques can delay job 

execution if inappropriate Checkpointing intervals 

and replica numbers are chosen. This survey work 

provides several heuristics that dynamically adapt 

the above mentioned parameters based on 

information on grid status to provide high job 

throughput in the presence of failure while 

reducing the system overhead. This survey results 

on experiments are evaluated in a newly 

developed grid simulation environment SimGrid 

[2], which allows for easy modeling of dynamic 

system and job behavior. The workload and 

system parameters derived from logs that were 

collected from results have shown that adaptive 

approaches can considerably improve system 

performance, while the preference for one of the 

solutions depends on particular system 

characteristics, such as load, job submission 

patterns, and failure frequency. 

 

Key Words: Checkpointing, replication, fault 

tolerance, throughput 

 

1. RESEARCH MOTIVATION 
 

Compared to other distributed environments, 
such as clusters, complexity of grids mainly originates 
from decentralized management and resource 
heterogeneity. The latter refers to hardware, as well as to 

foreseen utilization. These characteristics often lead to 
strong variations in grid availability, which in particular 
depends on resource and network failure rates, 
administrative policies, and fluctuations in system load. 
Apparently, runtime changes in system availability can 
significantly affect application (job) execution. Since for a 
large group of time-critical or time consuming jobs delay 
and loss are not acceptable, fault tolerance should be 
taken into account. Providing fault tolerance in a 
distributed environment, while optimizing resource 
utilization and job execution times, is a challenging task. 
To accomplish it, two techniques are often applied: Job 
Checkpointing and Job Replication. 

Although both methods aim to improve system 
performance in the presence of failure, their effectiveness 
largely depends on tuning runtime parameters such as the 
checkpointing interval and the number of replicas [1], [9], 
[13]. 

 

2. LITERATURE SURVEY 
 

A large number of research efforts have already 
been devoted to fault tolerance in the scope of distributed 
environments. Aspects that have been explored include 
the design and implementation of fault detection services 
[4], [5], as well as the development of failure prediction 
[3], [6], [7], [8] and recovery strategies [9], [10], [11]. The 
latter are often implemented through job checkpointing in 
combination with migration and job replication. Although 
both methods aim to improve system performance in the 
presence of failure, their effectiveness largely depends on 
tuning runtime parameters such as the checkpointing 
interval and the number of replicas [12], [13]. Determining 
optimal values for these parameters is far from trivial, for 
it requires good knowledge of the application and the 
distributed system at hand. 
 

3. CHECKPOINTING HEURISTICS 
 

To tackle the Checkpointing overhead and 
scalability concerns, different approaches are addressed in 
this literature. One well-researched technique is known as 
incremental Checkpointing [6]. It reduces data stored 
during Checkpointing to only blocks of memory modified 
since the last checkpoint. In “Optimizing Adaptive 
Checkpointing Schemes for Grid Workflow Systems,” [11], 



          International Research Journal of Engineering and Technology (IRJET)               e-ISSN: 2395-0056 

               Volume: 02 Issue: 09 | Dec-2015           www.irjet.net                                                      p-ISSN: 2395-0072 

 

© 2015, IRJET                                                          ISO 9001:2008 Certified Journal                                                           Page 833 
 

another set of cooperative Checkpointing schemes is 
proposed that dynamically adjust the Checkpointing 
interval with as an objective timely job completion in the 
presence of failure. This schemes uses information on 
remaining job execution time, time left before the 
deadline, and the expected remaining number of failures 
before job termination. In “Performance and Effectiveness 
Trade-Off for Checkpointing in Fault-Tolerant Distributed 
Systems,” [14], in turn, consider only dynamic 
Checkpointing interval reduction in case it leads to 
computational gain, which is quantified by the sum of the 
differences between the means for fault-affected and fault-
unaffected job response times. 
 

3.1 ADAPTIVE INCREMENTAL CHECKPOINT 
 

Adaptive Incremental Checkpoint technique uses 
a secure hash function to uniquely identify changed blocks 
in memory. This algorithm is the first self-optimizing 
algorithm that dynamically computes the optimal block 
boundaries, based on the history of changed blocks which 
provides better opportunities for minimizing checkpoint 
file size. Since the hash is computed in software which do 
not need any system support for this. This mechanism is 
implemented and tested on the BlueGene/L system. It 
results in reduction of average checkpoint file size and 
adaptively towards application’s memory access patterns. 
The Adaptive incremental Checkpointing seems to hold 
better potential (w.r.t reduced average checkpoint file size, 
reduced Checkpointing time and automatic block-size 
tuning) than previous incremental Checkpointing 
approaches, although more experimentation on larger 
platforms and further fine-tuning is needed to draw very 
strong conclusions. 

 
3.2 LAST FAILURE DEPENDENT 

CHECKPOINTING ALGORITHM 
 

The main disadvantage of unconditional periodic 
job Checkpointing (Periodic) is that it performs identically 
whether the job is executed on a volatile or on a stable 
resource. The goal of LastFailureCP is to reduce the 
overhead introduced by excessive checkpointing in 
relatively stable distributed environments, i.e., the 
algorithm omits unnecessary checkpoints of the job j 
based on its estimated total execution time and the failure 
frequency of the resource r to which j is assigned            
(see Fig. -1) 

 

 

Fig -1: Operation of LastFailureCP on a resource running  
             a single job 

For each resource, the algorithm keeps a time 
stamp LFr of its last detected failure (Step 1). When no 
failure has occurred, LFr is initiated with the system start 
time. After an execution interval I, each job running on an 
active resource generates a checkpointing request        
(Step 2). The request is subsequently evaluated by the 
GSched and it is allowed only if the comparison                   

(tc - LFr) ≤  evaluates to true (Step 3), where tc is the 

current system time. As was previously mentioned, each 
checkpoint generation leads to runtime overhead C, which 

prolongs the execution of j (Step 3). If (tc - LFr) > , the 

checkpoint is omitted to avoid the overhead as it is 
assumed that the resource is “stable” (Step 4). To prevent 
excessively long checkpoint suspension, a maximum 
number of omissions can be defined. 

 

3.3 MEAN FAILURE DEPENDENT 
CHECKPOINTING ALGORITHM 

 
Contrary to LastFailureCP that only considers 

checkpoint omissions, The MeanFailureCP algorithm 
dynamically modifies the initially specified Checkpointing 
frequency to deal with inappropriate Checkpointing 
intervals.              (see Fig. -2)  
 

 
Fig-2 Operation of MeanFailureCP on a resource running  
          a single job. 
 

This algorithm modifies the checkpointing 
interval based on the runtime information on the 

remaining job execution time (  ) and the average 

failure interval          (  ) of the resource r where the job 
j is assigned, which results in a customized checkpointing 
interval. The use of  , instead of   reduces the effect 
of an individual failure event. While PeriodicCP and 
LastFailureCP are first run after the expiration of the 
predefined Checkpointing interval, the MeanFailureCP 
activates Checkpointing within a fixed and preferably 
short time period ti after the beginning of a job execution 
(Step 1). The latter approach opens the possibility to 
modify the Checkpointing frequency at the early stage of 
job processing. Each time the Checkpointing is performed, 

is adapted as follows: If    <   and < α × , where 

α < 1, the frequency of Checkpointing will be reduced by 



          International Research Journal of Engineering and Technology (IRJET)               e-ISSN: 2395-0056 

               Volume: 02 Issue: 09 | Dec-2015           www.irjet.net                                                      p-ISSN: 2395-0072 

 

© 2015, IRJET                                                          ISO 9001:2008 Certified Journal                                                           Page 834 
 

increasing the Checkpointing interval newj

rI = II oldj

r   

(Step 2). The first inequality in the condition ensures that 
either r is sufficiently stable or the job is almost finished, 

while the second limits the excessive growth of  

compared to the job length. The latter can particularly be 
important for short jobs, for which the first condition 
almost always evaluates to true. On the other hand, when 
the above mentioned inequalities are not satisfied, it 

seems to be desirable to decrease and thus to perform 

Checkpointing more frequently newj

rI = II oldJ

r   (Step 3). 

When reducing the Checkpointing interval, the following 

constraint should be taken into account: C < Imin ≤ newj

rI . Imin 

is a predefined between consecutive checkpoints is never 
less overhead added by each checkpoint. In case of stable 
grid systems, it is desirable to choose relatively large 
values for Imin (5 percent-10 percent of the total job 
length) to prevent an undesirably steep decrease of the 
Checkpointing interval. Experiments have shown that 

gradually incrementing  by I ensures rapid achievement 

of Iopt in most distributed environments. However, in case 

of rather reliable grids, the calibration of  can be 

accelerated by replacing I with a desirable percentage of 
the job execution time. 

 
         Therefore, the total grid resource availability, which is 
the percentage of time during which the resource 
performed useful computations, can be defined as              

 
Where N is the number of resource failures;  and  is 

respectively the time stamp of the resource failure and 
restore; and  is the total simulation time. From the 

individual resource availability, total grid availability is 
computed as follows:                           

 

Where R is the number of resources in the grid. Finally, 
SimGrid provides a set of events to specify network links 
and routes (sequence of links), which form the network 
model of the simulator. 

 

4. REPLICATION 
 

Similar to deciding upon the best Checkpointing 
interval, finding a generally applicable procedure to 
calculate the optimal number of job replicas is a 
complicated issue.  Nowadays, most of the replication-
based fault-tolerant algorithms assume a fixed number of 

job duplicates. However, dynamic solutions have recently 
started to receive attention. 
  In [3], a dynamic replication-based method is 
described, called Work queue with Replication (WQR). 
Initially, this algorithm distributes a single copy of a job to 
random idle resources in First Come, First Served (FCFS) 
order. When the job queue is empty and the system has 
free resources, replication is activated to cope with 
varying availability of hosts. The disadvantage of this 
“delayed-copy” approach is that if a system is heavily 
loaded for a long period, which is often the case in large 
scientific or production grids, the replication will be 
significantly delayed or not activated at all. Most of the 
failures in distributed environments end to occur during 
peak hours. [7] “Performance Implications of Failures in 
Large Scale Cluster Scheduling” when the WQR failure 
prevention is turned off by definition. Whereas this 
algorithm dynamically vary the number of job replicas 
dependent on the system load, the group-based approach 
determines the amount of replicas taking into account the 
reliability of each volunteer group, which is a group of 
resources with similar properties. 

 

4.1 LOAD -DEPENDENT REPLICATION FT         
ALGORITHM 

 
Providing fault tolerance in distributed environments 

through replication has as an advantage that otherwise 
idle resources can be utilized to run job copies without 
significantly delaying the execution of the original job. 
Obviously, the more job copies are running on the grid, the 
larger is the chance that one of them will execute 
successfully. On the other hand, running additional 
replicas on a distributed environment with an insufficient 
number of free resources can considerably reduce 
throughput and prolong job execution. To deal with this 
dilemma, this algorithm considers the system load and 
postpones or reduces replication during peak hours. The 
algorithm requires a number of parameters to be provided 
in advance, i.e., the minimum Repmin and maximum Repmax 
number of job copies, and the CPU limit (CL). The latter 
parameter specifies the lower bound on the number of 
active free CPUs for replication to take place. An example 
of the heuristic operation is shown in Fig. 3, where the 
required parameters are initialized as follows: Repmin and 
Repmax are set respectively to 1 and 2; and CL is equal to 
two CPUs. In each iteration, the GSched consults the IS for 
the system status (Step 1). Based on this information, CA 
and CL are compared, where CA is the number of active 
CPUs able to execute the next job. The outcome of the 
comparison determines the choice for the next job to be 
scheduled:  
 



          International Research Journal of Engineering and Technology (IRJET)               e-ISSN: 2395-0056 

               Volume: 02 Issue: 09 | Dec-2015           www.irjet.net                                                      p-ISSN: 2395-0072 

 

© 2015, IRJET                                                          ISO 9001:2008 Certified Journal                                                           Page 835 
 

            
Fig-3 Operation of LoadDependentRep on a distributed 

environment consisting of two resources, each able to run 

two jobs simultaneously. Repmax = 2, Repmin = 1 and   CL = 2  

 
 CA ≥ CL. Select a job j with the earliest arrival time 

stamp and the number of active replicas less than 
Repmax (Step 1). 

 0 < CA < CL. Select a job j with the earliest arrival time 
stamp and the number of active replicas less than 
Repmin (Step 2). 

 CA = 0. Skip the current scheduling round (Step 3). 

However, even if the grid system is heavily loaded, it 
can be desirable to consider Repmin > 1, since the failure 
rate of resources in distributed environments increases 
with the intensity of the workload running on them. When 
one of the job duplicates finishes, other replicas are 
automatically canceled (Step 4). If the system load 
decreases before the job was executed, the remaining 
Repmax - Repmin replicas are activated (Step 5). 

This algorithm assigns the selected job j to the site 
S with some free resources and with the smallest number 
of j replicas (Step 1, Step 5), since spreading replicas over 
different sites increases the probability that one of them 
will be successfully executed. If multiple sites have an 
equal number of job copies, a site that can provide for the 
fastest job execution is preferred. The speed or capacity of 
a site is defined as                  

 
 

Where Million Instructions per Second ( ) is the 

speed of r and is the number of jobs on r. In the above 

equation, only resources executing no other replicas of j 
are taking into account. Therefore, inside the chosen site, 
the job will be submitted to the fastest available resource 
with no identical job replicas. If no such resource exists, 
the distribution of j is postponed, and the next job from 
the GSched queue is scheduled. The resource speed is 
determined by                                

 

 
4.2 FAILURE DETECTION AND LOAD 
       DEPENDENT REPLICATION ALGORITHM  
 

To increase the fault tolerance of the 
LoadDependentRep heuristic, this approach is combined 
with a failure-detection technique. The principle of failure 
detection is straightforward: as soon as a resource failure 
is discovered by the GSched, all jobs submitted to the 
failed resource are redistributed. The algorithm proceeds 
as LoadDependentRep, except that in each scheduling 
round, not only newly arrived jobs are considered for 
submission to a CR, but also all jobs distributed to failed 
nodes. This means that although the method offers a 
higher level of fault tolerance compared to solely 
replication-based strategies, it does not ensure job 
execution. 
 

5. ADAPTIVE CHECKPOINTING AND     
REPLICATION-BASED FAULT 
TOLERANCE (COMBINED FT) 
ALGORITHM 

 
In this section, a combined Checkpointing and 

adaptive replication-based scheduling approach is 
considered that dynamically switches between both 
techniques based on runtime information on system load. 
The algorithm can be particularly advantageous for grids 
with frequent or unpredictable alternations between peak 
hours and idle periods. In the first case, replication 
overhead can be avoided by switching to Checkpointing, 
while in the second case; the Checkpointing overhead is 
reduced by using low-cost replication. An example of the 
CombinedFT heuristic operation is shown in Fig.4, where 
the required parameters are initialized as follows: Repmax 
and Repmin are set respectively to 1 and 2; and CL is equal 
to two CPUs. 
 

 
    Fig-4 Operation of CombinedFT on a distributed 
environment consisting of two resources, each able to run 
two jobs simultaneously. Repmax = 2, Repmin = 1 and CL=2.  
The PeriodicCP method is applied in the Checkpointing 
mode 



          International Research Journal of Engineering and Technology (IRJET)               e-ISSN: 2395-0056 

               Volume: 02 Issue: 09 | Dec-2015           www.irjet.net                                                      p-ISSN: 2395-0072 

 

© 2015, IRJET                                                          ISO 9001:2008 Certified Journal                                                           Page 836 
 

 
When the CPU availability is low (CA < CL), the 

algorithm is in Checkpointing mode (Step 1). In this mode, 
CombinedFT rolls back, if necessary, the earlier 
distributed active job replicas (ARj) and starts job 
Checkpointing. When processing the next job j, the 
following situations can occur: 
 

 ARj > 0. Start Checkpointing the most advanced 
active replica and cancel the execution of other 
replicas (Step 1). 

 ARj= 0 and CA > 0. Start j on the least loaded 
available resource within the least loaded site, 
determined respectively by (2) and (1) (Step 2). 

 ARj = 0 and CA = 0 and i: ARi > 1. Select a random 

replicated job i if any, start Checkpointing its most 
advanced active replica, cancel execution of other 
replicas of i, and submit j to the best available 
resource (Step 3). 

 ARj = 0 and CA = 0 and i: ARi > 1. Skip the 

current scheduling round (Step 4). 

The algorithm switches to replication mode when 
either the system load decreases or enough resources 
restore from failure (CA ≥ CL) (Step 5). In replication 
mode, all jobs with less than Repmax replicas are 
considered for submission to the available resources, in 
the order defined by the Failure DependentRep algorithm. 
When a job j is selected, it is assigned to the fastest 
resource (with no similar job replicas) connected to a grid 
site S with the maximum  and the smallest number 

of identical replicas. If j was previously in Checkpointing 
mode and the replication completed successfully, the 
Checkpointing of j is switched off (Step 6). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table -1: List of uses symbols and acronyms 

 

 
 

6. EXPERIMENTAL SETUP 
 

The Grid Simulator used is SimGrid (a modified 
version 5.0) which has rich set of simulation facilities 
empowers to develop, evaluate scheduling and Fault 
Tolerance algorithms for heterogeneous distributed 
computing environments. Here, the no. of jobs =40, Total 
No. of P.E = 15 (3 nodes * 5 P.E). The no. of failure varies 
between = (4 to 9) P.E Where, P.E - Processing Elements. 

 
7. SIMULATION RESULTS 
 
   No. of jobs =40, Total No. of P.E = 15 (3 nodes * 5 P.E)      

 
   No. of failure varies between (4 to 9) P.E 
 
 
 
 
 



          International Research Journal of Engineering and Technology (IRJET)               e-ISSN: 2395-0056 

               Volume: 02 Issue: 09 | Dec-2015           www.irjet.net                                                      p-ISSN: 2395-0072 

 

© 2015, IRJET                                                          ISO 9001:2008 Certified Journal                                                           Page 837 
 

 
 
  Table-2: Shows the Tabulated Result of Checkpointing     

and Replication with Combined FT 
 

 
  From the above statistical result it shows that 
Checkpoint with Migration and Replication (CombinedFT) 
has better Checkpoint Interval Time which considerably 
reducing the Average Waiting Time for the job. For Heavy 
Load Condition, the fully fault-tolerant Mean FailureCP 
results in the best system through-put compared to other 
heuristics. Whereas CP-Replication provides for costless 
fault tolerance with reduced Average Waiting Time. The 
preference for one of the solutions depends on particular 
system characteristics, such as load, job submission 
patterns, and failure frequency 

 

 
 Fig-5 Average Checkpoint Interval 
 

 
Fig-6 Average Waiting Time 
 

 
 

8. CONCLUSIONS AND FUTURE WORKS 

The problem addressed is fault tolerance in 
terms of resource failure in distributed environments. 
Thus the literature survey results achieves fault tolerance 
by dynamically adapting the Checkpointing frequency by 
Mean-Failure Dependent CP based on history of failure 
information and job execution time, which reduces 
Checkpoint overhead, and increases the throughput. 
Furthermore, adaptive Replication-Based Load Dependent 
FT can provide for the fastest job execution and 
throughput by dynamically varies the system load with 
low cost. The above two adaptive approaches are 
combined which improve system performance, while the 
preference for one of the solutions depends on particular 
system characteristics, such as load, job submission 

patterns, and failure frequency. 

  This work can be further extended to scheduling 
approach by dynamically changing estimations of job 
execution time which gives high job throughput in the 
presence of failure while reducing the system overhead. 

 

REFERENCES 
 
[1] Y. Li and M. Mascagni, “Improving Performance via 

Computational Replication on a Large-Scale 
Computational Grid,” Proc. Third Int’l Symp. Cluster 
Computing and the Grid (CCGrid ’03), May 2003. 
 

[2] A. Legrand, L. Marchal, and H. Casanova, “Scheduling 
Distributed Applications: The SimGrid Simulation 
Framework,” Proc. Third Int’l Symp. Cluster 
Computing and the Grid (CCGrid ’03), May 2003. 
 

[3] D. Silva, W. Cirne, and F. Brasileiro, “Trading Cycles 
for Information: Using Replication to Schedule Bag-
of-Tasks Applicationson Computational Grids,” Proc. 
Int’l Conf. Parallel and Distributed Computing (Euro-
Par ’03), pp. 169-180, Aug. 2003. 
 

[4] Ying Z, Crishnendu C. “Energy-Aware Adaptive 
Checkpointing in Embedded Real-Time Systems”[C], 
Proc. of the design, automation and test in Europe 
conference and exhibition (DATE’03), 2003. 
 

[5] T. Ozaki, T. Dohi, H. Okamura, and N. Kaio, “Min-Max 
Checkpoint Placement under Incomplete Failure 
Information,” Proc. Int’l Conf. Dependable Systems 
and Networks (DSN ’04), June-July 2004. 

 
[6] S. Agarwal, R. Garg, M. Gupta, and J. Moreira, 

“Adaptive Incremental Checkpointing for Massively 



          International Research Journal of Engineering and Technology (IRJET)               e-ISSN: 2395-0056 

               Volume: 02 Issue: 09 | Dec-2015           www.irjet.net                                                      p-ISSN: 2395-0072 

 

© 2015, IRJET                                                          ISO 9001:2008 Certified Journal                                                           Page 838 
 

Parallel Systems,” Proc. 18th Ann. Int’l Conf. 
Supercomputing (SC ’04), Nov. 2004. 
 

[7] Y. Zhang, M. Squillante, A. Sivasubramaniam, and R. 
Sahoo, “Performance Implications of Failures in 
Large-Scale Cluster Scheduling,” Proc. 10th 
Workshop Job Scheduling Strategies for Parallel 
Processing (JSSPP ’04), pp. 233-252, 2004. 

 
[8] R. De Camargo, A. Goldchleger, F. Kon, and A. 

Goldman, “Checkpointing-Based Rollback Recovery 
for Parallel Applications on the InteGrade Grid 
Middleware,” Proc. Second Workshop Middleware for 
Grid Computing (MGC ’04), pp. 35-40, 2004. 
 

[9] A. Oliner, R. Sahoo, J. Moreira, and M. Gupta, 
“Performance Implications of Periodic Checkpointing 
on Large-Scale Cluster Systems,” Proc. 19th IEEE Int’l 
Parallel and Distributed Processing Symp. (IPDPS 
’05), Apr. 2005. 
 

[10] Global Grid Forum. Architecture for grid checkpoint 
and recovery (GridCPR) services and a GridCPR 
Application Programming Interface. GridCPR-WG, 
September 2005. 

 
[11] Y. Xiang, Z. Li, and H. Chen, “Optimizing Adaptive 

Checkpointing Schemes for Grid Workflow Systems,” 
Proc. Fifth Int’l Conf. Grid and Cooperative Computing 
(GCC ’06), Oct. 2006. 
 

[12] A. Ziv and J. Bruck, “Performance Optimization of 
Checkpointing Schemes with Task Duplication,” IEEE 
Trans. Computers, vol. 46, no. 12, pp. 1381-1386, Dec. 
2006. 
 

[13] C. Bossie and P. Fiorini, “On Checkpointing and 
Heavy-Tails in Unreliable Computing Environments,” 
SIGMETRICS Performance Evaluation Rev., vol. 34, 
no. 2, pp. 13-15, 2006. 
 

[14] P. Katsaros, L. Angelis, and C. Lazos, “Performance 
and Effectiveness Trade-Off for Checkpointing in 
Fault-Tolerant Distributed Systems,” Concurrency 
and Computation: Practice and Experience, vol. 19, 
no. 1, pp. 37-63, 2007. 
 

 

 

 

 

 

BIOGRAPHIE 

NAKKEERAN.M,  working as an 
Assistant Professor in the Dept. of CSE, 
SVS College of Engineering, Coimbatore 
for 4 years to till date. I have completed 
my B.E (EEE) from GCE, Tirunelveli with 
First Class and M.E (CSE) in Annamalai 

University, Chidambaram with First Class 
(Distinction). I have published 11 research papers in 
International Journals, International Conference and 
National Conference in the area of Parallel and 
Distributed Computing, Wireless Sensor Network. 
And my area of interest includes Grid Computing, 
Cloud Computing, Green Computing and Mobile 
Computing. 


