
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 02 Issue: 09 | Dec-2015 www.irjet.net p-ISSN: 2395-0072

© 2015, IRJET ISO 9001:2008 Certified Journal Page 2097

A secure and flexible storage system using multiple servers for

combining data in IoT

A.sravanthi1, P.Vijayalaxmi2

1 Asst professor ,CSE , Gokaraju Rangaraju Institute of Engineering and Technology, Telangana, India
2 Asst professor, CSE , Gokaraju Rangaraju Institute of Engineering and Technology, Telangana, India

--***---
Abstract – Now a days, there is fast development of
silicon chips and networking technologies, computers,
devices and networking have become highly cost,
incurring the introduction, develop-ment and deployment
of the Internet of Things (IoT). The tiny identifying devices
and wearables in IoT have transformed daily life in human
society, as they generate, process and store the amount of
data increasing at exponential rate all over the world. Due
to great uasge on data mining and analytics activ-ities in
IoT, secure and scalable mass storage systems are highly
demanded for aggregate data in efficient processing. In
this paper, we propose such a secure and scalable IoT
storage system based on revised se-cret sharing scheme
with support of scalability, flexibility and reliability at both
data and system levels. Shamir’s secret sharing scheme is
applied to achieve data security without complex key
management associated with traditional cryptographic
algorithms. The original secret sharing scheme is revised
to uti-lize all coefficients in polynomials for larger data
capacity at data level. Flexible data insert and delete
operations are supported. Moreover, a distributed IoT
storage infrastructure is deployed to provide scala-bility
and reliability at system level. Multiple IoT storage servers
are aggregated for large storage capacity whereas
individual servers can join and leave freely for flexibility at
system level. Experimental results have demonstrated the
feasibility and benefits of the proposed system as well as
tangible performance gains.

Key Words: Security,Scalability,Reliability,Storage,Big
Data,IoT

1. Introduction

In current computer world, the development of multicore pro-

cessors has led to increase in the amount of computational power
available on a single die. In parallel, the evolution of networking
technologies has contributed with the fast development of web
technologies and data centers.

Big Data’’ is a name for large and growing sets of data. ‘‘How fast it is

growing’’ and ‘‘how complicated it is’’ are the major con-cerns.

Enterprises know that the data in their storage systems is an excellent

source of insights [1]. Due to a relatively recent phe-nomenon of a fast

increase in data scattered across computing nodes in distributed systems

or devices in the Internet of Things (IoT), mass storage systems are also

often required for aggregated Big Data [2]. In addition, the

computational power of individual IoT devices and wearables such as

sensors and RFID tags as well as their connecting network bandwidth is

insufficient for distributed data mining and analytics. In order to take

advantage of IoT servers’ computing capacity, widely spread data should

be collected and fused in distributed storage servers. Then, closely

connected IoT
Eg 2: It is reported that X increase with Y [45].

1.1 Sub Heading 1

Fig. 1. Share generation procedure

2. Multi-coefficient secret sharing scheme with

internal padding

Shamir’s secret sharing scheme is redesigned to contain
more data with support of internal padding. Data can be

transformed into shares and distributed amongst multiple
participants. In the Data Restoration phase, the original
data could be reconstructed from certain number of

shares.

2.1. Share generation

Initially, all the original data are divided into blocks
according to a default threshold or a number provided by
users. Assume there are M bytes in data, and the threshold
is T . Then, each block will contain (T − 1) bytes. If there
are fewer than (T − 1) bytes in a block, a padding string
(consisted with all 1’s) will be appended to make sure the

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 02 Issue: 09 | Dec-2015 www.irjet.net p-ISSN: 2395-0072

© 2015, IRJET ISO 9001:2008 Certified Journal Page 2098

block size is T − 1 bytes.
For each (T − 1)-byte block, a (T − 1)th degree

polynomial f (x) is built. Each of the last (T − 1) coefficients
is assigned one byte data item from the block. The first
coefficient a0 is used to indi-cate the padding size for the
corresponding polynomial. The value of a0 should be the
block’s padding size plus one, because a0 it-self occupies
one byte in this block. Since only one byte is used for
padding size, the maximum size of padding is 256. This
indicates that the limit of threshold T is also 256. Such a
design is sufficient for secret sharing since normally
polynomial degree cannot reach this high. Otherwise, the
computation overhead will be significant. To generate
shares, we assign a unique value x to each participant or
device server. In this paper, the value of x is a natural
number starting from 1. The actual share for each
participant consists of the unique value x and the
corresponding polynomial values for all data blocks. The
general procedure is illustrated in Fig. 1.

.
.

 Fig. 2. Data retrieval procedure.

2.2. Data retrieval

Shares collected from multiple devices are used to

reconstruct the original data. The general steps of Data

Restoration are shown in Fig. 2.
With T shares, T equations can be created and aligned

to form a multiplication of two matrices, the coefficient
matrix A and the value of x matrix X. The result matrix Y is
the matrix of f (x) val-ues, i.e. X × A = Y . The matrix X is
constructed by powers of x as shown in Fig. 2. This is the
reason that Shamir’s secret sharing [5] is selected over
Blakley one [7] where matrix X consists of arbitrary
values (not powers of x). Therefore, the share size in
Shamir’s ver-sion is much smaller than the one in
Blakley’s. Matrix Y is built by the f (x) values extracted
from the corresponding bytes in shares. For example, the
first matrix Y is

(f1(x1), f1(x2), f1(x3), . . . , f1(xt−1), f1(xt))T .
Then, Gauss–Jordan-Elimination (GJE) is applied to

calculate the coefficient matrix A in Fig. 2.
After matrix A has been calculated, the corresponding

data block is retrieved by extracting coefficients one after
another. The coefficient a0 is the padding size to indicate
how many bytes in this vector should not be treated as
padding stuffs. For every matrix Y , such a matrix A should
be calculated for the data in that block. Eventually, all data
will be recovered.

Since large numbers can cause accuracy problem, finite
field GF(28) [8] is chosen to represent numbers (in 8 bits
each). Addition and multiplication can be handled easily
and properly. Division can be split into two steps:
calculation of the divisor’s multiplicative in-verse and then
the multiplication. Traditionally, extended Euclid’s
algorithm is used for multiplicative inverses. Since there
are only 256 possible values for coefficients and f (x), their
multiplicative inverse values can be calculated in advance
and saved in a table. This pre-calculated table approach
can achieve significant perfor-mance gains.
3. Post-generation data operations

Once data shares are generated, the corresponding

contents of the original data are not exposed anymore.

Since shares change the representation of the original

data, encryption effect is achieved. After sharing

generation, data operations such as data insertion and

deletion might still need to manipulate partial or whole

data. If the whole data needs to be modified, going through

data restora-tion and share re-generation processes is

reasonable. But if only partial data need to be modified, re-

generating all shares is highly inefficient. Revised Shamir’s

secret sharing scheme with internal padding reduces the

data management granularity to block level. The threshold

or block size defines the actual data modification units

since all coefficients in polynomials are used to hold data

and have to be dealt together. In this section, insert

operation is taken as an example. Other operations are

similar.

3.1. Positioning

For efficient data operations, the precise location and
size of affected data are critical. These can be calculated

based on the padding sizes in all blocks. To speed up this

process further, one metadata, called Padding Record

(PR), is maintained for all blocks’ padding sizes. PR only

maintains information for those blocks con-taining
significant padding, i.e., the padding size is greater than

one. With PR, it is not necessary to restore blocks in

sequence to fig-ure out all previous padding sizes and the

exact position for mod-ification can be calculated quickly.

Only related blocks and their corresponding polynomials
are adjusted.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 02 Issue: 09 | Dec-2015 www.irjet.net p-ISSN: 2395-0072

© 2015, IRJET ISO 9001:2008 Certified Journal Page 2099

For a particular file, according to its PR, threshold

(block size) and data offset (input), the first block and its

corresponding bytes in shares can be detected. Initially,

set datapos = 0. Then the PR is scanned sequentially and

block data sizes are continuously added. If a block is not in

PR, its default paddingSize will be one. Otherwise,

3.2. Insert operation

To insert a new data item into a file, it is not necessary

to regen-erate all data shares. Only those bytes related to

the affected block in shares will be changed.
First of all, the positioning process with PR has to be

applied to detect the affected block and exact byte
position. The pin-pointed block might contain padding if it
has been touched by post-generation operations before. If
this is the case and the padding size is larger enough for
the newly inserted data, only the polynomial values for
this block will be regenerated and re-distributed. PR will
be updated accordingly. If the original block does not
contain any padding or the existing padding space is not
enough for the new data, extra blocks are required. Some
data bytes will be inserted into the current block to fill up
the padding size whereas others will be used to build up
new blocks. The original next block will not be touched,
but pushed backwards since new blocks will be inserted
before that.

As a library call, the output of this function contains the
share numbers for updating, the affected block number, a
breaking flag to indicate if new blocks are added, and the
new blocks’ values for related share bytes. The output
format is as: ShareNum − Af-fectedBlock + BreakFlag +
NewBlocks’Values. PR will be updated as well. entries
where blocks 2 and 14 contain significant padding bytes.
The output indicates block 7 will be changed and five more
blocks will be added. Affected and newly generated bytes
for the associ-ated shares are provided. PR maintains two

4. Infrastructure of the secure and scalable IoT storage
system
In the proposed secure and scalable IoT storage system,

there are mainly four components: client, dispatcher, peer

managers and regular peers. The client is the original file

holder; the dispatcher maintains the references (IP

addresses) of peer managers who are in charge of peer

groups; regular peers (or storage devices) are aligned up

in columns to form peer groups.
Operations in the proposed storage system can be

categorized into three layers:

• File saving and restoration: Files are transformed into

shares based on the scaled secret sharing scheme. Since

shares look to-tally different from original data blocks,

security protection for data in-transit and at-rest is

provided. Shares can be converted back to the data in

the original files.

• Connection setup and data transfer: Connections are
estab-lished between the client and the dispatcher for
peer managers’ IP address search, between the client
and peer managers for share distribution and
gathering, and between peers for share replication.

• Share replication: Peer mangers determine which peers

in the groups are selected for share replication to

achieve high avail-ability. Regular peers can leave and

join their groups on the fly. It is possible that peer

managers can exchange their peer nodes as

 Fig. 4. Saving a file into the distributed storage system.

groups expand and shrink. For simplicity, device peers

are parti-tioned into groups shown as columns in Fig. 4.

Within each peer groups, star topology is adopted for

internal network where the manager stays in the center

and connects with each peer di-rectly.

4.1. File saving

To save a file into peers, the storage system goes through

three steps: share generation, share transfer and share

replication .
After a file is submitted, the client node converts the file

into shares using the scaled secret sharing scheme. Then
the client node contacts the dispatcher about where to
save those shares. In this file management system, the
dispatcher is the only centralized node. However, it only
maintains the IP addresses of peer managers and will not
involve in file operations. The dispatcher could be a
bottleneck for server requests although it is not the
bottleneck for data operations. Therefore, it can be
implemented in a cluster man-ner to balance service
requests among multiple server nodes. The dispatcher
serves as a proxy and selects peer groups/managers ac-
cording to the work load situation or in round robin
manner. Based on the client’s request, a number of peer
groups are selected and their peer managers’ IP addresses

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 02 Issue: 09 | Dec-2015 www.irjet.net p-ISSN: 2395-0072

© 2015, IRJET ISO 9001:2008 Certified Journal Page 2100

are returned. The client node keeps these addresses

locally for the future use. Then shares are distributed to

corresponding peer managers. Since the information in
shares has been transformed in share format, data in
transit pro-tection is provided.

Once peer managers receive their shares, replication
phase starts for high availability. Transformed shares

provide data at rest protection. Distributed RAID can be
deployed for error detection and correction.

4.2. File retrieval

To retrieve a file, the client node does not need to

contact the dispatcher with the locally cached addresses.

This reduces the

possibility of turning it into a bottleneck for storage

operations. File retrieval only contains two phases:

sharing collection and file restoration as shown in Fig. 5.

With locally maintained manager lists, the client node

can contact related peer managers directly. The latter ones

can collect several replicas for error detection and

correction. Then, the correct shares are transferred back

to the client node. If a peer manager crashes and another

manager is newly elected, only the dispatcher will be

notified. Then, the peer group will be unavailable to the

client node although the share replicas are still there. In

such cases, the client node needs to contact the dispatcher

again for the new group’s (peer manager’s) IP address.

Only when all peers in a group crash, could the shares be

permanently lost.
Once shares are collected back to the client node, the

scaled secret sharing scheme will be used again to restore

data blocks and assemble files. Even if some shares (peer

groups) have been lost, enough other different shares are

still able to recover the original data blocks, and then files.

5. Performance analyses and experimental results

Files can be transformed into shares and distributed to

multiple peers in the IoT storage system. If the threshold

or block size is fixed, same shares will be generated. Also,

the original files can be recovered effectively.
Experimental files with small sizes are selected to

demonstrate the performance trend of our distributed

storage system. Such files can provide details as larger

files follow the same trend. All tests are conducted on a

machine with a 2.40 GHz Intel Pentium 4 CPU, 489.0 MB

memory and 2.6.28-17-generic Linux kernel.

5.1. Storage cost
Assume there are M bytes in the original file. The
threshold
number is T , and
share

number is
S(S ≥

T). Then each block
has

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 02 Issue: 09 | Dec-2015 www.irjet.net p-ISSN: 2395-0072

© 2015, IRJET ISO 9001:2008 Certified Journal Page 2101

mapped onto a polynomial with the highest degree T − 1.
For each block, S one-byte polynomial values are treated
as shares. Also, each share should include the unique value
x. Therefore, the total byte number is T

M
−1 + 1. As we know,

each byte is represented by two hexadecimal digits. The
output of each share will contain (⌈ T

M
−1 ⌉ + 1) × 2

hexadecimal digits. For total S shares, there will
be (⌈ T

M
−1 ⌉ + 1) × 2 × S hexadecimal digits. Roughly

speaking, to generate shares, a file is cut down by T −1 for
S times (S ≥ T). The
total extra bytes could be: Overhead =
M

S−(T
−1) if T − 1

divides

T −1
M. If only T shares are generated, the extra storage
overhead will be T

M
−1 . The overall data size is not

increased much.
The relationship between single share’s size and

threshold is illustrated in Fig. 6. As threshold or block size
increases, share size decreases.

5.2. Share generation and data restoration

In our experiments, files are transformed into shares.

Also, the original data blocks can be restored from these

shares. When

6. Related work

Shamir [5] and Blakley [7] brought up the concept of
secret sharing independently in 1970s. The (t, n) threshold
scheme con-cept was introduced. Since then, secret
sharing draws more and more attention.

A number of designs applied in storage systems may
generate computational overheads that induce potential
bottlenecks in to-day’s systems, which increasingly
employ multi-Gbps links and/or are built composed of
high throughput storage devices [9]. Hard-ware failure is
one of major concerns. Many systems have consid-ered the
fault tolerance issue and proposed some solutions, such as
the ones in distributed RAID [10] and OceanStore [11].
They

7. Conclusions

This paper proposed a secure and scalable IoT storage

sys-tem with consideration of security, scalability,

flexibility and re-liability to meet the requirements of

computing, communication and storage capabilities for

data mining and analytics applications with large

aggregate data in IoT. A refined Shamir’s secret shar-ing

scheme is developed for security and scalability at data

level. Multi-coefficient strategy is deployed for improved

data capac-ity. Files are divided into blocks which are then

transformed into shares. A distributed storage

infrastructure is proposed to spread data shares across

multiple storage peer groups and replicate them among

peer nodes within each group. This infrastructure can pro-

vide scalability, flexibility and reliability at system level.

Perfor-mance analyses and experiments demonstrate its

effectiveness and correctness. The future work includes

achieving high avail-ability of the dispatcher through

redundant servers and adopting scalable network

topologies (tree or P2P) for peer groups.

thresholds are fixed, the overall overheads of share
generation and data restoration are shown in Fig. 7.
Obviously, the execution time of share generation
increases slightly as the data size increases and is less than
the one for data restoration. Overall, data restoration is
slower than share generation for large files.

Share generation process consists of polynomial
formation and f (x) calculation. For larger thresholds, the
degree of the polyno-mial (one less than the threshold)
will be higher and there will be more coefficients in each
polynomial. In the above test, each poly-nomial takes
almost the same time to get f (x) because the thresh-olds
are the same. Because larger files need more data blocks,
the corresponding polynomial calculation will be more
costly. Then, the share generation overhead will increase.

On the other side, if the threshold increases, each block

will con-tain more bytes of original data. For fixed size

original data, there will be fewer data blocks. For each

block, the larger the threshold is, the less time the single

share generation will take since the poly-nomial can digest

more data and fewer polynomial calculations are required.

Even though it may take a little longer time to calculate

Acknowledgment

This research was supported in part by the US National

Science Foundation under Grant No. 0959124.

References

[1] 50 Top Open Source Tools for Big Data,

http://www.datamation.com/data- center/50-top-

open-source-tools-for-big-data-1.html (Last Accessed

on November 6, 2014).
[2] C. Aggarwal, N. Ashish, A. Sheth, The Internet of

Things: a survey from the data-centric perspective, in:
Managing and Mining Sensor Data, Springer, 2013.

[3] J. Sathish Kumar, Dhiren R. Patel, A survey on

http://www.datamation.com/data-center/50-top-open-source-tools-for-big-data-1.html
http://www.datamation.com/data-center/50-top-open-source-tools-for-big-data-1.html
http://www.datamation.com/data-center/50-top-open-source-tools-for-big-data-1.html
http://www.datamation.com/data-center/50-top-open-source-tools-for-big-data-1.html
http://refhub.elsevier.com/S0167-739X(14)00243-X/sbref2
http://refhub.elsevier.com/S0167-739X(14)00243-X/sbref2
http://refhub.elsevier.com/S0167-739X(14)00243-X/sbref2
http://refhub.elsevier.com/S0167-739X(14)00243-X/sbref2
http://refhub.elsevier.com/S0167-739X(14)00243-X/sbref3

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 02 Issue: 09 | Dec-2015 www.irjet.net p-ISSN: 2395-0072

© 2015, IRJET ISO 9001:2008 Certified Journal Page 2102

Internet of Things: security and privacy issues, Int. J.
Comput. Appl. 90 (11) (2014).

[4] Mark W. Storer, Kevin M. Greenan, Ethan L. Miller,
Kaladhar Voruganti, POTSHARDS: secure long-term
storage without encryption, in: Proceedings of USENIX
Annual Technical Conference, 2007.

[5] Adi Shamir, How to share a secret, Commun. ACM
(1979).

[6] J.L. Gonzalez, Ricardo Marcelín-Jiménez, Phoenix:
fault-tolerant distributed Web storage based on URLs,
J. Convergence (2011).

[7] G.R. Blakley, Safeguarding cryptographic keys, in:
Proceedings of Inernational Workshop on Managing
Requirements Knowledge, 1979, pp. 313–317.

[8] William Stallings, Crytography and Network
Security: Principles and Practices, fourth ed., Pearson
Education, Inc., 2006.

[9] M. Polte, J. Simsa, G. Gibson, Comparing
performance of solid state devices and mechanical
disks, in: Proceedings of Workshop on Petascale Data
Storage, 2008.

[10] M. Stonebreaker, Gerhard A. Schloss,

DistributedRAID—a new multiple copy algorithm, in:

Proceedings of the Sixth International Conference on

Data Engineering. 1990, pp. 430–437.

[11] Sean Rhea, Patrick Eaton, Dennis Geels, Hakim

Weatherspoon, Ben Zhao, John Kubiatowicz, Pond: the

OceanStore prototype, in: Proceedings of the 2nd

USENIX Conference on File and Storage Technologies,

2003, pp. 1–14.
[12] Sanjay Ghemawat, Howard Gobioff, Shun-Tak

Leung, The Google file system, in: Proceedings of the

19th ACM Symposium on Operating Systems

Principles, 2003.
[13] K. Shvachko, Harong Kuang, S. Radia, R. Chansler,

The Hadoop distributed file system, in: Proceedings of

IEEE 26th Symposium on Mass Storage Systems and

Technologies, 2010.
[14] H.S. Gunawi, N. Agrawal, A.C. Arpaci-Dusseau, R.H.

Arpaci-Dusseau, J. Schindler, Deconstructing

commodity storage clusters, in: Proceedings of the

32nd Annual International Symposium on Computer

Architecture, 2005.

[15] S. Quinlan, S. Dorward, Venti: a new approach to

archival storage, in: Proceedings of the 1st USENIX

Conference on File and Storage Technologies, 2002,

pp. 89–101.
[16] M.O. Rabin, Fingerprinting by Random

Polynomials, Center for Research in Computing

Technology, Harvard University, 1981.

[17] Qiying Wei, Tingting Qin, Satoshi Fujita, A two-

level caching protocol for hierarchical peer-to-peer

file sharing systems, J. Convergence (2011).

[18] Su Chen, Ling Bai, Yi Chen, Hai Jiang, Kuan-Ching

Li, Deploying scalable and secure secret sharing with
GPU many-core architecture, in: Proceedings of the
13th IEEE International Workshop on Parallel and

Distributed Scientific and Engineering Computing,
Shanghai, China, 2012.

[19] Abdullah Gharaibeh, Samer Al-Kiswany, Sathish

Gopalakrishnam, Matei Ripeanu, A GPU accelerated

storage system, in: Proceedings of the 19th ACM

International Symposium on High Performance

Distributed Computing, 2010.
[20] Matthew Curry, Weibin Sun, Robert Ricci,

GPUstore: harnessing GPU computing for storage

systems in the OS kernel, in: Proceedings of the 5th

Annual International Systems and Storage, 2012.
[21] Jiwu Shu, Zhirong Shen, Wei Xue, Shield: a

stackable secure storage system for file sharing in

public storage, J. Parallel Distrib. Comput. 74 (9)

(2014).

[22] Alok Kumbhare, Yogesh Simmhan, Viktor
Prasanna, Designing a secure storage repository for

sharing scientific datasets using public clouds, in:
Proceedings of the Second International Workshop on
Data Intensive Computing in the Clouds, 2011.

BIOGRAPHIES

Sravanthi.A has received M.Tech
degree in 2010 from JNTU
university in the field of
computer science with
distinction. Awarded B.Tech in
2006.I have Published two
journals at international levels.

P.Vijayalaxmi has received
M.Tech degree in 2009 from
JNTU university in the field of
computer science .B.Tech in 2005
And GATE qualified in 2007.

http://refhub.elsevier.com/S0167-739X(14)00243-X/sbref3
http://refhub.elsevier.com/S0167-739X(14)00243-X/sbref3
http://refhub.elsevier.com/S0167-739X(14)00243-X/sbref5
http://refhub.elsevier.com/S0167-739X(14)00243-X/sbref5
http://refhub.elsevier.com/S0167-739X(14)00243-X/sbref6
http://refhub.elsevier.com/S0167-739X(14)00243-X/sbref6
http://refhub.elsevier.com/S0167-739X(14)00243-X/sbref6
http://refhub.elsevier.com/S0167-739X(14)00243-X/sbref6
http://refhub.elsevier.com/S0167-739X(14)00243-X/sbref8
http://refhub.elsevier.com/S0167-739X(14)00243-X/sbref8
http://refhub.elsevier.com/S0167-739X(14)00243-X/sbref8
http://refhub.elsevier.com/S0167-739X(14)00243-X/sbref8
http://refhub.elsevier.com/S0167-739X(14)00243-X/sbref16
http://refhub.elsevier.com/S0167-739X(14)00243-X/sbref16
http://refhub.elsevier.com/S0167-739X(14)00243-X/sbref16
http://refhub.elsevier.com/S0167-739X(14)00243-X/sbref16
http://refhub.elsevier.com/S0167-739X(14)00243-X/sbref17
http://refhub.elsevier.com/S0167-739X(14)00243-X/sbref17
http://refhub.elsevier.com/S0167-739X(14)00243-X/sbref17
http://refhub.elsevier.com/S0167-739X(14)00243-X/sbref17
http://refhub.elsevier.com/S0167-739X(14)00243-X/sbref21
http://refhub.elsevier.com/S0167-739X(14)00243-X/sbref21
http://refhub.elsevier.com/S0167-739X(14)00243-X/sbref21
http://refhub.elsevier.com/S0167-739X(14)00243-X/sbref21
http://refhub.elsevier.com/S0167-739X(14)00243-X/sbref21

