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Abstract – Now a days, there is  fast development of 
silicon chips and networking technologies, computers, 
devices and networking have become highly cost, 
incurring the introduction, develop-ment and deployment 
of the Internet of Things (IoT). The tiny identifying devices 
and wearables in IoT have transformed daily life in human 
society, as they generate, process and store the amount of 
data increasing at exponential rate all over the world. Due 
to great uasge on data mining and analytics activ-ities in 
IoT, secure and scalable mass storage systems are highly 
demanded for aggregate data in efficient processing. In 
this paper, we propose such a secure and scalable IoT 
storage system based on revised se-cret sharing scheme 
with support of scalability, flexibility and reliability at both 
data and system levels. Shamir’s secret sharing scheme is 
applied to achieve data security without complex key 
management associated with traditional cryptographic 
algorithms. The original secret sharing scheme is revised 
to uti-lize all coefficients in polynomials for larger data 
capacity at data level. Flexible data insert and delete 
operations are supported. Moreover, a distributed IoT 
storage infrastructure is deployed to provide scala-bility 
and reliability at system level. Multiple IoT storage servers 
are aggregated for large storage capacity whereas 
individual servers can join and leave freely for flexibility at 
system level. Experimental results have demonstrated the 
feasibility and benefits of the proposed system as well as 
tangible performance gains. 
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1. Introduction 
 
In current computer world, the development of multicore pro-

cessors has led to increase in the amount of computational power 
available on a single die. In parallel, the evolution of networking 
technologies has contributed with the fast development of web 
technologies and data centers. 
 
Big Data’’ is a name for large and growing sets of data. ‘‘How fast it is 

growing’’ and ‘‘how complicated it is’’ are the major con-cerns. 

Enterprises know that the data in their storage systems is an excellent 

source of insights [ 1]. Due to a relatively recent phe-nomenon of a fast 

increase in data scattered across computing nodes in distributed systems 

or devices in the Internet of Things (IoT), mass storage systems are also 

often required for aggregated Big Data [ 2]. In addition, the 

computational power of individual IoT devices and wearables such as 

sensors and RFID tags as well as their connecting network bandwidth is 

insufficient for distributed data mining and analytics. In order to take 

advantage of IoT servers’ computing capacity, widely spread data should 

be collected and fused in distributed storage servers. Then, closely 

connected IoT 
Eg 2: It is reported that X increase with Y [45]. 
 

1.1 Sub Heading 1 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                         
Fig. 1.  Share generation procedure 
 

2. Multi-coefficient secret sharing scheme with 

internal padding 
 

Shamir’s secret sharing scheme is redesigned to contain 
more data with support of internal padding. Data can be 

transformed into shares and distributed amongst multiple 
participants. In the Data Restoration phase, the original 
data could be reconstructed from certain number of 

shares. 
 
2.1. Share generation 
 
Initially, all the original data are divided into blocks 
according to a default threshold or a number provided by 
users. Assume there are M bytes in data, and the threshold 
is T . Then, each block will contain (T − 1) bytes. If there 
are fewer than (T − 1) bytes in a block, a padding string 
(consisted with all 1’s) will be appended to make sure the 
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block size is T − 1 bytes. 
For each (T − 1)-byte block, a (T − 1)th degree 

polynomial f (x) is built. Each of the last (T − 1) coefficients 
is assigned one byte data item from the block. The first 
coefficient a0 is used to indi-cate the padding size for the 
corresponding polynomial. The value of a0 should be the 
block’s padding size plus one, because a0 it-self occupies 
one byte in this block. Since only one byte is used for 
padding size, the maximum size of padding is 256. This 
indicates that the limit of threshold T is also 256. Such a 
design is sufficient for secret sharing since normally 
polynomial degree cannot reach this high. Otherwise, the 
computation overhead will be significant. To generate 
shares, we assign a unique value x to each participant or 
device server. In this paper, the value of x is a natural 
number starting from 1. The actual share for each 
participant consists of the unique value x and the 
corresponding polynomial values for all data blocks. The 
general procedure is illustrated in  Fig. 1. 

 
  
 
.  
. 
  
 
 
 
 
 
 
 
 
 
 
 
 
 Fig. 2.  Data retrieval procedure. 
 
 
2.2. Data retrieval 
 

Shares collected from multiple devices are used to 

reconstruct the original data. The general steps of Data 

Restoration are shown in  Fig. 2.  
With T shares, T equations can be created and aligned 

to form a multiplication of two matrices, the coefficient 
matrix A and the value of x matrix X. The result matrix Y is 
the matrix of f (x) val-ues, i.e. X × A = Y . The matrix X is 
constructed by powers of x as shown in  Fig. 2. This is the 
reason that Shamir’s secret sharing [ 5] is selected over 
Blakley one [ 7] where matrix X consists of arbitrary 
values (not powers of x). Therefore, the share size in 
Shamir’s ver-sion is much smaller than the one in 
Blakley’s. Matrix Y is built by the f (x) values extracted 
from the corresponding bytes in shares. For example, the 
first matrix Y is  

(f1(x1), f1(x2), f1(x3), . . . , f1(xt−1), f1(xt ))T .  
Then, Gauss–Jordan-Elimination (GJE) is applied to 

calculate the coefficient matrix A in  Fig. 2.  
After matrix A has been calculated, the corresponding 

data block is retrieved by extracting coefficients one after 
another. The coefficient a0 is the padding size to indicate 
how many bytes in this vector should not be treated as 
padding stuffs. For every matrix Y , such a matrix A should 
be calculated for the data in that block. Eventually, all data 
will be recovered.  

Since large numbers can cause accuracy problem, finite 
field GF(28) [ 8] is chosen to represent numbers (in 8 bits 
each). Addition and multiplication can be handled easily 
and properly. Division can be split into two steps: 
calculation of the divisor’s multiplicative in-verse and then 
the multiplication. Traditionally, extended Euclid’s 
algorithm is used for multiplicative inverses. Since there 
are only 256 possible values for coefficients and f (x), their 
multiplicative inverse values can be calculated in advance 
and saved in a table. This pre-calculated table approach 
can achieve significant perfor-mance gains. 
3. Post-generation data operations 
 
Once data shares are generated, the corresponding 

contents of the original data are not exposed anymore. 

Since shares change the representation of the original 

data, encryption effect is achieved. After sharing 

generation, data operations such as data insertion and 

deletion might still need to manipulate partial or whole 

data. If the whole data needs to be modified, going through 

data restora-tion and share re-generation processes is 

reasonable. But if only partial data need to be modified, re-

generating all shares is highly inefficient. Revised Shamir’s 

secret sharing scheme with internal padding reduces the 

data management granularity to block level. The threshold 

or block size defines the actual data modification units 

since all coefficients in polynomials are used to hold data 

and have to be dealt together. In this section, insert 

operation is taken as an example. Other operations are 

similar. 
 
3.1. Positioning 
 

For efficient data operations, the precise location and 
size of affected data are critical. These can be calculated 

based on the padding sizes in all blocks. To speed up this 

process further, one metadata, called Padding Record 

(PR), is maintained for all blocks’ padding sizes. PR only 

maintains information for those blocks con-taining 
significant padding, i.e., the padding size is greater than 

one. With PR, it is not necessary to restore blocks in 

sequence to fig-ure out all previous padding sizes and the 

exact position for mod-ification can be calculated quickly. 

Only related blocks and their corresponding polynomials 
are adjusted. 
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For a particular file, according to its PR, threshold 

(block size) and data offset (input), the first block and its 

corresponding bytes in shares can be detected. Initially, 

set datapos = 0. Then the PR is scanned sequentially and 

block data sizes are continuously added. If a block is not in 

PR, its default paddingSize will be one. Otherwise, 

 
3.2. Insert operation 
 

To insert a new data item into a file, it is not necessary 

to regen-erate all data shares. Only those bytes related to 

the affected block in shares will be changed.  
First of all, the positioning process with PR has to be 

applied to detect the affected block and exact byte 
position. The pin-pointed block might contain padding if it 
has been touched by post-generation operations before. If 
this is the case and the padding size is larger enough for 
the newly inserted data, only the polynomial values for 
this block will be regenerated and re-distributed. PR will 
be updated accordingly. If the original block does not 
contain any padding or the existing padding space is not 
enough for the new data, extra blocks are required. Some 
data bytes will be inserted into the current block to fill up 
the padding size whereas others will be used to build up 
new blocks. The original next block will not be touched, 
but pushed backwards since new blocks will be inserted 
before that.  

As a library call, the output of this function contains the 
share numbers for updating, the affected block number, a 
breaking flag to indicate if new blocks are added, and the 
new blocks’ values for related share bytes. The output 
format is as: ShareNum − Af-fectedBlock + BreakFlag + 
NewBlocks’Values. PR will be updated as well. entries 
where blocks 2 and 14 contain significant padding bytes. 
The output indicates block 7 will be changed and five more 
blocks will be added. Affected and newly generated bytes 
for the associ-ated shares are provided. PR maintains two 
 
4. Infrastructure of the secure and scalable IoT storage 
system 
In the proposed secure and scalable IoT storage system, 

there are mainly four components: client, dispatcher, peer 

managers and regular peers. The client is the original file 

holder; the dispatcher maintains the references (IP 

addresses) of peer managers who are in charge of peer 

groups; regular peers (or storage devices) are aligned up 

in columns to form peer groups.  
Operations in the proposed storage system can be 

categorized into three layers: 
 
• File saving and restoration: Files are transformed into 

shares based on the scaled secret sharing scheme. Since 

shares look to-tally different from original data blocks, 

security protection for data in-transit and at-rest is 

provided. Shares can be converted back to the data in 

the original files.  

• Connection setup and data transfer: Connections are 
estab-lished between the client and the dispatcher for 
peer managers’ IP address search, between the client 
and peer managers for share distribution and 
gathering, and between peers for share replication.   

• Share replication: Peer mangers determine which peers 

in the groups are selected for share replication to 

achieve high avail-ability. Regular peers can leave and 

join their groups on the fly. It is possible that peer 

managers can exchange their peer nodes as  

   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Fig. 4.  Saving a file into the distributed storage system. 

 

groups expand and shrink. For simplicity, device peers 

are parti-tioned into groups shown as columns in  Fig. 4. 

Within each peer groups, star topology is adopted for 

internal network where the manager stays in the center 

and connects with each peer di-rectly. 

4.1. File saving 
 

To save a file into peers, the storage system goes through 

three steps: share generation, share transfer and share 

replication .  
After a file is submitted, the client node converts the file 

into shares using the scaled secret sharing scheme. Then 
the client node contacts the dispatcher about where to 
save those shares. In this file management system, the 
dispatcher is the only centralized node. However, it only 
maintains the IP addresses of peer managers and will not 
involve in file operations. The dispatcher could be a 
bottleneck for server requests although it is not the 
bottleneck for data operations. Therefore, it can be 
implemented in a cluster man-ner to balance service 
requests among multiple server nodes. The dispatcher 
serves as a proxy and selects peer groups/managers ac-
cording to the work load situation or in round robin 
manner. Based on the client’s request, a number of peer 
groups are selected and their peer managers’ IP addresses 
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are returned. The client node keeps these addresses  
 
 
 
 
 
 
 
 
 
 
 
 
 
locally for the future use. Then shares are distributed to 

corresponding peer managers. Since the information in 
shares has been transformed in share format, data in 
transit pro-tection is provided.  

Once peer managers receive their shares, replication 
phase starts for high availability. Transformed shares 

provide data at rest protection. Distributed RAID can be 
deployed for error detection and correction. 
 
4.2. File retrieval 
 

To retrieve a file, the client node does not need to 

contact the dispatcher with the locally cached addresses. 

This reduces the 

 
 

 

 

 

 

 

 

 

 

 

 

possibility of turning it into a bottleneck for storage 

operations. File retrieval only contains two phases: 

sharing collection and file restoration as shown in  Fig. 5. 

With locally maintained manager lists, the client node 

can contact related peer managers directly. The latter ones 

can collect several replicas for error detection and 

correction. Then, the correct shares are transferred back 

to the client node. If a peer manager crashes and another 

manager is newly elected, only the dispatcher will be 

notified. Then, the peer group will be unavailable to the 

client node although the share replicas are still there. In 

such cases, the client node needs to contact the dispatcher 

again for the new group’s (peer manager’s) IP address. 

Only when all peers in a group crash, could the shares be 

permanently lost.  
Once shares are collected back to the client node, the 

scaled secret sharing scheme will be used again to restore 

data blocks and assemble files. Even if some shares (peer 

groups) have been lost, enough other different shares are 

still able to recover the original data blocks, and then files. 
 
5. Performance analyses and experimental results 
 

Files can be transformed into shares and distributed to 

multiple peers in the IoT storage system. If the threshold 

or block size is fixed, same shares will be generated. Also, 

the original files can be recovered effectively.  
Experimental files with small sizes are selected to 

demonstrate the performance trend of our distributed 

storage system. Such files can provide details as larger 

files follow the same trend. All tests are conducted on a 

machine with a 2.40 GHz Intel Pentium 4 CPU, 489.0 MB 

memory and 2.6.28-17-generic Linux kernel. 

5.1. Storage cost 
Assume there are M bytes in the original file. The 
threshold 
number is T , and 
share 

number is 
S(S ≥ 

T ). Then each block 
has  
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mapped onto a polynomial with the highest degree T − 1. 
For each block, S one-byte polynomial values are treated 
as shares. Also, each share should include the unique value 
x. Therefore, the total byte number is T

M
−1 + 1. As we know, 

each byte is represented by two hexadecimal digits. The 
output of each share will contain (⌈ T

M
−1 ⌉  + 1) × 2 

hexadecimal digits. For total S shares, there will  
be (⌈ T

M
−1 ⌉  + 1) × 2 × S hexadecimal digits. Roughly 

speaking, to generate shares, a file is cut down by T −1 for 
S times (S ≥ T ). The 
total extra bytes could be: Overhead = 
M 

S−(T 
−1) if T − 1 

divides 
 

T −1  
M. If only T shares are generated, the extra storage 
overhead will be T

M
−1 . The overall data size is not 

increased much.  
The relationship between single share’s size and 

threshold is illustrated in  Fig. 6. As threshold or block size 
increases, share size decreases. 
 
5.2. Share generation and data restoration 
 

In our experiments, files are transformed into shares. 

Also, the original data blocks can be restored from these 

shares. When 

6. Related work 
 

Shamir [ 5] and Blakley [ 7] brought up the concept of 
secret sharing independently in 1970s. The (t, n) threshold 
scheme con-cept was introduced. Since then, secret 
sharing draws more and more attention. 

A number of designs applied in storage systems may 
generate computational overheads that induce potential 
bottlenecks in to-day’s systems, which increasingly 
employ multi-Gbps links and/or are built composed of 
high throughput storage devices [ 9]. Hard-ware failure is 
one of major concerns. Many systems have consid-ered the 
fault tolerance issue and proposed some solutions, such as 
the ones in distributed RAID [ 10] and OceanStore [ 11]. 
They 

 
7. Conclusions 
 

This paper proposed a secure and scalable IoT storage 

sys-tem with consideration of security, scalability, 

flexibility and re-liability to meet the requirements of 

computing, communication and storage capabilities for 

data mining and analytics applications with large 

aggregate data in IoT. A refined Shamir’s secret shar-ing 

scheme is developed for security and scalability at data 

level. Multi-coefficient strategy is deployed for improved 

data capac-ity. Files are divided into blocks which are then 

transformed into shares. A distributed storage 

infrastructure is proposed to spread data shares across 

multiple storage peer groups and replicate them among 

peer nodes within each group. This infrastructure can pro-

vide scalability, flexibility and reliability at system level. 

Perfor-mance analyses and experiments demonstrate its 

effectiveness and correctness. The future work includes 

achieving high avail-ability of the dispatcher through 

redundant servers and adopting scalable network 

topologies (tree or P2P) for peer groups. 

 
thresholds are fixed, the overall overheads of share 
generation and data restoration are shown in  Fig. 7. 
Obviously, the execution time of share generation 
increases slightly as the data size increases and is less than 
the one for data restoration. Overall, data restoration is 
slower than share generation for large files.  

Share generation process consists of polynomial 
formation and f (x) calculation. For larger thresholds, the 
degree of the polyno-mial (one less than the threshold) 
will be higher and there will be more coefficients in each 
polynomial. In the above test, each poly-nomial takes 
almost the same time to get f (x) because the thresh-olds 
are the same. Because larger files need more data blocks, 
the corresponding polynomial calculation will be more 
costly. Then, the share generation overhead will increase.  

On the other side, if the threshold increases, each block 

will con-tain more bytes of original data. For fixed size 

original data, there will be fewer data blocks. For each 

block, the larger the threshold is, the less time the single 

share generation will take since the poly-nomial can digest 

more data and fewer polynomial calculations are required. 

Even though it may take a little longer time to calculate 
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