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Abstract - This paper presents a new Zernike base 
phase screen generation with known, realistic and 
repeatable characteristics. We proposed a new method 
for Zernike based phase screen for shearing 
interferometer. The interference fringe pattern 
distorted due to the Zernike based phase screen is 
demonstrated. This method of phase screen generation 
is validated through a simulated experiment which 
extracts the phase from the distorted wavefront using 
Window Fourier Transform method. 
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I) INTRODUCTION 
 

In recent years, astronomers have developed the 
technique of Adaptive Optics (AO) [1] to actively sense and 
correct wavefront distortions at the telescope during 
observations. A telescope with adaptive optics measures 
the wavefront distortions with a wavefront sensor and 
then applies phase corrections with a deformable mirror 
[2] on a time scale comparable to the temporal variations 
of the atmosphere's index of refraction. Adaptive Optics 
dramatically improves image resolution and increases the 
image coherence.  
 

A wavefront sensor based on polarization 
shearing interferometry (PSI) [3] technique has been 
developed. Lateral shearing interferometry was employed 
as the wavefront sensor for real time atmospheric 
corrections [4, 5]. The PSI combines the wavefront with a 
shifted version of itself to form interference. A shearing 
device splits the incoming wavefront into two components 
and shifts one of them. The two wavefronts are mutually 
displaced by a distance s, called shear. They interfere in 
their overlap area. By their position, the interference 
fringes are a measure of the phase difference over the 
shear distance in the shear direction. A detailed theory on 
the use of this PSI device as a wavefront sensor for 
Adaptive Optics applications is provided [6, 7]. 

 
We simulated a shearing interferometer fringe 

pattern based on Zernike polynomials and later errors 
caused due to atmospheric turbulence were incorporated 
by Zernike base phase screen. Due to presence of noise in 
the interferogram, fringe pattern image is distorted and it 
is important to retrieve phase information from fringes for 
further process of wavefront error estimation.  

 
II Interference Fringe Pattern Simulations using 
Zernike Polynomial 
 

The basic interferometric equation is given in 2.1 

and the gradient of the Zernike polynomial is represented 

by equation 2.2 

        (2.1) 

 

 
                                            (2.2)    

Where  are the coefficients of the Zernike 

expansion in the jth derivative of the Zernike. The matrix  

is called Zernike derivative matrix and it is given in Noll[8]. 
And the wavefront slope is explicitly written as  

 

 
                                        (2.3) 
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The interferogram are simulated with Zernike 
coefficients, and for different values of the Zernike 
coefficients it represents different aberrations. The figure 
1 shows the simulated interference fringe pattern using 
only defocus term while making all other coefficients zero. 
The low order Zernike polynomials is shown in the Table 
1. 

  

Table 1: Zernike polynomials  

 

 
Figure 1: Simulated PSI interferogram using the Zernike 

coefficients  

 
III) Zernike-based Phase Screen 

Noll [8] has introduced a normalization for the 
Zernike polynomials that is perfectly suited for application 
of Kolmogorov turbulence. The use of Zernike polynomials 
for describing the aberrations introduced by the 
atmospheric turbulence is reviewed [9]. The derivatives of 
the Zernike Polynomials can be written as a linear 
combination of Zernike polynomial. Zernike polynomials 
are widely used for describing the classical aberrations of 
an optical system. They have the advantage that the low 
order polynomials are related to the classical aberrations 
like spherical aberration, coma and astigmatism. Fried [10] 
used these Zernike polynomials to describe the statistical 
strength of aberrations produced by the atmospheric 
turbulence. Zernike polynomials are a set of orthonormal 
polynomials, defined on a unit circle and hence are used to 
express the turbulent wavefront in the circular aperture 
telescope. Normalization for the Zernike polynomials that 
is perfectly suited for application of Kolmogorov 
turbulence is used. The Zernike polynomials are usually 
written in polar form ρ and θ. Zernike polynomial 
approach does not begin with a random phase array, 
instead the coefficients are combined into two-
dimensional random functions. In [8] it is defined a new 
modified set of Zernike polynomials  and these 

polynomials to be      

 

 

j n m Zj (ρ, θ) Meaning 

1 0 0  Piston 

2 1 1  Tilt along X  

3 1 1  Tilt along Y 

4 2 0 
 

Defocus 

5 2 2 
 

3rd Order 

Astigmatism - X ;  

6 2 2 
 

3rd Order 

Astigmatism - Y ;  

7 3 1 
 

3rd Order Primary 

Coma - X 

8 3 1 
 

3rd Order Primary 

Coma - Y 

9 3 3 
 

3rd Order 

Triangular Coma - 

X 

10 3 3 
 

3rd Order 

Triangular Coma - 

Y 

11 4 0 
 

3rd Order 

Spherical 
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                                               (3.1) 

The functions  are referred to as radial 

functions defined to be 

 

(3.2) 

Based on a polar coordinate system, R is the 
radius, ρ is the position along the radius, and θ is the angle 
with respect to the x-axis. Noll’s numbering sequence of 
the index j corresponds to each polynomial  and 

proceeds by row. The given value of radial degree n, 
increases with azimuthal frequency m. We generate 
random phase screens, from the relationship: 
According to Noll’s numbering system, j is used instead of 
n, the radial order and m, the azimuthal order. The two 
indices m and n are whole numbers satisfying m ≤ n and n 
− m is even. The total number of modes up to a given radial 
order is therefore Jn = (n+1) (n+2) / 2 . The low order 
Zernike polynomials, where the columns and rows indicate 
azimuthal and radial order respectively is given. The 
polynomial expansion of an arbitrary wavefront over the 
unit circle is defined as 
  

 
 (3.3)  

with  and the coefficients  being given by  

 
                                             (3.4) 

Since Zernike polynomials have the unique 
property of representing each mode individually, one can 
estimate the contributions by the atmosphere by 
estimating the individual Zernike terms. The propagation 
of a wave through the atmosphere and the structure 
function for the phase fluctuations is defined as 

 
                                          (3.5) 

For Kolmogorov turbulence D(r), can be written in terms 
of the correlation length as 

 
                                                    (3.6) 

The structure function is related to the Weiner spectrum, 
 by 

 
                                             (3.7) 

By using Eq. (2.28) and the integral 

                                

(3.8) 
We find that, 

 
                                                    (3.9) 

This is the Wiener spectrum of the phase 
fluctuations due to Kolmogorov turbulence. A Zernike 
representation of this spectrum can be obtained by 
evaluating the covariance of the expansion coefficients in 
Eq. (3.3). The coefficients aj can be considered to be 
Gaussian random variables with zero mean so that the 
covariance is, from Eq. (3.4),  

            
 (3.10) 

Where  is the phase covariance function 

 
                                            (3.11) 

Equation (3.10) can also be written in Fourier space as 

 
                    (3.12) 

Where, 

 

   Substituting Eq(3.11) into Eq.(3.12) yields 
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      (3.13) 

It is a Zernike matrix representation of the 
Kolmogorov phase spectrum. This representation has the 
advantage that the integrals that appear in Eq. (3.13) can 
be evaluated in closed form.   

For our experiment we used Zernike based phase 
screen for a turbulence generator with known, realistic, 
and repeatable characteristics. It is used to characterize 
the phase estimation, data reduction methods and error 
finding by comparing the input values of Zernike 
coefficients (which we used for generating Zernike based 
phase screen) and output of Zernike values (which we get 
after phase estimation and data reduction). The 
comparison of input Zernike and output Zernike depends 
on the performance of the phase extraction algorithm and 
data reduction method. We have generated an 
interferogram with known 11 Zernike coefficients of 
Kolmogorov turbulence and Gaussian Noise. We generated 
an interferogram by keeping only spherical and defocus 
and it is shown in figure 3. We generated an interferogram 
with known 11 Zerrnike coefficients which is shown in 
figure 4.A with added Kolmogorov turbulence and 
Gaussian noise is shown in figure 4.B. In table 2 we have 
given the values of 11 Zernike coefficients and the 
Kolmogorov turbulence of D/r0 =1 and Gaussian noise of 
0.5 where D – Telescope Diameter and r0- Fried Parameter. 
 

 
Figure 3: A Interferogram with Spherical Aberration & 

Defocus 
 

 
 

 
 

 
 
 
 
 
 
 
 
 
 

Table 2. Input Zernike Coefficients 
 

    
(A) 

0.00 

0.00 

0.00 

5.00 

-2.0031 

-1.0025 

1.0069 

2.0011 

-1.0043 

-1.0056 

1.0093 
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                                                          (B) 

Figure 4: (A) All 11 Zernike Coefficients based 
Interferogram (B) including Kolmogorov turbulence and 

Gaussian noise 

IV) Phase Extraction through Windowed Fourier 
Transform 
 

Noise is an unwanted signal which is corrupting 
the original signal and to retrieve phase from the 
interferogram we need to denoise the fringe pattern. Noise 
degrades the quality of the information of original signal. 
The interferogram needs to be processed before it can be 
used for computing the phase aberration. Image denoising 
involves the manipulation of the image data to produce a 
visually high quality image. There are various methods of 
noise reduction in practice.  There are many applications 
to the noise control based on signal types. In this report, 
we consider three de-noising methods, the traditional 
Filtering method, Fourier technique and the wavelet 
denoising method to perform their comparative study.  
Different noise models including additive and 
multiplicative types are used. They include Gaussian noise 
and Kolmogorov turbulence phase.  

The procedure for computing Windowed Fourier 
Transform (WFT) is to divide a longer time signal into 
shorter segments of equal length and then compute the 
Fourier transform separately on each shorter segment. 
This reveals the Fourier spectrum on each shorter 
segment.    The windowed Fourier transform also called 
the Short Time Fourier Transform (STFT), or the sliding 
Fourier transform which partitions the time-domain input 
signal into several disjointed or overlapped blocks by 
multiplying the signal with a window function and then 
applies the discrete Fourier transform to each block.  

 

 
The magnitude square of the Fourier transform is 

the energy density spectrum at time t. By varying t, we 
obtain a two dimension density of time and frequency 
called the spectrogram. Window functions, also called 
sliding windows in which the amplitude tapers gradually 
and smoothly toward zero at the edges. Because each 
block occupies different time periods, the resulting WFT 
indicates the spectral content of the signal at each 
corresponding time period. By moving the sliding window 
one can obtain the spectral content of the signal over 
different time intervals. The WFT is a function of time and 
frequency that indicates the spectral content of a signal 
evolves over time. A complex-valued, 2-D array called the 
STFT coefficients stores the results of windowed Fourier 
transforms. The magnitudes of the STFT coefficients form 
a magnitude time-frequency spectrum, and the phases of 
the STFT coefficients form a phase time-frequency 
spectrum. The WFT is one of the most straightforward 
approaches for performing time-frequency analysis helps 
us to easily understand the concept of time-frequency 
analysis. The WFT is computationally efficient because it 
uses the Fast Fourier transform (FFT) [11, 12 and 13]. 

 
For phase estimation, we fitted a one dimensional 

noisy fringe pattern to the windowed Fourier transform 
which transformed into spectrum. The noise permeates 
the whole spectrum domain with very small coefficients 
due to its randomness and incoherence with the WFT 
basis. This is suppressed by discarding the spectrum 
coefficients if their amplitudes are smaller than a preset 
threshold. A smooth image is produced after an Inverse 
Windowed Fourier Transform (IWFT).  
 
The WFT and IWFT can be written as [14, 15] 

 
(4.1) 

 
(4.2) 

Where  denotes the WFT spectrum; g(x) is a 

window, which can be chosen as a Gaussian function, 

 
                                                  (4.3) 

In a Fourier transform, when f(x) is transformed 
to Ff(𝜉), the frequency information is maintained but time 
information is lost and can hardly be recognized i.e., Ff(𝜉) 
it is possible to find frequencies that appear from the 

http://zone.ni.com/reference/en-XX/help/371361G-01/lvanlsconcepts/windowing_signals/
http://zone.ni.com/reference/en-XX/help/371361G-01/lvanlsconcepts/fft_fundamentals/
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spectrum, but not where they occur in the signal. But using 
WFT  it is possible to know not only the spectrum 

components but also component that appears in the time 
domain. The WFT has advantages over Fourier transform 
as it is performed over a local area. It is determined by the 
extension of g(x), where a signal in one position will not 
affect the signal in another position. In spectral analysis 
also the spectrum of the signal in a local area is simpler 
than the spectrum of the whole field signal hence more 
effective operation of the spectrum is possible. 

 
4.1 Steps employed for phase Extraction using 
Windowed Fourier Transforms 
 
1. A code for a straight fringe in the interferometer is 
developed using LabVIEW. 
 
2.  Due to inclusion of turbulence (Zernike based phase 
screen) the fringe pattern gets distorted. On the 
application of different types of error, the fringes get 
distorted in a different way.   
 
3. The one-dimensional plot of the distorted fringe pattern 
is taken into account for easy analysis.  
 
4. The Windowed Fourier Transform Technique is applied 
to the one-dimensional plot which transforms into 
spectrum. 
 
5. In spectrum domain, the noises are eliminated by 
discarding the spectrum coefficients of their amplitudes 
which are smaller than a preset threshold. 
 
6. A smooth image is produced after an IWFT. 

 
The figure 5.A shows that the noisy interferogram 

with Gaussian noise of 0.5 and its filtered image is shown 
in figure 5.B using windowed Fourier transform The figure 
5.C shows that the noisy interferogram affected by zernike 
based turbulent phase screen of D/r0 ratio =0.5 with 
Gaussian noise of 0.5 and its filtered image is shown in 
figure 5.D using windowed fourier transform by above 
developed algorithm. 

 
(A)    

 
(B) 

 
(C) 
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(D) 

Figure 5: The noisy image and filtered image using 
windowed Fourier transform 

 
 
 
 

V) Reconstruction of distorted wavefront 
 
The phase thus recovered is measured with an 

integral multiple of 2π uncertainties. The process of 
removing these uncertainties is called phase unwrapping. 
After phase has been completely unwrapped, the data 
contains the derivatives of the original phase of the 
wavefront. The derivative of the wavefront phase can 
conveniently be written in terms of Zernike polynomials, 
to estimate the wavefront errors. The Zernike coefficients 
provide the complete information of the wavefront. 
 
5.1 Wavefront determination from wavefront slope data 
using Zernike polynomial  

           The aberrated wavefront has to be 
reconstructed from the wavefront slopes derived from the 
above method. The wavefront aberrations can be well 
represented by Zernike polynomials. The derivatives of the 
Zernike polynomials can be expressed as a linear 
combination of Zernike polynomial [8]. They are written as  

 

 
                                              (5.1) 

Alternatively 

 

                                                                   (5.2) 
where are the coefficients of the Zernike expansion of 

the derivative of the jth Zernike. The matrix  is called 
Zernike derivative matrix and it is given in [13]. The 
wavefront slope as derived from this method can be 
written as in equation 5.3. 

 
                                                                       (5.3) 

where   &   correspond to the x and y derivatives of 

the wavefront slope. Therefore 

 
(5.4) 

So that combining (5.2), (5.3) and (5.4), 

 
                   (5.5) 

 
 
 

In matrix notation this equation can be written as 

 
W = A Z 

W contains the values of the wavefront slope, A 
the Zernike coefficients which are to be determined and Z 
is the Zernike polynomial corresponding to the coefficients 
with a multiplicative factor of shear. The number of 
measurements is typically more than the number of 
unknowns, so a least square solution is useful. This over 
determined system is solved as follows: 

 
                 W  ZT    =   A Z ZT 
 W  ZT   (Z ZT)-1 =   A (Z ZT ) (Z ZT)-1 

                            (5.6) 
                             A = W ZT   (Z ZT)-1 

 
        A provides the Zernike coefficients. Using the 

Zernike coefficients, the aberrated wavefront is 
reconstructed as 

 
                                                                           (5.7) 

Where aj
 
are the Zernike expansion coefficients. 

So far the considerations have involved, derivations based 
on the theory for ∆Wx

 
and ∆Wy, with the resulting 
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polynomial expressions formulated in terms of circle of 
unit radius.  

We explained the use of Zernike base phase screen 
for known and repeatable characteristics of turbulence 
generation in section 3. It also used to characterize the 
phase estimation, data reduction methods and error 
finding by comparing the input values of Zernike 
coefficients (which we used for generating Zernike based 
phase screen) and output values of Zernike coefficients 
(which we get after phase estimation and data reduction). 
The comparison of input Zernike values (phase screen 
with Zernike) and output Zernike values (here in 
wavefront reconstruction A provides the Zernike 
coefficients) depends on the performance of the phase 
extraction algorithm and data reduction method. In figure 
6 a graph shows the comparison of input Zernike values 
with evaluated Zernike values of proposed WFT 
algorithms.  
 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Table 3. Output Zernike Coefficients 
 

 
Figure 6: Zernike Comparison Graph 

 

VI) CONCLUSION 
 
  In this paper we have developed a Zernike based 
interferogram and phase screen. We incorporated the 
phase screen into the interference fringe pattern and due 
to that the interference gets distorted. From the distorted 
fringe pattern, we extracted the phase using Window 
Fourier Transform. The extracted phase is unwrapped and 
fitted into Zernike polynomial to slope identification. The 
resultant Zernike values are compared with its input 
values. 
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