
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 02 Issue: 09 | Dec-2015 www.irjet.net p-ISSN: 2395-0072

© 2015, IRJET ISO 9001:2008 Certified Journal Page 313

AREA EFFICIENT IMPLEMENTATION OF ADAPTIVE FIR FILTER BASED

ON DISTRIBUTED ARITHMETIC

LISHA ANNA DANIEL, NIJI MATHEWS

1 Student MTech VLSI and Embedded System, Viswajyothi College of Engineering and Tech., Kerala, India
2 Assistant Professor, Electronics and Communication, Viswajyothi College of Engineering and Tech., Kerala, India

---***---
Abstract - Novel pipelined architectures for low-area
implementation of adaptive FIR filter based on Distributed
Arithmetic (DA) are proposed here. The designs perform
parallel lookup table (LUT) update and concurrent
implementation of filtering and weight-update operations.
The conventional adder-based shift accumulation for DA-
based inner-product computation is replaced by conditional
signed carry-save accumulation in order to reduce delay
and area complexity. The designs use fast bit clock for carry
save accumulation but a much slower clock for all other
operations. Look Up Table (LUT) size reduction techniques
are employed within the filter structures. LUT techniques
used include Offset Binary Coding (OBC) and Modified DA
Technique, which are employed within the existing
structure. Within the OBC technique, LUT structure
employed is halved when compared to that of the existing
designs. Smaller multiplexor is also used within this
structure. Modified DA technique also employs half-sized
LUT structure. For the latter technique, the filtering unit
employs an additional adder structure but smaller
multiplexor when compared with the existing designs. From
synthesis results, it is found that the proposed structures are
efficient in terms of area from the existing design.

Key Words: Adaptive Filter, Distributed Arithmetic,
OBC, LMS, DLMS, etc…

1. INTRODUCTION

In the process of transmission of information from the
source to the receiver, noise from the surroundings
automatically gets added to the signal. The noisy signal
contains two components; one carries the information of
interest i.e. the useful signal and the other consist of
random errors or noise which is superimposed on the
useful signal. Therefore the effective removal or reduction
of noise in the field of signal processing is an active area of
research. There are many schemes for noise removal of
which one of the most effective is the use of adaptive
filters.

The use of adaptive filter helps in reducing the signal
corruption caused by predictable and unpredictable noise.
An adaptive filter has the property to self-modify its
frequency response to change its behaviour with time. It

allows the filter to adapt to the response as the input
signal characteristics change. Due to this capability and
flexibility, the adaptive filters have been employed in
many different applications like telephonic echo
cancellation, radar signal processing etc. Adaptive filters
continuously change their impulse response in order to
satisfy the given conditions, and by doing so, change the
very characteristic of their response. There are certain
rules that filters use in order to adapt. These rules or
algorithms shall include Least Mean Square (LMS)
Algorithm, Normalised Least Mean Square (NLMS)
algorithm, Delayed Least Mean Square (DLMS) algorithm
etc.

Adaptive filters require various performances of a high
speed, lower power dissipation, good convergence
properties, small output latency filters and so on. In order
to satisfy these requirements, highly-efficient algorithms
and architectures are desired. The adaptive filter is
generally constructed by using the multipliers, adders and
memories, and so on. Of the structures made of multipliers
and adders, they require large portion of chip area. Power
consumption is also more. Thus memory based structures
are more regular compared with the multiply accumulate
structures and have many other advantages, e.g., greater
potential for high throughput and reduced- latency
implementation and are expected to have less dynamic
power consumption due to less switching activities for
memory read operations compared to the conventional
multipliers. Memory based structures are well suited for
many digital signal processing (DSP) algorithms, which
involve multiplication with a fixed set of coefficients. For
this Distributed Arithmetic architecture can be used in
adaptive filters. Distributed arithmetic is one way to
implement convolution with multiplier less unit, where
the multiply accumulate (MAC) operations are replaced by
a series of look up table (LUT) access and summations.
This project also deals with implementation of Least Mean
Square (LMS) adaptive filter suing distributed arithmetic
with an aim to reduce area and delay from the existing
structures and to increase the throughput rate. Core of
this work is for VLSI implementation of an efficient
adaptive filter structure where simulation is done using
Xilinx and Isim. Implementation part has been done using
software Xilinx 12.4 on Spartan3E FPGA kit.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 02 Issue: 09 | Dec-2015 www.irjet.net p-ISSN: 2395-0072

© 2015, IRJET ISO 9001:2008 Certified Journal Page 314

2. Adaptive Filter with Distributed Arithmetic
Theory

This section briefs about Adaptive filter and distributed
arithmetic theory.

2.1 Adaptive Filter Configuration

An adaptive filtering environment is illustrated in the
figure 1. Here figure shows a block diagram in which a
sample from a digital input signal x(n) will be fed into a
device, i.e. an adaptive filter, that computes a
corresponding output signal sample y(n) at time n. The
output signal is compared to a second signal d(n), called
the desired response signal, by subtracting the two
samples at time n. This difference signal, e(n) is known as
the error signal. The error signal is fed into a procedure
(filter coefficient update section) that changes the
parameters of the filter from time n to time (n + 1) in a
well-defined manner. When the time index n is
incremented, it is expected that the output of the adaptive
filter becomes a better match to the desired response
signal through this adaptation process, such that the
magnitude of e(n) decreases over time[2].

Fig -1: General Adaptive Filter Configuration

2.2 LMS Algorithm

The Least Mean Square (LMS) algorithm, introduced by
Widrow and Hoff in 1959 is an adaptive algorithm, which
uses a gradient-based method of steepest decent. It mainly
consist of two basic processes namely a filtering process,
which computes the output of a linear filter in response to
an input signal and generates an estimation error by
comparing this output with a desired response. Secondly it
performs an adaptive process, which adjusts the
parameters of the filter in accordance with the estimation
error.

With each iteration of the LMS algorithm, the filter tap
weights are updated according to the following formula
given as:

W(n+1) = W(n)+µ · e(n) · x(n) (1)
e(n) = d(n) – y(n) (2)

y(n) = x(n) · WT(n) (3)
where the input vector is x(n), µ is the learning rate
parameter or step size, y(n) is the filter output, d(n) is the
desired input and the weight vector is given by W(n) for
‘n’ iterations. Here µ controls the stability and
convergence speed of the LMS algorithm.

2.3 Distributed Arithmetic

DA is a bit serial operation used to compute the inner
(dot) product of a constant coefficient vector and a
variable input vector in a single direct step [3] and is given
by

 (4)

Here wk are fixed coefficients and xk are inputs. If each wk

is a 2's-complement binary number scaled such that

|wk|<1 then each wk can be presented as

(5)

Where wkl denotes the lth bit of wk.

Combining equations (4) and (5), output y obtained as per
distributed arithmetic computation is as below

 (6)
Where ‘L’ is the bit width and ‘N’ is the filter length.

3. Related Work

Existing DA based LMS filter proposed by P. K. Meher and
S. Y. Park in [1] included two main sections i.e. the Weight
increment block and the N-Point inner product block. The
structure of DA-based adaptive filter of filter length N = 4
is shown in figure 2. The noisy input signal x(n) of ‘L’ bits,
along with the filter coefficients each of ‘L’ bits are
provided to the inner product block serving as the filtering
unit. The filtering unit produces the filter output y(n). The
error output e(n) is computed by subtracting y(n) from
desired signal d(n). The product of convergence factor µ,
input signal x(n) and error e(n) are provided to the weight
increment block where new filter coefficients are
generated in each iteration. This process continues until
the error output e(n) converges to the noise free original
signal.

The equation (6) given above are applied within the given
structure in figure 2.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 02 Issue: 09 | Dec-2015 www.irjet.net p-ISSN: 2395-0072

© 2015, IRJET ISO 9001:2008 Certified Journal Page 315

Fig -2: DA Based LMS Filter with N = 4

3.1. Four Point Inner Product Block

The four point inner product block consists of the
distributed arithmetic table that computes the inner
product, a 16:1 mux and a carry save accumulation
section. As shown in figure 3 below, the DA table outputs
are computed. Then the results are provided to a 16:1 mux
to select the inner product combination outputs based on
the bit slices of the weight bits provided as select line to
the multiplexor.

 Fig -3: Four Point Inner Product Block with DA

The output of the mux is fed to the carry save accumulator
(CSA). After ‘L’ bit cycles, the carry save accumulator shift
accumulates all the partial inner products and generates a
sum word and a carry word of size ‘L+2’ bits each. The sign
control bit is used to generate 1s complement output of
the sum and carry. This bit is 1 when the MSB weight bits
arrive and is 0 for the remaining bits. The carry and sum
words are shifted added with an input carry ‘1’ to generate

filter output y(n) as in figure 2. 2s complement output y(n)
is resulted here. Here within the block, carry propagate
adders are used for the computation of partial inner
products. Thus delay can be reduced than when ripple
carry adders are used. The error output computation is
done by subtracting the filter output from the desired
signal d(n). Since y(n) is a 2s complement result, a carry
propagate adder is used for obtaining error output.

3.2. Sign Magnitude Separator and Control Word
Generator

For weight update operation, error is to be multiplied with
input signal. The sign magnitude separator separates the
sign (MSB) and magnitude (remaining bits) of error.
Multiplication of input xn by error is implemented by right
shift through the number of locations given by the number
of leading zeroes in the magnitude of error. The magnitude
of the computed error is decoded to generate the control
word‘t’ for the barrel shifter.

3.3. Weight Increment Block

Weight Increment block consists of four barrel shifters
and four adder/subtractor cells. The convergence factor µ
= 1/N. In case of four point inner product block, N = 4.
Thus µ = 1/4 i.e. µ = 1/22 = 2-2. Thus right shifting error
output by 2 will give the result µ·e(n-2). The magnitude
obtained from µ·e(n-2) can be used for the control word
generation ‘t’ of the barrel shifter shifts the different input
values xn for n = 0,1,...,N−1 by appropriate number of
locations. The sign bit of the error is used as the control
for adder/subtractor cells such that, when sign bit is zero
or one, the barrel-shifter output is respectively added with
or subtracted from the content of the corresponding
current value in the weight register. Hence the new
weights are obtained.

4. Proposed DA Based Implementation

In this paper, LUT size reduction techniques are employed
within the DA section used in the inner product block of
the existing structure. The main aim is to perform area
reduction. Filter structures of filter length N=4 and 16 are
implemented as mentioned in [1].

4.1 Offset Binary Coding Distributed Arithmetic

Offset Binary Coding also known as Excess K, is a digital
coding scheme where all-zero corresponds to the minimal
negative value and all one to the maximal positive value.
OBC techniques can be applied in DSP [3]. Offset binary
coding can reduce the LUT size by a factor from 2 to 2N-1
without increasing the number of LUTs.

https://en.wikipedia.org/wiki/Integer_overflow

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 02 Issue: 09 | Dec-2015 www.irjet.net p-ISSN: 2395-0072

© 2015, IRJET ISO 9001:2008 Certified Journal Page 316

Suppose that one can assume wk as

 (7)

and also in 2's-complement notation the negative of wk is
written as

(8)

Where the over score symbol indicates the complement of

a bit. Here indicates the lth bit of Here is of ‘L’

bits width. From equations (7) and (8), one can write

 (9)
In order to simplify the notation later, it is convenient to
define the new variables as

 (10)

where n≠0 and

 (11)

Now equation (9) can be written as follows

 (12)

By substituting equation (12) in (6), the following result is
obtained

 (13)

 (14)

Where (15)

and (16)

Based on the above equations, the filter structure has been
implemented. Here OBC is employed to reduce the LUT
size by half. The figure 4 shows the proposed inner
product block (for filter length N = 4) used to replace the
existing one for the purpose of area reduction.

Fig -4: Four Point Inner Product Block with OBC-DA

In the figure 4, the weight bit w3l is xor-ed with the weight
bits {w2lw1lw0l} where 0<=l<=L-1. The result obtained can
be used to select the LUT content. The weight bits for each
coefficient arrive in LSB to MSB order. OBC technique is
employed as in [4] for the computation of partial inner
products used within the DA table. The Sign Control bit
helps in the computation of one’s complement of the filter
output. As the LSB weight bits arrive, an extra term Q(0)
called the mid-value is also added to the LUT output. The
mid-value for OBC technique is calculated as per the
equation (16) i.e.

Q(0)=½(x(n)+x(n-1)+x(n-2)+x(n-3)) (16)

Thus for the LSB weight bits, within the carry save
accumulator, the mid-value is added with the LUT output.
For the remaining bits, normal carry save accumulation
occurs. Thus the filter output can be computed and the
result is given to the weight update section for further
computation and so on. Hence the LUT size is reduced to
half and thus area utilization is reduced here.

4.2 Modified DA Technique

LUT size can also be reduced to half by Modified DA
technique. Consider DA Table of figure 3 of the existing
structure. One can observe that the lower half of the LUT is
the the sum of the upper half of LUT contents and x(n-3).
Hence, LUT size can be reduced to 1/2 with an additional
2x1 multiplexer and a full adder, as shown in figure 5 (for
filter length N=4). The DA table for the technique
mentioned is shown within the figure.

Fig -5: Four Point Inner Product Block with Modified DA

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 02 Issue: 09 | Dec-2015 www.irjet.net p-ISSN: 2395-0072

© 2015, IRJET ISO 9001:2008 Certified Journal Page 317

The working of the proposed four point inner product
block can be summarized as below. The three weight bits
{w2lw1lw0l } are used to choose the LUT output. Based on
the weight bit w3l, x(n-3) may be added or not added along
with the LUT output. Here if the weight bit w3l is a ‘1’, then
x(n-3) is added with the LUT output else not. The sign
control bit is zero for the LSB weight bits arriving. When
the MSB weight bits arrive, the sign control bit will be one.
Thus one’s complement filter output is obtained by this
technique again. The LUT output is provided to the carry
save adder section to produce the sum and carry results
similar to the existing structure.

5. Synthesis Results

Existing and proposed structures are simulated and
implemented using Xilinx for filter lengths N = 4 and 16.
Simulation result of Modified DA based Adaptive filter for
N = 4 is shown in figure 6.

Fig -6: Adaptive Filter Output with Modified DA

Here in figure 6, the input ‘Xn’ (noise input) = 50 and the
Desired signal ‘desired_signal’= 90. Error output ‘error’ is
converging towards the value original signal value i.e. 40.
Similar results are obtained for filter structure employing
OBC-DA. Charts 1 and 2 show comparisons of the
implemented structures in terms of area.

Chart -1: Area comparison for N = 4

Chart -2: Area comparison for N = 16

Thus from the comparison charts, it is clear that the
proposed structures are efficient in terms of area from the
existing structures. Table 1 shows the area utilization as
per the synthesis results in Xilinx.

Table -1: Number of Occupied Slices for N = 4 and 16

 Existing DA
Filter
Structure

OBC-DA
Filter
Structure

Modified
DA Filter
Structure

N = 4 270 224 212
N =16 1241 1068 1029

6. CONCLUSIONS

Efficient pipelined architectures for less area
implementations of DA-based adaptive filter are proposed
and implemented. A carry-save accumulation scheme of
signed partial inner products for the computation of filter
output is used here to reduce the delay. Here LUT size
reduction techniques are employed. On comparing the
filter structures developed, in terms of area, one can
conclude that the existing structures consume maximum
area when compared to the proposed structures. As future
modification, the LUT size can again be reduced to 4 word
ROM using OBC DA and Modified DA technique [5].

REFERENCES

[1] Sang Yoon Park, Pramod Kumar Meher, “Low-
 Power, High- throughput, and Low Area Adaptive
 FIR Filter Based on Distributed Arithmetic”, IEEE
 Transcantions on Circuits and Systems-II:Express
 Briefs,Vol.60,No.6,June 2013.
[2] Douglas, S.C. “Introduction to Adaptive Filters”,
 1999
[3] S. A. White, “Applications of the distributed
 arithmetic to digital signal processing: A tutorial

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 02 Issue: 09 | Dec-2015 www.irjet.net p-ISSN: 2395-0072

© 2015, IRJET ISO 9001:2008 Certified Journal Page 318

 review,” IEEE ASSP Mag., vol. 6, no. 3, pp. 4–19,
 Jul. 1989.
[4] R. Guo and L. S. DeBrunner, “A novel adaptive
 filter implementation scheme using distributed
 arithmetic,” in Proc. Asilomar Conf. Signals, Syst.,
 Comput., Nov. 2011, pp. 160–164.
[5] D. V. Anderson, “Hardware-efficient distributed
 arithmetic architecture for high order digital
 filters,” ResearchGate publication, Conference
 paper in Acoustics, Speech and Signal Processing,
 Apr. 2005

