

HYBRID-DOUBLE MULTIPLIER ARCHITECTURE FOR ELLIPTIC CURVE CRYPTOGRAPHY

DHANALAKSHMI.S¹, POOVIZHI.P², AGALYA.E³, UHASHINI.R⁴

¹ Assistant professor, ECE, Idhaya Engineering College for Women, Tamil Nadu, India
 ² Assistant professor, ECE, Idhaya Engineering College for Women, Tamil Nadu, India
 ³ Assistant professor, ECE, Idhaya Engineering College for Women, Tamil Nadu, India
 ⁴ P.G Student, ECE, Idhaya Engineering College for Women, Tamil Nadu, India

Abstract - High-performance and fast implementation of point multiplication is crucial for elliptic curve cryptographic systems. Recently, considerable research has investigated the implementation of point multiplication on different curves over binary extension fields. In this paper, we propose efficient and high speed architecture implement point multiplication on binary Edwards and generalized Hessian curves. We perform a dataflow analysis and investigate maximum number of parallel multipliers to be employed to reduce the latency of point multiplication on these curves. Then, we modify the addition and doubling formulations and employ a newly proposed digit level hybrid double Gaussian normal basis multiplier to remove the data dependencies and hence reduce the latency of point multiplication. To the best of our knowledge, this is the first time that one employs hybrid double multiplication technique to reduce the computation time of point multiplication. Moreover, we have implemented our proposed architecture for point multiplication on FPGA and obtained the results of timing and area. Our results indicate that the proposed scheme is one step forward to improve the performance of point multiplication on binary Edward and generalized Hessian curves.

Key Words: Elliptic curve cryptography, double hybrid multiplier, Binary Edwards curves, generalized Hessian curves, Gaussian normal basis.

1 INTRODUCTION

It has been shown by Miller [1] and koblitz [2] independently that a group of points on an elliptic curve over finite fields can be used for elliptic curve cryptography (ECC) as a public key cryptography

method. In comparison to RSA, ECC offers the same level of security employing smaller key size [3]. Therefore, efficient implementation of ECC in terms of time-area trade-offs is crucial. For server applications, high speed implementations are required while for small and embedded devices area usage is the main concern that needs to be considered.

There are several implementations are available in the literature; see for example, [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16], and [17]. In all these implementations, various hardware platforms such as field programmable gate array (FPGAs) and application specific integrated circuit have been utilized. Binary Edward and Generalized Hessian curves have recently been introduced in [18] and [19]. It has been shown that all generic elliptic curves over binary fields can be written in Edwards and generalized Hessian form to obtain complete and unified addition formulas which work for all pairs of input [18]. However, few works in the literature have considered the implementation of point multiplication on these curves [20], and [17]. In [20], an ASIC implementation of point multiplication on binary Edwards curves (BECs) is presented for resource constrained applications. In [17], lower level parallelization in finite field arithmetic as well as parallelization in higher level of curve formulations have been investigated to evaluate the time – area trade – offs. Curve level parallelization results indicate that although point multiplication on these curves is unified and complete, but they are slow in comparison to the point multiplication results on binary generic curves proposed in [21] and [4]. This is due to the data dependency in computing combined point addition (PA) and doubling which require three levels of multiplication employing parallel finite field multipliers. Note that four pointmultiplicationon binary generic curves requireonly

International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056 Volume: 02 Issue: 09 | Dec-2015 www.irjet.net p-ISSN: 2395-0072

twolevelsofmultiplication incorporating three or more parallel multiplier as pointed out in [4] and [22].

Highly parallel and fast computations of the widely used cryptographic algorithm ECC is required for high performance applications such secure web server and systems using big data. However, a challenge to cope with is that most applications for which parallelism is essential, have significantly large scale that is not commonly suppoted by today's crtptographic algorithms. Therefore, new techniques and architectures are required to investigate parallelization and scalability in all levels of computations of ECC. The main pupose of this paper is to provide new architecture to reduce the latency of the computation of cryptographic primitives specifically point multiplication of ECC targeting high performance applications. In this paper, we propose a new scheme to reduce the latency of point multiplication on hinary Edwards, generalized Hessian curves using a hybrid multiplication techniqueproposedin[23]. The double digit level hybrid double multiplier of [23] computes two consecutive multiplications using the same latency as required for a single traditional digit level multiplier. Using this scheme reduces the latency of point multiplication on these curves and hence increases the speed of point multiplication on binary Edwards and generalized hessian curves. It should be noted that the scheme proposed in this paper is actually more than just merging the previous works presented in [23] and [17].

We first perform data flow analysis for ECC computations to understand how data has to move between the different logic and computational elements such as field multipliers, adders, and squarers over binary fields $GF(2^m)$. Then, we perform a latency analysis to determine where there are double fieldmultiplications and hence wecan employ the hybrid double multiplier. The results indicate that the speed of point multiplication on these curves are competitive with binary generic curves as well as providing completeness. To evaluate the practical performance of the proposed scheme, we design two cryptoprocessors using the hybrid double multiplier and code it using VHDL and implement it on Xilinx Virtex-4 and Virtex-7 FPGAs.

In preliminaries, Gaussian normal basis (GNB) and hybrid double multiplication are presented. Also, binary Edwards and generalized Hessn curves are briefly explained in this section.In Section 3, a latency reduction scheme for point multiplication is presented. In Section 4 the proposed ECC crypto processors are explained.In Section 5, we implement the crypto processors on two FPGAs and their time and area results are presented. Finally concluded the paper in section 6.

2 PRELIMINARIES

2.1Gaussian Normal Basis The finite fields of characteristic two, $GF(2^m)$ can be constructed by a normal basis N= { β , β^2 , ..., $\beta^{2^{m-1}}$ }where $\beta \in GF(2^m)$ is called a normal element of $GF(2^m)$. Then, any element of $GF(2^m)$, say, $A=(a_0, a_1, \dots, a_{m-1})$, can be represented as $A=\sum_{i=0}^{m-1} a_i \beta^{2^i}$. In Normal basis squaring can be ach-ieved by simple right cyclic shift of A, i.e., $A^{2} = \sum_{i=0}^{m-1} a_{i} \beta^{2^{i+1}} = (a_{m-1}, a_{0}, a_{1}, \dots, a_{m-2})[3].$ Note that this operation is fast without any cost ifit is implemented in hardware.Gaussian normal basis is a special class of normal basis whichis included in the IEEE 1363 [25] and NIST [3] standards for elliptic curve digitalsignature algorithmandexist for every m >1 that is not divisible by 8. The complexities of type T,

GNB multiplier in terms of time and area depend on T > 1.For thefive binary fields recommended by NIST, i.e., m=163; 233; 283; 409; and 571, the values of Tare even, and are 4; 2; 6; 4; and 10, respectively.

2.2Single Multiplication

Single multiplication is the computations $C = A^* B$ in $GF(2^m)$ and several research in the literature has been conducted on its efficient computation and Implementation [28], [27], and[26].

Fig – 1: The architecture of digit-level hybrid Double multiplier

GNB multiplication is based on a multiplication matrix $R_{(m-1)*T}[26]$. Let A and Bbe two fields elements represented by GNB over $GF(2^m)$. Then their product in $GF(2^m)$ in [26].

TABLE - 1Comparison of the Upper Bound of the Space and Time Complexities of Different Digit – Level Type T GNB
Multipliers over $GF(2^m)$

Multiplier digit Latency # AND Architecture size $q = \left\lceil \frac{m}{d} \right\rceil$ gates		# AND gates	# XOR ¹ gates	# Reg.	Critical-Path delay	Output	
DL-PISO [26]	d	q	dm	$\leq (d(m-1) - rac{d(d-1)}{2}) imes (T-1) + d(m-1)$	2m	$T_A + \left(\lceil \log_2 T \rceil + \lceil \log_2 m \rceil \right) T_X$	Serial
DL-PIPO [26]	d	q	dm	$\leq \frac{d(m-1)}{2} \times (T-1) + dm$	3m	$T_A + \left(\lceil \log_2 T \rceil + \lceil \log_2 (d+1) \rceil \right) T_X$	Parallel
DL-SIPO [23]	d	q	dm	$\leq (d(m-1) - \frac{d(d-1)}{2}) \times (T-1) + dm$	2m	$T_A + \left(\lceil \log_2 T \rceil + \lceil \log_2 (d+1) \rceil \right) T_X$	Parallel
DL-PISO [26]	2d	[<u>9</u>]	2dm	$ \leq (2d(m-1) - d(2d-1)) \times (T-1) + 2d(m-1) $	2m	$T_A + \left(\lceil \log_2 T \rceil + \lceil \log_2 m \rceil \right) T_X$	Serial
DL-PIPO [26]	2d	$\left\lceil \frac{q}{2} \right\rceil$	2dm	$ \leq d(m-1) \times (T-1) \\ +2dm $	3m	$T_A + \left(\lceil \log_2 T \rceil + \lceil \log_2 (2d+1) \rceil \right) T_X$	Parallel
DL-SIPO [27]	2d	$\left\lceil \frac{q}{2} \right\rceil$	2dm	$\leq (2d(m-1)-d(2d-1))\times (T-1)\\+2dm$	2m	$T_A + \left(\lceil \log_2 T \rceil + \lceil \log_2 (2d+1) \rceil \right) T_X$	Parallel
DL-HD [23]	d	q+1	2dm	$\leq 2(d(m-1) - rac{d(d-1)}{2}) imes (T-1) + 2dm - d$	4m+d	$T_A + \left(\lceil \log_2 T \rceil + \lceil \log_2 m \rceil \right) T_X$	Parallel

 $C=(A \odot (B <<1)) \oplus \sum_{i=1}^{m-1} (A \ll i) \odot S(i, B),$ (1) where

S(i,B) = (B<<R(i,1))⊕(B<<R(i,2))⊕......⊕(B<<R(i,T)), 1 ≤ i ≤ m-1, (2) and (X<<i) is the ifold left cyclic shift of and T is the type of GNB over *GF*(2^{*m*}). Also, X⊙Y=($x_o y_o$,... $x_{m-1} y_{m-1}$) and X⊕Y = ($x_o + y_o$,, $x_{m-1} + y_{m-1}$) denote bitwise AND(⊙) and XOR(⊕) operations between coordinates of X and Y, respectively. R(i,j), 1 ≤ j ≤ T denotes the entries of column i and j of multiplication matrix $R_{(m-1)*T}$ equation (1) can be implemented in bitlevel, digit-level, and bit - parallel, depending on the available resources.In this paper,we choose digit-level parallel -inparallel-out (DL-PIPO) architecture to perform field level multiplications of ECC.

2.3 Hybrid-Double Multiplication

Let A, B, and C be three field elements of $GF(2^m)$ represented by GNB.Double multiplication is the computation of D = A* B *C, D $\in GF(2^m)$. In [29], the idea hybrid double multiplication which requires same number of clock cycles as the one for one multiplicationis initially proposed. Then, in [23],a digit level multiplier architecture using GNB has been proposed which computes D with latency as the one required for one multiplication. The structure of the hybrid-double multiplier is depicted in Fig. 1. As one can see, it is composed of a digit level parallel-in serial-out (DL-PISO) GNB multiplier and a digit-level serial-in parallelout GNB multiplier. For the operation of the hybrid double multiplier, the registers <X>, <Y>, and <F> should be preloaded with the coordinates of operands A,

of operands A, B, and C, respectively, and the register Z> should be cleared to $0 \in GF(2^m)$. The entire hybrid-double multiplier performs two multiplications simultaneously, where the result are available in parallel after $M = [\frac{m}{d}] + 1$ clock cycles, where d is the digit – size and one clock cycle is used for storing and loading from the middle d-bit register. The criticalpath delay of the hybrid double multiplier is equal to the maximum of the delays for the DL-PISO (t_s) and DL-SIPO ((t_p) multipliers i.e., (t_{cp}) = max{(t_p, t_s)}. Then, one can obtain the time of multiplication as T=(t_{cp}) * *M*

In table 1, we compare the time and space complexities of different single digit-level multiplier (including DL-PIPO, DL-PISO, and DL-SIPO) with the digit size d and 2dwith the hybrid-doublemultiplier with the digit dover GNB. As one can see, he presented hybrid double multiplier has smaller space complexities in comparison to the DL-SIPO and DL-PISO multipliers and is comparable to the DL-PIPO multiplier employing 2d digit size. Also, its time complexities is equal to the DL-PISO multiplier and is almost similar to the DL-PIPO and DL-SIPO multipliers depending to the digit size.We note that for practical implementations, increasing the digit size drastically reduces the maximum operating clock frequencies, hence employing hybrid double multipliers seems to be better choice to point multiplication on elliptic curves. Therefore, in the next sections we employ the presented hybrid-double multiplier to reduce the latency of pointmultiplication on binary elliptic curves.

Fig - 2: Data dependency graph for fast computation of combined PA and PD for binary Edwards Curves (a): employing four DL-PIPO multipliers. (b): employing three DL-PIPO and two hybrid – double multipliers. Note that $c_1 = \sqrt{d_1}$, $c_2 = \sqrt{\frac{d_2}{d_1}} + 1$, $c_3 = \sqrt{c_1}$, and $c_4 = \sqrt{c_2}$.

2.4Trace and Quadratic Equation Solution

The trace function Tr: $GF(2^m) = GF(2)$ is a linear map and for an element $A=(a_0, a_1, \dots, a_{m-1})$ $\in GF(2^m)$ is defined as $Tr(A)=\sum_{i=0}^{m-1}A^{2^i} \in$

{0,1} For normal basis, the trace of element A can be computed as $Tr(A) = \sum_{i=0}^{m-1} a_i$, which is bit-wise XOR operation of all bits of vector A.

The quadratic equation $X^2 + X = A$ for Х= $(x_0, x_1, \dots, \dots, x_{m-1}) \in GF(2^m)$ has a solution if and only if Tr(A)=0, and hence if X is a solution, then X+1 is a solution. In normal basis the solution can be found bit-wise. However, in polynomial basis it is complicated and needs half-trace computatio-ns which requires m-1 squarings and m-1/2 additions [30]. The cost of solving quadratic equation using normal basis is only m-2 additions.

2.5 Arithmetic over Binary Edwards and Generalized Hessian Curves

It is well known that a non-super singular binary generic(short Weierstraß) elliptic curve can be defined by a set of points (x, y) and a special point at infininity O (group identity)

That satisfy the following equation

$$E_{a,b}/GF(2^m): y^2 + xy = x^3 + ax^2 + b$$
(3)

where $a, b \in GF(2^m)$ and $b \neq 0$ [30]. Binary edwards curve belong to a special class of generic elliptic curves defined over binary field when $m \ge 3$ [18]. The merit of binary Edwards curves over generic curves is that their point addition formulas are complete and their implementations are comparable with the traditional ones of[21].

Definition 1 ([18]). Let K be a finite field of characteristic two i.e., char(K) = 2 and d_1 and d_2 be the elements of K with $d_1 \neq 0$ and $d_2 \neq d_1^2 + d_1$. The binary Edwards curve with coefficient d_1 and d_2 is the affine curve

$$E_{B,d_1,d_2}/GF(2^m): d_1(x,y) + d_2(x^2 + y^2)$$

= xy + xy(x + y) + x²y², (4)

where $d_1, d_2 \in GF(2^m)$.

Given a point P=(x,y), its negation, - P, is obtained as (y,x) which has no cost [18]. The point (0,0) is the neutral lement and (1,1) has order 2[18].

The binary Edwards curves are complete if $Tr(d_2)=1$ i.e., d2 cannot as $e^2 + e$ for any e in K, where Tr is the absolute trace of $GF(2^m)$ over GF(2) [18].

Definition 2 ([19]). Let c and d be elements of K such that $c \neq 0$ and $d^3 \neq 27c$. The generalized hessian curve(GHC) H_{c.d} over K is defined by the equation

International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056Volume: 02 Issue: 09 | Dec-2015www.irjet.netp-ISSN: 2395-0072

 $H_{c,d}/GF(2^m): x^3 + y^3 + c = dxy$ (5)

where c = 1 results in a Hessian curve, i.e., Note that the GHCs are complete if and only if c is not a cube in K.

The standard formulas on generic curves in [21] and [31]fail in computing addition of two points on curves if one of the points or their addition is at infinity. These possibilities should be tested before designing an elliptic curve crypto system. Note that point addition and doubling formulas on binary Edwards and generalized Hessian curves work for all input pairs, this characteristic is called completeness.

3 NEW TECHNIQUE FOR LATENCY REDUCTION IN POINT MULTIPLICATION

The efficiency of point multiplication, i.e., $Q = k \cdot P$, depends on finding the minimum number of steps point P. Point to reach kP from a given multiplication on binary Edwards and generalized Hessi-an curves is efficient when one uses wcoordinate differential addition and doubling formulas ,Montgomery's ladder. In this case, for every bit of scalar K, one needs to perform combined point addition and doubling. In [17], the maximum parallelization over those curves is not considered for the purpose of high speed implementations. This idea can be explored deeply to investigate the area-time trade-off for different applications. Another idea is to optimize the size of the finite field multipliers in terms of different digit sizes. In this effect, one can employ different digit sizes(some multipliers with smaller digit size and some with larger digit sizes) and futher reduce the occupied area. We note that in theory one may keep the latency unchanged and reduce the required area but in practice the multipliers with the larger digit sizes dominate the critical path and reduce the maximum operating clock frequencies.

In this section, We first study the maximum number ofmultipliers to achieve high speed computations of point multiplication. Then, We employ a new hybrid-double multiplier presented in section 2.3. This reduces the overall latency of point multiplication on BECs and GHCs.

3.1 Binary Edwards Curves

In binary Edwards curves, mixed w-coordinate has been in corporated to compute mixed differential point additionand point doubling(PD) for Montgomery point multiplica tion [18]. Differential addition [32] is the computation of Q + P, given points of Q, P and Q-P. Let us assume w tobe a linear and symmetric function in terms of the coordinates x and y of the point P and is defined as $w_i = x_i + y_i$, where w(P)= w(-P). Bernstein et al. have defined w – coordinate differential addition for computing w(Q + P) given

w(Q), w(P), and w(Q-P). Similarly, the w coordinates differential doubling is the computation of w(2P) given w(P). Therefore, using w-coordinates of differential addition doubling formulas,

w((2n+1)P), and w(2nP) can be computed given w(nP) and W((n+1)P), recursively [18]. The combined point addition and doubling formula with $d_1 \neq d_2$ is as

$$C = w_1. (z_1 + w_1), D = w_2. (z_2 + w_2), E = z_1. z_2,$$

$$F = w_1. w_2, V = C. D, w_3 = V + w_0. z_3, \quad (6)$$

$$Z_3 = V + (c_1 \cdot E + c_2 \cdot F)^2, \qquad W_4 = D^2,$$

$$Z_4 = W_4 + ((c_3 \cdot Z_2 + c_4 \cdot W_2)^2)^2$$

where $w_0 = x_0 + y_0$, $c_1 = \sqrt{d_1}$, $c_2 = \sqrt{\frac{d_2}{d_{11}}} + 1$, $c_3 = \sqrt{c_1}$, and $c_4 = \sqrt{c_2}$. Also, $P_1 = (W_1, Z_1)$, $P_2^{-1} = (W_2, Z_2)$, $P_3 = P_1 + P_2$, and $P_4 = 2P_2$, As seen from the above formulations, the cost of the combined PA and PD operations is10M, where M is the cost of a multiplication. For achieving highest degree of parallelization, we employ maximum number of parallel multipliers. The data dependency graph is depicted in Fig. 2a employing four DL-PIPO multipliers. In steps S2 and S3 of Fig. 2a, fourDL-PIPO multipliers operate in parallel and in S7, only two multipliers per-form the operation. Therefore, the multiplier utilizationis $\frac{(4+4+2)}{3^{*4}} * 100 =$ 83.33%:

As one can see, the smallest latency for the combined PA and PD is achieved by employing four multipliers as 3M+12. Note that employing more than four multipliers does not reduce the latency due to data dependencies.

For binary Edward curves, we modify the combined PA and PD formulations in (6) in such a way to incorporate the proposed hybrid double multiplier and remove the data dependencies to further reduce the number of multipliers in the data path. The Modified formulations are as follows:

$$C = w_1 \cdot (z_1 + w_1), D = w_2 \cdot (z_2 + w_2), E = z_1 \cdot z_2 \cdot c_1,$$

$$F = w_1. w_2. c_2, G = c_3. z_2, V = C. D. w_0,$$
(6)

$$Z_3 = C.D + (E+F)^2, \ H = c_4.W_2$$
(7)

$$W_3 = V + (E + F)^2 \cdot w_0 + CD,$$

$$W_4 = D^2, Z_4 = W_4 + ((G + H)^2)^2.$$

Fig – 3: Data dependency graph for generalized Hessian curves with $c_1 = d^3$, and $c_2 = \frac{1}{\sqrt{d_3}}$, (a) employing three single DL-PIPO multipliers and (b) employing two single DL-PIPO multipliers and one hybrid-double multiplier.

The corresponding data dependency graph for three modified formulations for combined PA and PD is illustrated in Fig.2b for binary Edwards curves. As shown in this figure, we employ the proposed Hybrid double multiplier in Steps S2 and S5. In combined computation of field step S2, we multiplications by constants (c1 and c2) and performed the m in one step with the latency of M+2 using 2 hybrid double multipliers. Three traditional digit-level

PIPO multipliers are also operating in this step. In step S5, we modified formulation of the PA operation in computing (w3 and z3) to take the advantage of the hybrid double multiplier as much as possible. As one can see, in this step the computation of V=C.D.w0 is done using one hybrid double multiplier with the latency of M+2. As a result, the latency of the overall point multiplication over binary Edwards curves is reduced to 2M + 12. Therefore, applying the proposed technique reduces the latency of computation of combined PA and PD by about 33 percent. We further note that the proposed approach is new method to reduce the latency of point multiplication while parallelization fails due to data dependency. Therefore, one can achieve higher speed in computing of point multiplication for high speed applications.

3.2 Generalized Hessian Curves

Similar to BECs, mixed w- coordinate has been incorporated to compute mixed differential PA and PDfor Montgomery point multiplication as follows [19]:

$$A = W_1 \cdot Z_2, B = W_2 \cdot Z_1, Z_4 = W_2^2 \cdot Z_2^2,$$

$$Z_{3} = (A + B)^{2}, D = W_{2}^{2} + Z_{2}^{2}, E = w_{0}.Z_{3}$$

$$F = (A.B), G = D.c_{2}, H = F.c_{1},$$

$$W_{3} = E + H, W_{4} = (Z_{4} + G)^{2},$$
(8)

Where $c_1 = d^3$, and $c_2 = \frac{1}{\sqrt{d_3}}$. As one can figure out the cost of combined PA and PD is 7M. In Fig. 3a, the data dependency graph for combined PA and PD is depicted employing three parallel multipliers. As illustrated in this figure, the latency is 3M+9 and employing more than three multipliers will not reduce the latency. This is the maximum possible number of parallel multipliers that can be used to accelerate the computation of combined PA and PD. In Fig. 3b, we employ a hybrid-double multiplier to reduce the latency.

First, as one can see in step S5 one should compute A.B. c_1 and employing a hybrid multiplier can compute it in M + 2 clock cycles. Moreover, in this step we need two parallel multipliers as well. In step S2, we employ a hybrid multiplier having one of its inputs to be 1 to compute a single multiplication. This increases the latency 1 clock cycle but result in reducing the area. Therefore, the utilization factor for single and hybriddouble multiplier is100 percent. Futher, we reduce the latency to 2M+11 clock cycles as shown in Fig. 3b. Hence, the architecture of point multiplication on generalized Hessian curves requires two single a hybrid-double multiplier. In multiplier and Table 2, we summarize the cost of combined point addition and doubling for binary Edwards and generalized Hessian curves.

TABLE - 2

Comparison of the cost of Combined Point Addition and Doubling on BEC and GHC with and without Employing Hybrid Multipliers, where M is the Number Single Digit-level Multipliers and H is the Number of Hybrid – Double Multipliers

Curve	# of Mults.	Figure	Multiplier Utilization	Cost of PA and PD
BEC	$\mathcal{M} = 4,$ $\mathcal{H} = 0$	Fig. 2a	$\frac{\frac{(4+4+2)}{3\times 4} \times 100}{= 83.33\%}$	3M
	$\mathcal{M}=3,$ $\mathcal{H}=2$	Fig. 2b	$\frac{(5+4)}{10} \times 100$ = 90%	2M
GHC	$\mathcal{M}=3,$ $\mathcal{H}=0$	Fig. 3a	$\frac{(3+3+1)}{3\times 3} \times 100$ = 78%	3M
	$\mathcal{M} = 2,$ $\mathcal{H} = 1$	Fig. 3b	$\frac{(3+3)}{3\times 2} \times 100$ = 100%	2M

As one can see, the costs are given in terms of – number of single digit level and multiplier. The cost (latency in terms of number of multiplier in the critical-path) reduction for both binary Edwards and generalized Hessian curves is about 33 percent.

It should be noted that the values of $M = \left[\frac{m}{d}\right] + 1$ depend to the digit-size and should be chosen carefully. For smaller *ds*, the hybrid-double multiplier is not efficient (as shown in [23], Table 4). On the other hand, for larger *ds* the latency reduction for the computation of PA and PD in the main loop of point multiplication is not significant. Therefore, one needs to do a trade-off between the latency reduction for multiplier and the whole architecture of ECC choosing larger digit sizes. It is worth mentioning that the occupied area and maximum operating clock frequency should be considered when one chooses the digit – size.

4 PROPOSED CRYPTOPROCESSORs FOR POINTMULTIPLICATION

The crypto processors for point multiplicati –onare composed of four main units including finite fieldarithmeticunit (FAU), control unit, register file, and conversion unit. In FAU of BEC, we employ three single digit-level parallelin parallel - out GNB multipliers and two hybridto perform double multiplica -tions as explained in Section 3. In FAU of GHC, two singleDL-PIPO multipliers and a hybriddouble multiplier (M=2 and H=1) are employed. The architectures of the proposed crypto-processors are depicted in Fig. 4.In FAU, squaring is simply rewiring without anytime and area cost in normal basis. Addition is bit-wise XORingof the coordinates of the two operands. This requires only one clock cycle to store the results in theregisters. In a digit-level parallel in parallel-out GNBmultiplierboth input operands, A and B should be present through multiplication process and the results will be available in parallel after M=q+1, $q = \left[\frac{m}{d}\right]$, $1 \le d \le m$, clock cycles.

Fig – 4: The architecture of proposed cryptoprocessors for point multiplication on (a) binary Edwards and (b) generalized Hessian curves.

International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

Volume: 02 Issue: 09 | Dec-2015

www.irjet.net

p-ISSN: 2395-0072

Where one clock cycles is due to pipeliningthe multiplier. For the given field size m=163, digit-size d is chosen in such a way to reduce the latency while increasing d. Therefore from the set $d \in$ we choose the digit sizes {11, 21, 33} for m = 163.As explained in Section 2, the hybrid double multiplier computes a double multiplication with the number of clock as the one requires for а cycles single multiplication. The single and hybrid double multipliers are efficiency pipelined (one level) to achieve maximum operating clock frequencies. The architectures of proposed crypto processors for different curves are different mainly in terms of number of employed single and hybrid double multipliers, register file, and the control unit.

4.1 Control Unit

The control units are designed with finite state (FSM) to perform the machine point multiplication with other units. Scheduling the computation tasks is done by generating the signals and switchingthe operands for FAU. The intermediate results are stored in the regisster file. This eliminates the over head of communication between memory and FAU. Several multiplexers are employed to choose appropriate registers and connect to the FAU.Also, for binary Edwards and generalized Hessian curves we obtained the affine coordinates employing half-trace and Itoh-Tsujii's linear scheme [33] which its implementation is very efficient.

4.2 REGISTER FILE

The register file includes 12 m-bit registers to store inputs, outputs, curve parameters, and intermediate results for binary Edwards and generalized Hessian curves, respectively. For instance for binary Edwards curves, we have five intermediate results that need to be stored in the registersfile, four registers to store internal input parameters (i.e., W_1, W_2, Z_1, Z_2), two registers to stor e coordinates of affine inp-ut point (i.e., x and y), and a shift register to store scalar k. The curve parameters are stored in a separate registers as to be d1;d2; c1; c2; c3 and c4. Our fixed including proposed data dependency graphs are efficiently hand optimized to ensure we occupy optimal number of registers. We employed flip-flops available in each slice to construct register files decentralized as they are available as a resources. These flip flops are put close to their usage and hence we reduced the routing constraints.For instance the employed DL-PIPO hybrid double multipliers require sequential and computations (with shift and and accumulate operations) and hence we we are able to place the registers close to these operator. We note that these flip-flops are available without additional area requirements. The register file is composed of several multiplexers to chose appropriate register and connect them to the arithmetic unit.

		I	mplementa	tion Resul	ts for BEC	s $(d_1 \neq d_2)$) [This w	ork]	
Field size	d	q+3	Latency (L _{PM})	f_{max} (MHz)	# Slices	Area # LUTs	# FFs	Point Mult. [µs]	AT Area×Time
m = 163	11	18	7,278	221.1	9,456	19,866	17,164	32.9	0.311
	21	11	4,849	218.3	16,806	38,464	26,481	22.2	0.373
	33	8	3,808	217.2	27,778	57,432	35,052	17.5	0.486
m = 233	13	21	11,532	212.8	15,832	25,358	25,881	54.1	0.857
	26	12	7,212	198.4	29,252	48,577	44,880	36.3	1.063
			Implem	entation I	Results for	GHCs [T]	his work]		
Field size	d	q+3	Latency (L _{P.M.})	$f_{\rm max}$ (MHz)	# Slices	Area # LUTs	# FFs	Point Mult. [µs]	AT Area×Time
<i>m</i> = 163	11	18	6,871	223.6	5,526	10,991	10,588	30.8	0.170
	21	11	4,491	220.3	9,718	21,542	15,832	20.4	0.198
	33	8	3,471	218.2	15,992	31,814	20,573	15.9	0.254
m = 233	13	21	11,103	215.7	9,201	14,483	15,942	51.6	0.47
	26	12	6,791	205.1	16,940	28,145	26,068	33.1	0.56

TABLE - 3Implementation Results of Point Multiplication on BECs (with M = 3 and H = 2) and GHCs (with M = 2 and H = 1) over $GF(2^{163})$ and $GF(2^{233})$ in Xilinx Virtex – 4 XC4VLX160 FPGA

International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

Volume: 02 Issue: 09 | Dec-2015

www.irjet.net

p-ISSN: 2395-0072

5. FPGA IMPLEMENTATIONS RESULTS AND COMPARISONS The proposed architecture for point multiplication

IRIET

on BECsand GHCs are implemented on FPGA. To be able to make fair comparisons with the previous work available in the

TABLE - 4
Comparison of ECC Implementations on FPGA over $GF(2^{163})$ and $GF(2^{233})$.

Work ¹	Device	Basis	Curve	digit size (d)	Area	Time [µs]
and the second s			$GF(2^{163})$			
BKC [35]	Stratix II	NB	Koblitz	17	23,580 ALMs	9.48
BKC [15]	Stratix II	NB	Koblitz	24	26,381ALMs	13.38
BGC [36]	Stratix II	NB	Generic	41	18,489 ALMs	51.56
BKC [36]	Stratix II	NB	Koblitz	41	19,498 ALMs	35.1
BKC [16]	Stratix II	GNB	Koblitz	41	23,084 ALMs	9.15
BGC [4]	Virtex-4	GNB	Generic	55	24,363 Slices	10.11
BEC $(d_1 \neq d_2)$ [17]	Virtex-4	GNB	Edwards	55	12,834 Slices	23.3
GHC [17]	Virtex-4	GNB	Hessian	55	12,834 Slices	20.8
This work BEC $(d_1 \neq d_2)$	Virtex-4	GNB	Edwards	33	27,778 Slices	17.5
This work GHC	Virtex-4	GNB	Hessian	33	15,992 Slices	15.9
This work BEC $(d_1 \neq d_2)$	Virtex-7	GNB	Edwards	33	10,569 Slices	12.2
This work GHC	Virtex-7	GNB	Hessian	33	6,042 Slices	11.1
	accents and	(over $GF(2^{233})$			14.14.14.14
BEC [12]	Virtex-4	PB	Edwards	-	21,816 Slices	190
This work BEC $(d_1 \neq d_2)$	Virtex-4	GNB	Edwards	26	29,252 Slices	36.3
This work GHC	Virtex-4	GNB	Hessian	26	16,940 Slices	33.1

 BGC: binary generic curve, BKC: binary Koblitz curve, BEC: binary Edwards curve, GHC: generalized Hessian curve. Note that the results presented here are comparable to the ones based on complete addition formulae i.e., BEC and GHC.

literature, we have chosen same platform for our implementations.

Fig-5 comparison of time-area results for the point multiplication on binary Edwards and generalized Hessian curves over $GF(2^{163})$ on Xilinx Virtex-4 FPGA.

The proposed architectures for BECs andGHCs (in Figs. 4a and 4b) are modeled in VHDL[34] and are synthesized using XST of Xilinx ISEversion 12.1

design software and are implementedon Xilinx virtex-4 XC4VLX160 FPGA.

In terms of available resources it contains 67,584 Slices (135.168 LUTs and 135.168FFs). The implementation results for different digit sizes d, $d \in \{11, 21, 33\}$ an $d \in \{13, 26\}$ are reported in Table 3 after place and route (PAR) for the proposed architectures over $GF(2^{163})$ and $GF(2^{233})$ As one can see, for m = 163 the fastest point multiplications take 17.5 ms and 15.9 ms and equire 27,778 Slices and 15,992 Slices for BEC and GHC, respectively. For m = 233 the fastest point multiplication is computed in 36.3 computed in 36.3 and 33.1 ms occupying 29,252 slices and 16,940 Slices, respectively. In Table 3, we also provide the results of area time products as a parameter to measure the efficiency of the proposed architectures for practical applications. Further as illustrated in Fig. 5 we plot the area-time for different digit sizes and compare it to the previous work presented in [17].

It should be noted that for particular applications the digit-size should be chosen in such a way to achieve highest performance considering the timearea trade-offs.

As explained in the above sections, the novelty of the proposed architectures for point multiplication in

this paper is based on employing a new hybrid double multiplier architecture proposed in [23].This scheme reduces the latency of point multiplication on preliminary work which parallelization fails due to data dependencies.

5.1 Discussion and Comparison

In this section, the implementation results proposed crypto-processors for point of the multiplication in this paper are compared to the counterparts in the literatureas illustrated in Table 4. As explained in the previous sections, the novelty of the proposed architetures for point multiplication in this paper is based on employing a new hybrid-double multiplier architecture proposed in [23]. This scheme reduces the latency of point multiplication on previous work which parallelization fails due to data dependencies.

The work presented in [17] and [12], are the only available works in theopen literature on BECs and GHCs and hence we mainly compare our results to them on the same platform and field sizes. Comparisons to the other works which have not employed unified and complete formulae i.e., implementations on BGCs and BKCs)

is presented only in terms of performance result.

The point multiplication architecture presened in [17], employs two finite field multipliers and investigates the time-area trade-offs and multiplier utilization. As reported in [17], the point multiplication takes 23.3 and 20.8 ms employing two parallel finite field multipliers for binary Edwards and generalized Hessian curves, respectively.

In [36], Jarvinen and skytta have employed four parallel normal basis multipliers for point multiplication binary generic and Koblitz curves. The point multiplication requires 51.56 and 35.1 ms for binary generic and koblitz curves, respectively. Also, in [35], a new scheme has been proposed employing interleaving which reduces the time of point multiplication on

Koblitz curves to 9.48 ms on Altera StratixII.

However, in our proposed architectures for Koblitz point multiplication on curves requires 8.6 ms on he same platform. We note that one can reach higher speeds by combining our scheme with the one proposed in[35] utilizing data inter leaving. In [13], Roy et al. proposed a parallel architecture for scalar multiplication on Koblitz curves. They have employed a hybrid Karatsuba multiplier for field multiplications and have implemented their parallel architecture on Xilinx Virtex-5 FPGA.

The point multiplication requires 12.1 ms and

occupies 2,430 Slicesover $GF(2^{163})$. In [14], Rebeiro et al. proposed a high speed architecture based on pipelined hybrid Karatsuba multiplier(using

polynomial basis) for computing point multiplication on binary generic curves. Similar to [17], they employed a LUT-based pipelining technique to achieve maximum operating clock frequency. Their architecture is coming with a careful data scheduling for computing differential point addition and doubling in the main loop of point multiplication. They have implemented their proposed architecture on different FPGA platforms.

For instance, their architecture requires 9.7 ms and occupies 8,070 Slices on Xilinx Virtexover $GF(2^{163})$.In [11], Chatterjee and Sengupta, proposed a similar architecture for computing point multiplication on binary Huff curves which have been recently propo-sed by Devigne and Joye[37]. Their proposed architecture is efficiently implemented over $GF(2^{233})$ which is unified and complete. They have also investigated side point multiplication channel resistivity of architecture on binary Edwards curves implemented on Xilinx Virtex-4 over galois field $GF(2^{233})$. in [12]. Their architecture requiers 21,816 slices and computes a single point multiplication in 190 ms. This architecture operates in 47.3 MHz clock frequency which is fairly low due to the usage of Karatsuba multiplier and requires about 9.006 clock cycles in total, In addition, one should note that binary Edwards curves requires 10 multiplication operations and it seems that parallelization is more efficient as we have employed in our proposed scheme. We note that their proposed method is one step forward in investigating the side channel analysis of proposed architectures for point multiplication on binary Edwards curves which motivates more research in this direction for other curves such as generalized Hessian curves. The point multiplication scheme proposed in [4] has been performed on binarygeneric curves over $GF(2^{163})$. The employing three digit-serial GNB multipliers. The computation of point multiplication takes 10.11 ms on Xilinx Virtex-4 platform [4].

As summarized in Table 3, we have employed smaller digit sizes and reduced the latency of point multiplication based on the newly proposed crypto processors. As a result, we have increased the speed of point multiplication computation on binary Edwards and generalized Hessaian curves about 25 percent in comparison to the ones presented in[17]. As one can see in Fig. 5, our results for binary Edwards curves are faster than the previous

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 02 Issue: 09 | Dec-2015
 www.irjet.net
 p-ISSN: 2395-0072

work on the same platforms and are more efficient in terms of time area products for GHCs.Note that the idea of employing hybrid double multiplier to speed up point multiplication on binary curves can also be employed for the case when field elements are represented bv polynomial basis. Therefore, will be achieved similar improvements for increasing the speed of point multiplication using any basis. The point multiplication on BECs and GHCs are complete and work for all pairs of inputs. However, for the other curves one needs to check points at infinity and avoid them for practical applications.

Therefore, it is not fair to compare our implementation results to the counterparts using generic and Koblitz curves quantitatively. In addition, if security against side channel attacks main role. uniform formulas plays the advantage which we certainly do have an have investigated in this work.Further, in this paper target is high performance applications as our we speed up the time of point multiplication at the cost of increasing the area. We stress that one could have use Karatsuba method for multiplication over $GF(2^m)$ for computing point multiplication but as indicated in [38], for smaller field sizes digit serial normal/polynomial basis multipliers can operate in higher clock frequencies occup-ying similar area in comparison to the Karatsuba multiplier.

6 CONCLUSIONS

In this paper, we have proposed a new scheme to speed up the point multiplication on binary and Edwards generalized Hessian curves hybrid-double employing a digit level multiplier of which performs two multiplications with the latency as the one requires for one multiplication. We have performed a data flow analysis for point multiplication to understand how data has to move between the different logic and computational elements such as field multipliers, adders and squarers. Then, we have investigated how the hybrid double multiplier can be employed to reduce the latency of point multiplication. We have obtained that employing the hybrid double multiplier can reduce the latency of point multiplication on binary Edwards and generalized Hessian curves and speed up the computation time.We have evaluated the performance of the cryptoprocessors for different digit proposed sizes with implementing FPGA on and have reported the area the and timing results. Our proposed architecture performs point multiplication on binary Edwardsand generalized Hessian curves 25 percent faster than the previous fastest results appearing in [17].

REFERENCES

- [1] V. S. Miller, *Use of elliptic curves in cryptography* in Proc. Adv.Cryptol., 1986, pp.417–426.
- [2] N. Koblitz, *Elliptic curve cryptosystems*, Math. Comput., vol. 48, pp. 203–209, 1987.
- [3] U.S. Department of Commerce/NIST,*Nationa lInstitute ofStandards and technology*, Digital signature Standard,FIPSPublications 1862.
- [4] C. H. Kim, S. Kwon, and C. P. Hong,*FPGA* implementation of high performance elliptic curve cryptographic processor overGF (2¹⁶³), J. Syst. Arch.,vol. 54, no. 10, pp., 893–900, 2008.
- [5] Y. K. Lee, K. Sakiyama, L. Batina, and I. Verbau whede, *Elliptic curve based security processor for RFID*, IEEE Trans. Comput., vol. 57, no. 11, pp.,1514–1527, Nov. 2008.
- [6] J. Adikari, V. S. Dimitrov, and L. Imbert, *Hybrid binary-ternary number system for elliptic curve cryptosystems*, IEEE Trans.Comput., vol. 60, no.2,pp. 254–65, Feb. 2011.
- [7] W. Chelton and M. Benaissa, *Fast elliptic curve cryptography onFPGA*, IEEE Trans. Very Large Scale Integr. Syst., vol. 16, no.2, pp. 198–205, Feb. 2008.
- [8] J. Adikari, V. Dimitrov, and K. Jarvinen, A fast Hardware architecture for integer to τ NAF conversion for koblitz curves, IEEE Trans. Comput,vol. 61, no. 5, pp. 732 – 737, May 2011.
- [9] M. Keller, A. Byrne, and W. P. Marnane, *Elliptic curve cryptography on FPGA for low-power applications*, ACM Trans. Reconfigurable Technol. Syst., vol. 2, no. 1, pp. 1–20, 2009.
- [10] G. Sutter and J. Deschamps and J. Imana, Efficient elliptic curvepoint multiplicationusing digit serial binary field operations, IEEE Trans. Ind. Electron., vol. 60, no.1, pp.,217–225, Jan. 2013.
- [11] A. Chatterjee and I. Sengupta, *Design ofa hig hperformance binary Edwards curve based processor Secured against side channel analysis*, Integr., VLSI J., vol. 45, no. 3, pp. 331–340, 2012.
- [12] S. Roy, C. Rebeiro, and D. Mukhopadhyay, *parallel architecture for Koblitz curve scalar multiplications on FPGA platforms*, in Proc.15 th Euromicro Conf. Digit. Syst. Des, 2012, pp. 553–559.
- [13] C. Rebeiro, S. S. Roy, and D. Mukhopadhyay, Pushing limits of high-speed GF(2^m)elliptic curve scalar multiplication on FPGAs, in proc. Cryptographic hardware Embedded Syst.2012 pp. 494–511.