
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 01 | Jan-2016 www.irjet.net p-ISSN: 2395-0072

© 2015, IRJET ISO 9001:2008 Certified Journal Page 54

Environment Detection and Path Planning Using the E-puck Robot
Muhammad Saleem Sumbal

Department of Electrical, Electronics and Automation Engineering
University of Girona, Spain
saleemsumbal@gmail.com

---***---
Abstract - Automatic path planning is one of the most

challenging problems confronted by autonomous

robots. Generating optimal paths for autonomous

robots are some of the heavily studied subjects in

mobile robotics applications. This paper documents the

implementation of a path planning project using a

mobile robot in a structured environment. The

environment is detected through a camera and then a

roadmap of the environment is built using some

algorithms. Finally a graph search algorithm called A*

is implemented that searches through the roadmap and

finds an optimal path for robot to move from start

position to goal position avoiding obstacles.

Key Words: Path Planning, E-puck robot,

Environmental Detection.

1. INTRODUCTION

Robot path planning can be categorized as a class

of algorithms that accept high level description tasks and

produce valid and efficient path combinations for the

robot to follow. In simple words, path planning can be

taken as a task in which the robot, whether it is a robotic

arm or mobile robot, has to navigate from its start point to

a specific (destination or goal) point by avoiding collisions

with the obstacles in the way. Path planning has

widespread usage in mobile robotics, manufacturing and

automation etc. This paper aims at the implementation of

a path planning project in a structured environment using

a small mobile robot. The equipment used in this project is

shown in Fig. 1. The robot used will be e-puck, which is a

small mobile robot with simple mechanical structure and

electronics software. It can be setup on a tabletop analysis

of the results [2]. If the manuscript was written really have

high originality, which proposed a new method or

algorithm, the additional chapter after the "Introduction"

chapter and before the "Research Method" chapter can be

added to explain briefly the theory and/or the proposed

method/algorithm [4].

next to a computer and connects with the computer

through blue tooth, thus providing optimal working

comfort.

Fig- 1: (a) An e-puck robot (b) Environment containing

the obstacle and robot (c) Camera for capturing images of

environment

The environment consists of a wooden box containing

some obstacles and e-puck. Colored papers have been

used to identify the robot, obstacles and boundary of

environment. Dark green color indicates the boundaries,

light green color indicates the obstacles and two colors

(magenta and light green) are used to indicate the robot.

Two colors have been used for robot in order to determine

its orientation. To detect the environment, a video

surveillance camera (Sony SSCDC198P) is mounted on the

top of this environment in the environment a goal point

will be set by user and the epuck robot will have to reach

this goal point from its current position (start point) by

following the shortest collision free path in the

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 01 | Jan-2016 www.irjet.net p-ISSN: 2395-0072

© 2015, IRJET ISO 9001:2008 Certified Journal Page 55

environment. In order to achieve this, the project can be

divided into following main tasks.

i) Detection of the environment through camera and

identification of the objects in the environment.

First, an image obtained through camera will be

segmented to get information about the boundaries, the

obstacles and robot contained in the environment.

ii) Detection of corners of the obstacles in the environment.

The next step is to detect the true corners of the obstacles

in the image which will be used along with the start and

goal point to build a roadmap of the environment.

iii) Obtaining a visibility graph of the environment.

Visibility graph is one of the roadmap methods which will

be used to represent environment by providing all the

possible paths from start point to goal point.

iv) Implementation of a graph search algorithm.

Then, a graph search algorithm called A star (A*), will be

implemented which will find optimal path by searching

through all the paths provided by visibility graph.

v) Programming the robot to follow the optimal path from

start position to goal position.

MathWorks MATLAB is used as programming language for

implementing all these tasks.

2. METHODOLOGY

This section will describe the methodologies adapted for

performing each of the tasks discussed in previous section.

2.1 Image Segmentation

In the field of robotics, the challenge is to do reliable

segmentation of the scenes in order to plan the robot

movement to perform a specific task. When the task is to

identify few objects based on their color properties,

threshold techniques have been used by researchers

[1],[2]. In current case, as objects can be identified through

their color, a thresholding technique has been used. Now,

the image obtained from the

camera is an RGB image (see Fig. 2a). It is first converted

from RGB space to HSV space. To select the threshold

values for the three colors (light green, dark green and

magenta), any homogeneous part of the image that only

contains the required color is selected and the maximum

and minimum values of the hue, intensity and saturation

are obtained from this region. These values serve as the

threshold values. After selecting the threshold values, all

the image pixels are checked and if HSV values of a pixel

fall within the threshold values of any of the three color

classes, that pixel is assigned a specific value and thus

pixel is represented by a unique color in the output image.

For example, all the pixels that belong to class light green,

will be shown in brown color in the segmented image.

Similarly the pixels that belong to class dark green, will be

shown in yellow color and the pixels belonging to class

magenta will be shown in teal color. The pixels that belong

to none of these classes, are assigned the blue color (see

Fig. 2b). Only the hue and saturation value are taken into

account for classifying the pixels, as it is expected that

segmentation may become more robust to lighting

variations if pixel luminance (intensity value) is discarded.

Fig-2: (a) Original Image and (b) Segmented Image

2.2 Identification of the Boundary Points and the
 Start Location

In Fig. 2b, there are red points in the corners and on the

robot. The red points in corners are used to know the

boundary of environment. These are obtained by

calculating the individual centroids of the four boundary

regions (in yellow color). The point on the robot is used to

identify the start point. It is obtained by calculating the

centroid of the segmented region with teal color. The

pixels around the centroid point in a 5x5 window are also

assigned the red color in order to make the point

prominent.

2.3 Post Processing of the Segmented Image

In the segmented output of the image, the edges of the

obstacles are not smooth. It is because the edges of the

obstacles (in original image) are not sharp. The possible

reasons may be because the camera used did not have a

high picture quality and also because the illumination may

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 01 | Jan-2016 www.irjet.net p-ISSN: 2395-0072

© 2015, IRJET ISO 9001:2008 Certified Journal Page 56

not be uniform at time when corners of the obstacles

which will serve as nodes in the visibility graph. First the

image is converted to binary image and only obstacles are

kept in image. Then the first step is to fill the holes in the

image as there might be some missing pixels inside the

segmented regions thus creating holes. After filling holes,

two morphological operations opening and closing are

performed on the image to smooth the boundaries. Fig. 3a

shows the post processed image segmented region with

teal color. Thus, post processing of the image is performed

to smooth the edges. The smooth edges are required to

detect the true corners of the obstacles which will serve as

nodes in the visibility graph. First the image is converted

to binary image and only obstacles are kept in image. Then

the first step is to fill the holes in the image as there might

be some missing pixels inside the segmented regions thus

creating holes. After filling holes, two morphological

operations opening and closing are performed on the

image to smooth the boundaries. Fig. 3 shows the post

processed image.

Fig-3: Post processed output of the image

2.4 Configuration Space Obstacles

Configuration space obstacle is the set of all configurations

or positions of robot in which it can hit the obstacles. The

robot is circular in current case and the center of robot is

taken as a reference point. So sliding the robot around the

obstacles and keeping track of the curve traced by

reference point will give us the configuration space

obstacle (Cobs) as shown in Fig. 4a. To get this Cobs , we

dilate obstacles in image. As a circular curve is traced by

robot around obstacles, a disk shaped structuring element

should be used but for current project, the obstacles are

dilated with a square shaped structuring element in order

to preserve the corners that will be used in next step to

build visibility graph. Now the radius of the robot is

3.65cm which is equivalent to 30 pixels. In order to keep

the robot at safe distance from the obstacles, the number

of pixels was multiplied with a factor 1.5. So in this way,

the boundary of obstacles in the image was dilated to 45

pixels. Fig. 4b shows the configuration space obstacle for

the robot.

(a)

(b)

Fig-4: (a) Configuration space obstacle for a circular robot

taken from [10] (b) Configuration space obstacle obtained

by dilation using a square structuring element.

2.5 Corner Detection

Two techniques were used for detecting the corners of the

obstacles. The first technique used was the Harris corner

detector [3] in which, first the image gradients Ix and Iy in

x and y directions are calculated for each pixel. After that a

neighborhood size as an area of interest is defined around

each pixel. For each pixel in the image, the autocorrelation

matrix is constructed from pixel and its neighborhood

values.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 01 | Jan-2016 www.irjet.net p-ISSN: 2395-0072

© 2015, IRJET ISO 9001:2008 Certified Journal Page 57

 (1)

Let λ1 and λ2 be the Eigen values of matrix M. Then an

auto-correlation function R is defined as

 (2)

where k is an empirical constant. Sharply peaked values of

R represent the corners in the image. A non maximum

suppression is applied to get desired number of corner

points for the obstacle. Now, the number of exact true

corner points in an image can vary depending on the

number of obstacles in it. So during non maximum

suppression, this algorithm cannot determine by itself

how many exact true corner points are there for the given

obstacles in the image and thus these are given by user

every time, a new image is taken. Secondly, in case of

improper segmentation of the image, some of the corners

of the obstacles do not remain sharp. Thus when Harris

detector is applied, cornerness value of some of the true

corner points is not that high as compared to cornerness

value of other corner points (that are not true corners). As

a result, Harris corner detector misses some corner points.

Thus, another corner detection technique was tried to

avoid these problems.

2.6 Corner Detector based on Local and Global

Curvature Properties

This corner detector [4] is proposed by Xia Chen He and

Nelson H.C Young and detects both fine and coarse

features accurately at low computational cost. The main

steps of this corner detector are

i) Applying canny edge detector to detect edges in image.

To detect the edges of obstacles using canny edge detector,

the default matlab command for edge detection is used.

The output of the canny edge detector is a binary edge

map.

ii) Extracting the contours from the edge map.

If there is only one obstacle in the image then there will be

only one contour and the points obtained through edge

detection will represent this contour. For more than one

obstacle, it is required to extract all the contours and to

know which edge points belong to which contour.

iii) Computing the curvature for each contour and

obtaining the local maxima.

After the contours have been extracted, the next step is to

calculate the curvature value of the pixels of each contour

as shown in (3). The curvature value for a corner point

will be higher as compared to that of an edge point.

From (3), all the local maxima of the curvature function

will provide us the initial list of corner candidates.

iv) Round corner removal

From the initial corner list, round corners are removed

first. Now, region of support (ROS) of a corner is defined

as the segment of the contour bounded by corner’s two

nearest curvature minima. The ROS of each corner is used

to calculate a local threshold adaptively given by (4)

where u is the position of the corner candidate on the

contour, L1 + L2 is the size of the region of support

centered at u and R is a coefficient with value equal to 1.5.

where K is the mean curvature of the ROS. This T(u)

calculated for each corner will be compared with corner’s

absolute curvature value. Corners with absolute curvature

value less than T(u) will be round corners and will be

eliminated.

v) False Corner Removal

The next step is to remove the false corners due to trivial

details and noise. Generally, a true corner will have a

relatively sharp angle. So, the idea is to calculate the angle

of each corner and compare it with a preset angle value to

decide if it is a true or false corner. A three point method is

used to do this which calculates angle of corner using

tangents. Here ROS of a corner is defined as the segment of

the contour bounded by the two neighboring corners of

the current corner. In Fig. 5, point C is the corner in

question and E and F are its two neighboring corners. In

three point method, first on one arm of ROS (from C to E),

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 01 | Jan-2016 www.irjet.net p-ISSN: 2395-0072

© 2015, IRJET ISO 9001:2008 Certified Journal Page 58

three points(C, the midpoint M and E) are selected. If these

3 points are collinear, then the tangent direction is simply

from C to E else the center of a suppositional circle is

taken. The distance of the center point (C) of this circle is

same from the 3 points. Let C = (x1,y1), M = (x2,y2) and E =

(x3,y3). Using the coordinates of C,M and E, coordinates of

C0 are obtained . Then a line is drawn from C to C0 and θ

represents the direction of this line. Similarly the direction

of line from C to M is given by θ. Then the tangent of C at

this side of ROS will be given as:

(5)

where sign is a signum function. Similarly the tangent of

ROS from C to F will be ɣ2 and is determined by the same

method.

Fig-5: Explanation of angle calculation for corner C using

tangents

Finally the angle of the corner C is given as:

 (6)

 Then, the corner checking criterion is given as follows:

C is true corner if ˂Ci ≤ θobtuse

C is false corner if ˂Ci ˃ θobtuse

The parameter θobtuse is a threshold value which is set to
162 degrees. Fig. 6 shows the corners detected for the

obstacle in current image, using curvature based corner
detector.

Fig-6: Output of Curvature based corner detector for one

obstacle

2.8. Visibility Graph Construction

A visibility graph is constructed using start point , goal

point and the corner points. Before constructing the

visibility graph, the convex hull of the obstacles is

calculated. The convex hull of a geometric object (such as a

point set or a polygon) is the smallest set of points

containing that object. The reason for obtaining convex

hull is that the robot will always follow a shortest path to

reach the goal. So in Fig.7, the robot will move from corner

C to E and will never move from corner C to D and then

from D to E as this path is not optimal. So the inner edges

should not be taken into account and to do this, the convex

hull is computed using the default matlab command

'convhull'.

Fig-7: a) Original obstacle. b) Obstacle after computing

convex hull

Now, first a brute force approach was implemented for

visibility graph. According to this, if V is set of all nodes

(vertices of obstacles, start point and end point) in the

graph, then for each element, v ϵ V, the idea is to check

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 01 | Jan-2016 www.irjet.net p-ISSN: 2395-0072

© 2015, IRJET ISO 9001:2008 Certified Journal Page 59

whether all the line segments vvi , v≠ vi intersect

completely an edge of the polygon. Finally, all the

segments that do not intersect the edges of polygons

constitute the visibility graph. The computational

complexity of this approach is O(n3). To reduce the

computational time, another approach called rotational

plane sweep algorithm [5],[6] was implemented. Fig. 8

shows an example with some polygons and a start point P

and a goal point named as Goal. Let S = {w1, w2,, w13} be

the set of nodes consisting of vertices of polygons, start

point and goal point. For computing the set of vertices

visible from a node (say from P), we will sweep a line l

emanating from P and rotate the line from 0 to 2π in

anticlockwise direction. If a vertex w is visible to P, then it

is added to visibility graph otherwise not. In Fig. 8, solid

black lines are the paths from P to corresponding vertices

which are visible whereas the red dotted lines indicate the

paths to vertices which are not visible from P. In this way,

the process is repeated for all the nodes in the graph. The

complete algorithm of rotational sweep is shown in Fig.9

is taken from Mark et al [6].

The sub routine 'VISIBLE' in algorithm 1 decides whether

a vertex is visible from current point or not. First it is

checked if pwi intersects any interior of obstacle. If yes,

w i is not visible, otherwise, the search is only made in

search tree T and edge closest to the point P is checked. If

this edge intersects the segment pwi, then w is not visible

else visible. In case of multiple vertices (vertices which are

at same angle from the observation point) on the scan line

l, the algorithm sorts the points in the increasing order of

distance from the observation point (here P) and then

performs visibility test through subroutine visible.

3. IMPLEMENTATION OF A* ALGORITHM

A*[7] is used to find the shortest path among all these

possible paths provided by visibility graph. A* algorithm is

noted for its accuracy and prominence. It enjoys a wide

spread use in the field of computer science and robotics.

A* uses an evaluation function f (n) to determine the order

in which the nodes in the graph are to be searched. This

function is expressed as sum of two functions.

1) The path cost function, g (n), which is basically the cost

from starting node to the current node.

Fig- 8: Explanation of rotational plane sweep algorithm

Fig-9: Rotational Plane Sweep Algorithm

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 01 | Jan-2016 www.irjet.net p-ISSN: 2395-0072

© 2015, IRJET ISO 9001:2008 Certified Journal Page 60

2) A heuristic estimate of the distance from the current

node to the goal node. It is given as h(n).

This evaluation function, f(n) = h(n) + g(n), maintains a

balance of the two function as it moves from the start

point to the goal point. A* starts with the start node and

maintains a priority queue (‘open list’) of the nodes to be

visited along with their costs (value of f(n). Another list

called 'closed list' is also used which contains the nodes

that have been visited. This list also contains the back

pointer to the visited node. Back pointer points to the

node from which the visited node originated. Fig. 10

shows the outputs for visibility graph and shortest path

calculated by A*.

Fig-10: (a) Visibility Graph with green node as start point

and red node as goal point (b) Shortest path (in green

color) found by A*

4. PROGRAMMING THE E-PUCK ROBOT TO
FOLLOW THE PATH

This part comprises of several steps. First, a toolbox ePic2

is used to control e-puck within matlab. This toolbox

allows the user to develop an interface between e-puck

and matlab using a set of commands. Now, the shortest

path by A* basically comprises of the nodes whose x,y

coordinates are known with respect to the image

coordinate system. To move the robot in actual

environment, we transform these coordinates from image

coordinate system to world coordinate system. For this,

we use a transformation matrix that comprises of intrinsic

and extrinsic parameters of camera which are obtained

through camera calibration using the well known

Bouguet’s toolbox. The images of a checkerboard pattern

taken at different angles and different positions were used

for computing the intrinsic and extrinsic parameters. Next,

we determine the orientation of robot, required to make

the robot move in the proper direction. For this purpose,

the robot has been assigned two colors. The idea is to

obtain the centroids of the 2 segmented regions on robot.

The centroids are calculated using the matlab function

regionprops. Now the light green color indicates front side

of robot whereas magenta color indicates the back side of

the robot.

Let (xm; ym) be the centroid of magenta region and (xlg;

ylg) be centroid of light green region. Then, the orientation

of the robot is calculated in matlab using atan2 (ylg - ym , xlg

- xm). Fig. 11a shows how the orientation is calculated.

After determining the orientation, the angle of the target

point with respect to the robot is calculated. Now, if there

are three nodes in the path, the robot will go from start

node to second node and then to goal node. So the first

target for the robot will be the second node and then the

final target will be the goal node. Hence the term target is

used in this sense.

Let (xtarget , ytarget) be the target point. Then, the angle of

target from the center of robot is calculated as atan2(ytarget

- ycenter, xtarget - xcenter) (see Fig. 11b). In order to move

towards the target point, the robot orientation should be

towards target. That means that theta robot and theta

target should be the same. So depending on the angle of

the robot at start, the robot moves clockwise or counter

clockwise to align itself with the target and to make the

theta robot equal to theta target. When the difference

between theta robot and theta target is less than some

threshold, the robot starts moving towards the target at a

constant speed. As the robot moves, the orientation of

robot will not remain aligned with the target point due to

odometry errors. So to handle this, the images of the

environment are continuously captured and theta robot

and theta target are calculated again and again as the

robot is moving. Depending on these angles the movement

of the robot is adjusted to make sure that robot moves in

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 01 | Jan-2016 www.irjet.net p-ISSN: 2395-0072

© 2015, IRJET ISO 9001:2008 Certified Journal Page 61

proper direction. Also a check is kept on distance between

the robot center and the target point. When the distance is

less than 1 cm, the robot stops meaning that it has reached

the target. If the robot has not reached the goal node (final

target), it then moves towards the next node by following

the procedure explained above and thus keeps on going

until it reaches the goal node. Fig. 11c shows how the

robot has reached the goal position by following the

shortest path.

Fig-11: (a) Orientation of robot (b) Explanation of target

angle with respect to robot (c) Robot reaches the goal

position by following the shortest path

5. RESULTS

Results obtained for different experiments will be

described now. Fig. 12 gives an example how the outputs

will be in case of more than one obstacle. Table-I explains

the overall efficiency of the algorithms in case of varying

number of obstacles and Table-II compares the

performance of two approaches used for constructing

visibility graph.

TABLE I: Table explaining the performance of the

algorithms for different number of obstacles considering

obstacles of same size and shape to avoid bias

Fig-12: Outputs of the algorithms in case of 5 obstacles (a)

Original image (b)Segmented image (c) Visibility graph

along with the shortest path by A* shown in green color

(d) Path followed by robot to reach goal

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 01 | Jan-2016 www.irjet.net p-ISSN: 2395-0072

© 2015, IRJET ISO 9001:2008 Certified Journal Page 62

TABLE II: Table explaining the performance of two

approaches for visibility graph

6. CONCLUSION AND FUTURE WORK

6.1 Conclusion

From previous section, some important inferences can be

made regarding efficiency of algorithms. With the increase

in number of obstacles (of same size and shape), the

number of corner points to be detected also increase. So,

the corner detection algorithm will take more time. This

trend can change if obstacles of varying shapes and sizes

are considered as number of corner points of each

obstacle can vary in that case. Then, time taken for the

visibility graph increases with increase in number of

nodes as more paths will be generated among nodes. Also,

rotational plane sweep approach for constructing visibility

graph outperforms the brute force approach. Time taken

by A* depends on where the goal is located in the

environment and how many obstacles are there in

between goal and start point. If the goal point is located

close to the start point, algorithm will take less time as it

will search a few paths to reach goal and vice versa. Also,

proper lightening conditions should be maintained for

image segmentation otherwise the results can vary.

6.2 Future Work

In this project, static environment is assumed i.e. the
obstacles are fixed. However, when there are moving
obstacles in the environment, it is required to re plan the
path after specific intervals in order to know if any change
occurred in the environment. D* [8] algorithm which is an
extension of A*, can be implemented in this case. Then, in
this project, post processing is done after image
segmentation to smooth the boundaries of obstacles. An
efficient technique was found later on called simplifying
polygons which can be applied to get the smooth
boundaries of obstacles. Improvements can also be made

regarding visibility graph construction. More efficient
algorithms for example Ghosh and Mount [9], can be
implemented to further reduce the computation time for
visibility graph.

REFERENCES

[1] James Bruce and Tucker Balch and Manuela Veloso,

”Fast and Inexpensive Color Image Segmentation for

Interactive Robots”, In Proceedings of IROS-2000,2061–

2066, 2000.

[2] Robert T. McKeon; Mohan Krishnan; Mark Paulik.,

”Obstacle recognition using region- based color

segmentation techniques for mobile robot navigation.”,

Proc. SPIE,,6384, 63840R 2006.

[3] C. Harris and M. Stephens, ”A Combined Corner and

Edge Detector”, 4th ALVEY Vision Conference, pp 147–

151,1988.

[4] He, Xiao C. and Yung, Nelson H. C., ”Corner detector

based on global and local curvature properties”, Optical

Engineering, 47(5),2008.

[5] Lee,D.T, Ph. D. thesis and Tech. Report,ACT-12,

Coordinated Science Laboratory, University of Illinois at

Urbana-Champaign, Urbana, IL(1978).

[6] M. de Berg, M. van Kreveld, and M. Overmars,

”Computational Geometry: Algorithms and Applications”,

Springer,Berlin,1997.

[7] Hart, Peter E. and Nilsson, Nils J. and Raphael, Bertram,

”A Formal Basis for the Heuristic Determination of

Minimum Cost Paths”, SIGART Bull.,(37): pp 28–29,1972.

 [8] Anthony Stentz, ”Optimal and Efficient Path Planning

for Partially Known Environments”, IJCAI’95: Proceedings

of the 14th international joint conference on Artificial

intelligence,1652–1659, 1995.

[9] Ghosh, Subir Kumar and Mount, David M., ”An output-

sensitive algorithm for computing visibility”, SIAM J.

Comput.,20(5), pp 888– 910,1991.

[10]http://www.cs.cmu.edu/~motionplanning/lecture/C

hap3-Config-Space_howie.pdf

