
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

Volume: 03 Issue: 01 | Jan-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 1266

Defend Software Puzzle against Denial of Services Attacks using a

Countermeasure.

 Saif A. Shaikh, Akash R. Deokar, Priti Joshi

123 Student, Computer Department, Trinity Academy of Engg. Pune, Maharashtra, India

---***---

Abstract – Denial of services (DOS) and Distributed
Denial of services (DDoS) are the major problem
against network security and cyber security that allow
a client to perform very expensive and vital operations,
before the network services are provided to the
respected client. However An attacker may be able to
manipulate the DOS and DDOS or built in graphics
processing Unit (GPU) and be able to destroy client
puzzles. In this paper we study how to preserve DOS and
DDOS attacker for being manipulating the puzzle-
solving techniques. So now we introduce a new client
puzzle referred to as Software Puzzle. It is unlike
previous puzzle, which generate their puzzle
algorithms in advance, a puzzle algorithm in the
present software puzzle schemes is randomly
generated only after a client request is received from
the server side and the algorithm is generated such
that:1)an attacker is unable to prepare an
implementation to solve the puzzle in advance, 2)the
attacker need very considerable effort such that he/she
may be able to translate a central processing unit
puzzle software to its functionally equivalent GPU
version such that translation is not done in real time.
How ever we show how to generate software puzzle in

generic software –browser model.

Key Words: Software Puzzle, Denial of Service(DoS),
Code Protection,GPU Programming, Distributed Denial
Of Service (DDoS).

1. INTRODUCTION

Denial of service (DoS) attacks are heard to be a very
serious query In Internet whose virtue has well
demonstrated in the computer network literature. The
online services resources such as network bandwidth,
memory and computation power are been overwhelmed
by a bogus request as they are evacuated by Denial of
Service (DoS) and Distributed Denial of Service attacks
(DDoS). A denial of service attack is an attempt to make a
machine or network resource unavailable to its intended
users, such as to temporarily or suspend services of a host
connected to the Internet DoS attack is been held in
network resources as it conventionally blocks the network
services and this attack is been created due to another

user which creates malicious actions. DoS attacks target
the network bandwidth or the connectivity. Bandwidth
attacks flood by degrading the user requests i.e he/she is
not able to send or receive requests. Connectivity is been
attacked i.e all the available resources of operating system
are consumed and the computer is not able respond the
user request.
Distributed Denial of Service attacks (DDoS) is very simple
but it is a very powerful for depleting internet resources. It
make the DoS problem more difficult and hence it make it
complex severe. DDoS attacks contain very powerful
resources such as to execute very complex issues held by
client and is very good at it. A distributed denial-of-service
(DDoS) is where the attack source is more than one and
often thousands–of unique IP addresses. DDoS attack does
not destroy the victims computer but it is a attempt for
any personal reason, either for a any information or for
popularity. DDoS attacks is been distinguished from other
such attacks hence it has the ability to deploy it own
weapons in a distributed manner and create traffic over
the connectivity or bandwidth of network resources.

1.1 EXISTING SYSTEM

The client solve the puzzle using the previous schems i.e
the basic resources. Hence there are many modern
computers, laptop which contain high configuration i.e
they contain GPU component (for example ATI FIREPRO
V3750 in Dell laptop which contain nVidia Quadro FX
880M). Therefore, an attacker can easily utilize the “free”
GPUs or integrated CPU-GPU to inflate his computational
capacity. This renders the existing client puzzle schemes
ineffective due to the significantly decreased computing
cost ratio γ. For eg. a hacker may amortize one puzzle-
solving task to hundreds of GPU cores if the client puzzle
function is parallelizable, or the hacker may
simultaneously send to the server many requests and ask
every GPU core to solve one received puzzle challenge
independently if the puzzle function is non-parallelizable
(e.g. modular square root puzzle and Time-lock puzzle
[5]). To increase the attack efficiency the main parallelism
strategy is used to reduce the total puzzle-solving time.
Green et al. examined various GPU-inflated DoS attacks,
and showed that attackers can use GPUs to inflate their
ability to solve typical reversal based puzzles by a factor of

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

Volume: 03 Issue: 01 | Jan-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 1267

more than 600. To track client IP address it was proposed
in order to defeat GPU-Inflated DOS attack to client puzzle.
Nonetheless, if IP tracking is effective to thwart the GPU
inflation, IP filtering can be used to defense against DoS
attacks directly without utilizing client puzzles. Hence the
defense against GPU-inflated DoS attack was not so much
attractive in a proper manner.
The present search engines such as Microsoft Internet
Explorer and Firefox do not explicitly support client puzzle
schemes, many authors developed a web-based client
puzzle scheme which focuses on transparency and
backwards compatibility for incremental deployment. The
scheme dynamically embeds client-specific challenges in
webpages, transparently delivers server challenges and
client responses. This scheme is vulnerable to DoS
attackers who can implement the puzzle function in real-
time. Technically, a hacker can rewrite the puzzle function
P(·) with a native language such as C or C++ such that the
cost of an hacker is much smaller than that the server
expects(In our experiments, a native code is about 20
times faster than a Java byte code for the same
function).However, a GPU-inflated DoS attacker can realize
the fast software generation on the many-core GPU
hardware and run the software in all the GPU cores
simultaneously such that it is easy to defeat the web-based
client puzzle scheme. If a puzzle is implement based on
client’s GPU capability, the GPU-inflation DoS does not
work at all. Since, we do not recommend to do so because
it is troublesome for high capacity deployment due to (1)
not all the clients have GPU-enabled devices; and (2) an
extra real-time environment shall be installed in order to
run GPU kernel.

1.1.1. Notations

For ease of reference, important notations used
throughout the paper are listed below.

x: A challenge chosen by server.

m: A message collected from environment.

y: A solution to the puzzle challenge x.

(˜ x, ˜ y): A puzzle response returned from client.

P(·): Puzzle algorithm such that x =P(y,m).

C: Puzzle core which is the software implementation
of P(·).
C0x: Puzzle which embeds the information of x into C.

C1x: Obfuscated C0x.

2. Graphic Processing Unit (GPU)
Graphics Processing Units (GPUs) have become a

popular choice for general-purpose high-performance
computing. Encryption and decryption algorithms such as
the Advanced Encryption Standard (AES) have been
implemented on GPUs to gain good speedup. However, the
security of the GPU architecture is not well studied,
making it potentially risky to offload sensitive

computation to GPUs. In this paper, we will introduce our
ongoing work to improve GPU security against Denial of
Service (DoS) attacks.

Modern GPUs have many processing cores that can be
used for basic purpose computing as well as graphics
processing. Hence the newly GPU vendors such as nVidia
and AMD provide useful programming directories for
massive computation application. Without loss of
generality, nVidia GPU will be used to present our
techniques in the following. For self-contained, this
Section briefly introduces nVidia GPU [6], its application
on the basic GPU-inflated DoS attacks, and its difference
from CPU which will be exploited to defeat against the
GPU-inflated DoS attack.

2.1 nVidia GPU

 Nvidia designs graphics processing units (GPUs), as
well as system on a chip units (SOCs) for the mobile
computing market. Nvidia's primary GPU product line,
labelled "GeForce", is in direct competition with Advanced
Micro Devices' (AMD) "Radeon" products .In order to run
high performance applications GPU has introduced
parallel processing capabilities to scientist and
researchers.

 A GPU processor has fast but small shared memory.
GPU contains man Streaming Multiprocessors (SMs)
consisting of ‘n’ number of identical processing cores. For
example, the nVidia GeForce GTX 680 consists of 1,536
cores. Besides, it has access to the host’s global memory
which is large but slow. CUDA, the major programming
language for nVidia GPU, extends ANSI-standard C99
language by allowing a programmer to define C functions,
or kernels. For instance, the client puzzle function P(·) can
be generated as a GPU kernel. At any one time, a GPU
device is dedicated to a single application which may
include multiple kernels. When a kernel is loaded into GPU
and invoked, it is executed by multiple identical threads in
parallel for maximum efficiency.

2.2 Comparison Between CPU & GPU

 CPU GPU

The CPU or Central
Processing Unit is where
all the program
instructions are executed
in order to derive the
necessary data.

GPUs where originally
developed to render 2D
graphics; specifically, to
accelerate the drawing
of windows in a GUI.

https://en.wikipedia.org/wiki/Graphics_processing_unit
https://en.wikipedia.org/wiki/System_on_a_chip
https://en.wikipedia.org/wiki/Mobile_computing
https://en.wikipedia.org/wiki/Mobile_computing
https://en.wikipedia.org/wiki/GeForce
https://en.wikipedia.org/wiki/Advanced_Micro_Devices
https://en.wikipedia.org/wiki/Advanced_Micro_Devices
https://en.wikipedia.org/wiki/Radeon

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

Volume: 03 Issue: 01 | Jan-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 1268

Advancement in modern
day CPUs have allowed it
to crunch more numbers
than ever before, but the
advancement in software
technology meant that
CPUs are still trying to
catch up.

The need for 3D and
faster graphics
acceleration grew, the
GPU became faster and
more specialized in its
task.

CPUs handle all of the
computations and
instructions in the whole
computer, thus the use of
the word ‘central’.

A Graphics Processing
Unit or GPU is meant to
alleviate the load of the
CPU by handling all the
advanced computations
necessary to project the
final display on the
monitor.

CPU are generally used
for executing larger
instruction in a
respective manner.

GPU is designed for the
predictable graphic
processing such as
matrix operations, not
generic logic processing.

2.3 GPU Inflated DoS Attack
 A client wants to obtain a service, he/she sends a
request to the server. After receiving the client request,
the server responds with a puzzle challenge x. If the client
is genuine, he/she will find the puzzle solution y directly
on the host CPU, and send the response (x, y) to the server.
However, as shown in Fig. 1, by using the similar
mechanism in accelerating calculation with GPU , a
malicious user who controls the host will send the
challenge x to GPU and exploit the GPU resource to
accelerate the puzzle-solving process.

Fig -1: GPU-Inflated DoS attack against data puzzle.

3. Software Puzzle

 If a puzzle function P, as all the existing client puzzle
schemes ,[7] is fixed and disclosed in advance, the puzzle
is called a data puzzle or it is referred to as a software
puzzle. Data puzzle aims to enforce the client’s
computation delay of the inverse function P−1(x) for a
random input x; while software puzzle aims to deter an
adversary from understanding/translating the
implementation of a random puzzle function P(·). That is

to say, unlike a data puzzle challenge which includes a
challenge data only, a software puzzle challenge includes a
dynamically generated software C(·) which including a
data puzzle function as a component.

3.1 System Architecture

 The software scheme consist of a Warehouse which
contains different kinds of block storing different
information. Hence it contain two module 1.generate the
puzzle C0x by randomly choosing code blocks extracted
form Warehouse and obfuscating the puzzle C0x for higher
security puzzle C1x.

Fig-2 System Architecture

The compiled instruction code blocks(bi) are been stored
in Warehouse(W) in the form of Java byte code or C binary
code. In order to generate software puzzle , server chooses
compiled codes rather than source code because if it
chooses source code then server has to take extra time for
puzzle generation. The warehouse stores both Java
bytecode and the corresponding C binary code. . Because
the former is applicable to different OS platforms but slow,
it is suitable to deliver the software puzzle to the client in
the format of Java bytecode. Code blocks can be classified
into two categories: i)CPU-only instruction block ,ii)Data
puzzle algorithm block.

I.CPU-ONLY INSTRUCTION BLOCK
 Unlike CPU, GPU is designed for the predictable graphic
processing such as matrix operations, not generic logic
processing. As branching operations are inherently non-
predictable and are non-parallelable, executing them in
GPU is slow such that the major merit of GPU cannot be
exploited by the attacker; Secondly, some hardware-
related operations such as reading hardware input and
surfing network, cannot be performed on GPU; Thirdly, the
state-of-the-art GPUs do not support dynamic thread
generation; Fourthly, the high-speed shared memory is
shared by all the GPU thread blocks together such that the
size of fast accessible memory available to each thread is
small.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

Volume: 03 Issue: 01 | Jan-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 1269

II.DATA PUZZLE ALGORITHM BLOCK
 In this block mathematical operations are been done by
data puzzle Algorithm. For example, in an AES round,
ShiftRows code block outputs a transformed message
matrix , which can be used as input of any other operation
such as Mix Column code block without incurring
parameter mismatch errors.

3.2 Software Puzzle Generation

 In the software puzzle generation server has to execute
three step: i) puzzle core generation, ii) puzzle challenge
generation and iii) Code Obfuscation.

i) Puzzle Core Generation

 The code block ware house chooses “n” code block
based on hash function and secret key eg…the jth
instruction block bij, where ij = H1(y, j), andy =
H2(key,sn), with one-way functions H1(·) and H2(·), key is
the server’s secret, and sn is a nonce or timestamp. The
chosen blocks are gathered into a puzzle core, denoted as
C(·) = (bi1;bi2;···;bin).

ii) Puzzle Challenge Generation

 The server calculates a message m from public data
such as IP addresses, in-line constants, port numbers and
cookies with the given auxiliary input messages and
produces a challenge x =C(y,m), smiliar to encrypting
plaintext m with key y to produce ciphertext x.
 As the puzzle core C(.) function is not able to solve by
the attacker and it can not force GPU to solve the problem
in real time using basic GPU resource. It is possible for an
hacker to generate the GPU kernel by mapping the CPU
instructions in C0x to the GPU instructions one by one, i.e.,
to automatically translate the CPU software puzzle C0x
into its functionally equivalent GPU version.

iii) Protecting the Code
 A software puzzle consists of instructions, and each
instruction contains of operands and opCode and it
contains of operations such as additions,shift,jump , while
the operands, varying with opCode, are the parameters to
complete the operations. Operands and opcode are
encrypted by code encryption technology and it behave
software code as data string. The server produce an
encrypted puzzle C1x = E(y,C0x), where E(·) is a cipher
such as AES, and y is used as the encryption key. In
practice, there are many commercial code obfuscation tool
for C/C++ software such as VM protect which can be used
to protect the software puzzle from hacking.
 Encryption contains two layers i.e the inner layer and
outer layer. In the encryption outer layer is used to
encrypt the software puzzle C0x. In the encryption inner
layer uses the puzzle software to encrypt the challenge as
data puzzle does. Therefore, after receiving C1x, the client
has to try ˜ y. If and only if ˜ y = y, the original software

puzzle C0x can be recovered and further used to solve the
challenges.

4. AES ALGORITHM
 AES stand for Advanced Encryption Standard. AES has
a fixed block size of 128 bits and a key size of 128, 192, or
256 bits, whereas Rijndael can be specified with block and
key sizes in any multiple of 32 bits, with a minimum of 128
bits. The blocksize has a maximum of 256 bits, but the key
size has no theoretical maximum .AES operates on a
4×4 column-major order matrix of bytes .It is fast in
both software and hardware.

 The key size used for an AES cipher specifies the
number of repetitions of transformation rounds. The
numbers of cycles of repetition are as follows:

 10 cycles of repetition for 128-bit keys

 12 cycles of repetition for 192-bit keys

 14 cycles of repetition for 256-bit keys

 The AES cipher is specified as a number of repetitions
of transformation rounds that convert the input plaintext
into the final output of ciphertext. Each round consists of
several processing steps, including one that depends on
the encryption key. A set of reverse rounds are applied to
transform ciphertext back into the original plaintext using
the same encryption key.

Round are:

1. Initial Round
i. AddRoundKey- Every byte of the state is

combined with a block of the round key
using bitwise XOR operation.

2. Rounds
i. SubByte- A nonlinear substitution step

where each byte is replaced with another
according to a lookup table.

ii. ShiftRows- A Transposition step where
the last three rows of state are shifted
cyclically a certain number of steps.

iii. MixColumns- A missing operation which
operates on the columns of the state,
combining the four byte in each column.

iv. AddRoundKey-

3. Final Rounds
i. SubByte

ii. ShiftRows

iii. AddRoundKey
iv.

http://en.wikipedia.org/wiki/Block_size_(cryptography)
http://en.wikipedia.org/wiki/Bit
http://en.wikipedia.org/wiki/Key_size
http://en.wikipedia.org/wiki/Column-major_order
http://en.wikipedia.org/wiki/Computer_software
http://en.wikipedia.org/wiki/Hardware

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

Volume: 03 Issue: 01 | Jan-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 1270

5. CONCLUSIONS

Software puzzle scheme is prepaid for destroying GPU-
inflated DoS attack. It hires software protection
technologies to ensure challenge data confidentiality and
code security for an respective time period, e.g., 1-2
seconds. It has different security requirement from the
conventional cipher which demands long-term
confidentiality only, and code protection which focuses on
long-term robustness against reverse-engineering only.
Since the software puzzle may be built upon a data puzzle,
it can be integrated with any existing server-side data
puzzle scheme, and easily deployed as the present client
puzzle schemes do. Although this paper focuses on GPU-
inflation attack, its idea can be extended to thwart DoS
attackers which exploit other inflation resources such as
Cloud Computing. For example, suppose the server inserts
some anti-debugging codes for detecting Cloud platform
into software puzzle, when the puzzle is running, the
software puzzle will reject to carry on the puzzle-solving
processing on Cloud environment such that the Cloud-
inflated DoS attack fails. In the present software puzzle,
the server has to spend time in constructing the puzzle. In
other words, the present puzzle is generated at the server
side. An open problem is how to construct the client-side
software puzzle so as to save the server time for better
defense performance. Another work is how to evaluate the
effect of code de-obfuscation, which is related to the
technology advance of code obfuscation.

ACKNOWLEDGEMENT
 We express deepest gratitude to our project guide Prof.
R.R.Ranawre, who modeled us both technically and
morally for achieving greater success in life. As a mentor
and torchbearer, he guided us to overcome the odds and
evens faced during the project work. The supervision and
support that he gave indeed paved the path for the smooth
completion of the project. We are deeply indebted to our
Head of the Department for their unwavering moral
support and motivation during the entire course of the
project. We also thank all the staff members of our college
and technicians for their help in making this project a
successful one. Finally, we take this opportunity to extend
our deep appreciation to our Family and Friends for all
that they meant to us during the crucial times of the
completion of our project.

REFERENCES

[1] Yongdong Wu, Zhigang Zhao, Feng Bao, and Robert H.

Deng. (Software Puzzle: A Countermeasure to
Resource-Inflated Denial-of-Service Attacks)..

[2] C. Douligeris and A. Mitrokotsa, “DDoS attacks and
defense mechanisms: Classification and state-of-the-
art,” Comput. Netw., vol. 44, no. 5, pp. 643–666, 2004.

[3] A. Juels and J. Brainard, “Client puzzles: A
cryptographic countermeasure against connection
depletion attacks,” in Proc. Netw. Distrib. Syst. Secur.
Symp., 1999, pp. 151–165.

[4] X. Wang and M. K. Reiter, “Mitigating bandwidth-
exhaustion attacks using congestion puzzles,” in Proc.
11th ACM Conf. Comput. Commun. Secur., 2004, pp.
257–267.

[5] R. L. Rivest, A. Shamir, and D. A. Wagner, “Time-lock
puzzles and timed-release crypto,” Dept. Comput. Sci.,
Massachusetts Inst. Technol., Cambridge, MA, USA,
Tech. Rep. MIT/LCS/TR-684, Feb. 1996. [Online].
Available:
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=
10.1.1.110.5709.

[6] NVIDIA CUDA. (Apr. 4, 2012). NVIDIA CUDA C
Programming Guide, Version 4.2. [Online]. Available:
http://developer.download.nvidia.com/

[7] K. Iwai, N. Nishikawa, and T. Kurokawa, “Acceleration
of AES encryption on CUDA GPU,” Int. J. Netw.
Comput., vol. 2, no. 1, pp. 131–145, 2012.

