
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 10 | Oct -2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 1071

 Functional Constraint Extraction at Register Transfer Level for ATPG

to Improve Verification in terms of Coverage

A. Venkata Ramana1, J. Anusha2

 1PG Scholar, Department of ECE, JNTU Anantapur, Andhra Pradesh, India
2Lecturer, Department of ECE, JNTU Anantapur, Andhra Pradesh, India

---***---

Abstract - The gate level techniques are used in
simulation to identify ISE’s and also these techniques
are implemented based on Sequential Automatic Test
Pattern Generation (ATPG). But now a day’s IC’s are
very complex so by using above gate level method, it is
very difficult to compute and also in this process,
illegal states are occur but this causes unwanted
behavior and false error detection in the verification
process. To overcome this problem a new tool is
proposed based on VHDL Parsing Expression
Grammar (PEG). Functional Constraint Extraction
(FCE) at Register Transfer Level approach is used in
this new tool. This Functional Constraint Extraction
(FCE) is used in ATPG process to generate pseudo
functional scan test patterns which avoids ISE’s. The
end result of this brief is an automatic tool that
performs HDL parsing and analysis of legal state
computation and functional constraint generation.
This approach is also used to avoid the false error
detection during RTL simulation.

Index Terms— Parsing Identification, HALS States,
ATPG, Verification

I. INTRODUCTION

 As hardware complexity continues to follow

Moore’s law, verification complexity is also becoming even

more challenging, with verification now estimated to be

taking 50%–70% of the total time of a project [1]. . Results

obtained by applying this methodology have confirmed its

potential in terms of verification coverage and time

improvements. Only an experienced Verification

Consultant can transform an VLSI engineer into a

Verification Expert. verification folks who are new to CDV

usually ask, which option [1or 2] is good for achieving

100% coverage: [1] Minimum number of seeds and

maximum transactions pretest case[2] Minimum number

of transactions per test case and many seeds. It's always

good to consider various factors like the simulation

runtime, DUT features, unusual bugs etc. while defining

the test case, rather than just focusing only on reaching

coverage goals. Most of the verification engineers start

their career as an HVL expert. They realize the importance

of Assertion Based Verification, only when they become

seasoned verification engineers, especially when they take

the complete ownership of RTL sign-off. If you are working

in the VLSI domain, especially in the functional verification

domain, you should know about the latest verification

methodologies and technologies. Most of the engineers

run the regressions and spend most of their time on

analyzing the coverage reports. They wrongly assume that

they are verifying the chips. Actually they are managing

the regressions and reporting the bugs to the designers.

Functional verification continues to be one of the most

expensive and time-consuming components in a typical

design process. Practical functional verification relies on

extensive simulation of directed and/or guided random

tests due to its flexibility and scalability Shown in Fig.1.

Fig 1: The additional tools of the proposed methodology

in a standard implementation flow

 Although simulation-based verification

can be very effective, its success both in terms of total

effort spent and final verification coverage achieved

depends heavily on the quality of the tests in use. Effective

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 10 | Oct -2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 1072

tests can achieve higher verification coverage in shorter

time, which saves engineering resources and improves

condense on the quality of the design under verification

(DUV). However, generating effective tests for complex

designs has always been a challenging problem. Directed

tests are written to cover corner cases and important

features of a design. Writing directed tests has been a

dominant test generation methodology even with the

emergence of constrained random test generation.

Directed tests are crucial for verification as in many cases

they are the only tests that can reach corner cases.

These patterns are generated by an ATPG tool

based on a launch-on capture transition fault model. The

result is a verification environment that can be seamlessly

integrated in the design flow, without requiring circuit

modification or remodeling steps. Figure 1 describes a

standard design flow and its relationship with verification

and test, more specifically the scan-based test[1] and

Register Transfer Level (RTL) model verification.

II. EXISTING METHOD

 The proposed verification environment encloses
RT and gate levels. We assume that a SystemC golden
model is available and used as a reference model by the
verification system at the system level. Note that such a
model is also required to apply any verification
methodology. In this paper, the SystemC golden model
used has the same level of details as the RTL model
verified. It is also possible to use a transaction level
SystemC model as a golden model. In fact, in [2] the
authors describe how to use RTL test benches for
verification of a SystemC model at a higher abstraction
level (as transaction level).

A. Test bench Generator Tool

Fig:2 Verification tool

One of the key components of the proposed
methodology is its automated aspect. In fact, to effectively
generate verification data for functional VHDL
descriptions based on structural test patterns, we built up
an automatic test bench generator that executes the
following algorithm:

B. Nodes list checker:
 A list checker module is added to the verification
environment. A list of transitions and states to be
simulated based on the FSM model is created, and for each
simulation the module checks which state/transition had
been simulated by the patterns and update its list by
removing the one simulated. After the simulation is
completed, the set of nodes not covered will include the
set of states and transitions remaining in the list. This list
can be used for further directed simulations, to identify
the target nodes for directed patterns in order to
accomplish an even more complete coverage.

III.PARSING EXPRESSION GRAMMER

 A PEG is a recognition-based formal foundation

for language syntax. It describes the language syntax in

terms of a set of rules [6]. A VHDL PEG was defined in [6],

but the grammar was not complete, as it did not cover

different condition constructs and overlaps as well as

design hierarchy. Based on the definition in [6], we

developed a more complete VHDL PEG described as

follows.

1. ∑ = [keywords, symbols (‘<=’, ‘(‘…), operators]. In
Fig. 2, terminal symbols are identified, in upper case.
2) N =[Module, entity,architecture, port, component,
signal_type, component_inst, process, if_st, case_st,
case_comp, condition, signal_ass, operation,
VHDL_type, label, value, with_st, when_st].
3) es = Module.
4) The set of parsing rules P is defined in Table I, where
terminal

Table: 1Parsing rules

Parsin

g

Rule

E A

P1 Entity architecture Module

P2 'ENTITY IS' port 'ENTITY END;' Entity

P3
'PORT ('(label':'('IN'|'OUT')

VHDL_type)+');'
Port

P4

Component *'BEGIN'

(component_inst*|Process*|

signal_ass*|with_st*|when_st*)

'END ARCHITECTURE;'

Architecture

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 10 | Oct -2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 1073

P5
'COMPONENT IS' port

'END COMPONENT;'
Component

P6 'SIGNAL' label'; ' VHDL_type ';' Signal type

P7
label; label 'PORT MAP

('label=>label)+');'

component_in

st

P8

'BEGIN'(if_st*|case_st*|signal_a

ss+)

'END PROCESS'

Process

P9
(numerical value|

label)(operator operation)?
Operation

P10

'IF('condition')THEN'

(case_statement *| if_statement

*|

signal_assignment+)('ELSE

case_statement*| if_statement

*|

signal_assignment+)?'END IF;'

if_st

P11
'CASE'label 'IS'(case_

component)+ 'END CASE;'
case_st

P12
'WHEN'value=>

case_st*|if_st| signal_ass+';'
case_comp

P13
Label('<'|'>'|'<'|'>'|'=')

operation
Condition

P14 Label<=(value| operation)';' Signal_ass

P15 KEY WORDS+ VHDL_type

P16 [a-z]+ Label

P17 [0-9]+ Values

P18
'WITH' label 'SELECT'

(signal_ass | 'WHEN'value)

With_stateme

nt

P19

Signal_ass |'WHEN' condition

('ELSE'| label| 'WHEN'|

condition)*

WHEN_st

Therefore, the analysis performed based on the
proposed VHDL PEG, is able to identify the majority of
VHDL constructs except user defined types as well as
subtypes, files, and loop constructs.

IV.PROPOSED METHODE
 It is important to specify that we consider two

types of states:

Fig: 3HALS State identification flow

 The high abstraction level state (HALS) and the

low abstraction level or RTL state (simply called state in

the rest of this brief) related to the state signals. We define

a high-level state as the set of RTL state signal

assignments associated with particular conditions within a

process. So Above HALS state represent in the following

way that are nothing but RTL States.

Working with HALS instead of RTL states

minimizes the computation complexity and time. Instead

of computing the corresponding results for each unique

state value and each possible combination, which may

increase the procedure time and complexity, we compute

ranges of state signal values that can occur at the same

time, defining an HALS(Fig 3 and 4).

 Fig: 4HALS states

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 10 | Oct -2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 1074

Implementing tool:

 Fig: 5 Implanting Tool Flow chart

A. VHDL Parsing and Identification

 Our first step in the methodology is a VHDL parsing

and identification, which corresponds to a lexical and

syntactic analysis of the VHDL code that helps identify

different VHDL statements. The parsing is done line by

line, based on the proposed VHDL PEG[6]. The tool reads

the HDL line and translates it into a stream of tokens: each

token is a sequence of characters representing a symbol,

such as an identifier, an operator, and so on. Therefore,

based on the VHDL PEG finite set of parsing rules and the

sequence of tokens, each statement is identified in its

context, and corresponding data and dependencies are

extracted and stored in the corresponding statement

representation.

B. Module Legal HLS Extraction:

 The procedure implementations used for the
module legal HLS extraction is described in [9]. A VHDL
operation consists of a set of arithmetic or logical
operators whose inputs can be signals, variables, or
constants. An operation on N different signals x can be
modeled as a function f as follows:
f (a1X1,...,ajXj,...,aNXN), with j ∈{1 ... N} and a= cte;
1) The function f corresponds to the set of operators;
2) The inputs of the function correspond to the operands;
3) The domain (D) of the function corresponds to the set
of ranges of operand values

4) the range R of f is the set of all resulting outputs

Fig: 6 Statements identification flow chart

Here is an example of an operation: c_s <= c_s + 1;

where the function f is: +; the inputs are: x0= c_s and x1= 1;

the domain(D)of the function is: D = {[c_smin, c_smax] , [1,

1]}; the range Rof f is: R(c_s) =[c_smin, c_smax+1]. As for

the domain, it is initially set to the initial state signal

values (LV0j) computed based on the respective signal

types, and is updated with every condition evaluation.

 HALS Computation: As mentioned earlier, an HALS is

the set of state signal ranges of values that can appear

simultaneously in the design under the same conditions. It

corresponds to the values extracted from signal

assignments, under the same conditions, as well as the

actual condition values. Each HALS is, therefore,

characterized by its constraints that consist of the set of

conditions, and its effects that consist of the signal

assignments under these conditions

C. Design Hierarchy Analysis:

 During syntactic and lexical analyses, port mapping is

examined and connections with other instances are

detected. Design hierarchy borders are crossed to take

upper-level and lower-level instances into account. A data

structure is built, where each instance is defined with its

hierarchy level, its input dependencies as well as its

output dependencies.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 10 | Oct -2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 1075

Table:2 Binary counter HALS States

Id_halstate

I IS O

In1 C_s Out

min max min max min max

1 0 0 0 0 0 0

2 1 1 1 9 0 0

3 1 1 0 0 1 1

Mod-5 Counter:

Id_halstate min max min max min Max

1 0 0 0 0 0 0

2 1 1 1 5 0 0

3 1 1 0 0 1 1

D. Design Legal HALS Extraction
 To compute the final design set of legal HALS values,

we need to combine the set of legal HALS of all the

instantiated modules while considering instance

connections and dependencies[1]. The combination

process is carried out based on the flatten model of the

design that shows explicitly the instance dependencies

and connections. All combined sets are built based on

instance connections while respecting HALS dependencies

and avoiding having ISEs built as follows:

 For each pair of connected instances (A and B),

we compute the resulting combined set of legal HALS

values whose constraint may be narrowed, as compared

with the initial sets. Once the whole set Q(A, B) is

extracted, it will be combined to HALS sets of other

instances that are connected to A and/or B.

For each HALS_{i}(A) \in Q_{A}

For each HALS_{j}(B) \in Q_{B}
X= Out (A) \cap_{ }{In (B)}
//where out/In(M) is the set of possible values of
//the output/input of the module M
If X = Ø {then}
Next;
Else
HALS(A,B) =

Q(A, B) = {Q(A, B) U HALS(A, B)}

End if;

End for;

End for.

 The process continues until all instances of the

design have been checked. The resulting set of the whole

process models the legal HALS values of the entire design,

the detailed procedure is described in [10] and [11].

E. Functional Constraint Extraction Algorithm:
 Our objective is to construct one large functional

constraint that models the design. To respect the ATPG

tools requirements, the functional constraint should be a

Boolean formula over signal nets, which is a list of Boolean

operations involving several literals, with a literal being

either a variable involved in the function or its negation.

This is true for most commercial ATPG tools as well.

Otherwise, if the ATPG expects a different syntax, our tool

can easily be adapted to produce the corresponding

output. After extracting the legal HLS set of the design, we

proceed to constraint extraction. We first extract, from

each legal HALS value, a constraint called the HLS

constraint, which is a conjunction of individual constraints

whose literals are the state signal bits.

 The following is description of a pseudo code for

extracting functional constraints:

1) k = 1;//number of HALS;

2) While (k = S){// individual constraints;

3) List(cok,…cnk) =Create_individual_ constraints(S);

4) Ck= c0kand ... and ... c nk;

//conjunction of individual

constraints;

5) k = k + 1;}//end while;

6) //the design constraint is the disjunction of HLS

constraints;

7) C = C0 or ... or C.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 10 | Oct -2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 1076

V. PROPOSED VERIFICATION

ENVIRONMENT
 As mentioned before, we proposed in [1] an

automatic verification environment based on the use of

structural test patterns as simulation patterns; more

specifically, the use of launch-on-capture transition test

vectors with emulated scan registers in RTL simulation[2].

To obtain these automatically generated test patterns,

regular steps of the design flow must be performed in a

preliminary way, namely synthesis, scan insertion, and

ATPG.

Fig: 7Verification at Simulation level

 Functional verification continues to be one of the

most expensive and time-consuming components in a

typical design process. Practical functional verification

relies on extensive simulation of directed and/or guided

random tests due to its flexibility and scalability. Although

simulation-based verification can be very effective, its

success both in terms of total effort spent and final

verification coverage achieved depends heavily on the

quality of the tests in use. Effective tests can achieve

higher verification coverage in shorter time, which saves

engineering resources and improves confidence on the

quality of the design under verification (DUV).

 This may seem counterintuitive as those steps are

generally accomplished once the verification of the RTL

model is considered satisfactory. By preliminary, we mean

without any particular constraints (e.g., frequency, area,

and coverage), as these steps have to be redone once

the verification of the RTL model is fully completed.

Consequently, this environment does not aim at verifying

if the scan insertion is properly performed. Once the test

patterns are generated (at the gate level), the proposed

approach emulates the presence of scan register chains

during RTL simulation-based verification, by associating

them to state signals forcing, and resulting in

controllability improvements. In addition, the use of

launch-on-capture transition as fault model helps simulate

and exercise the most efficiently the design functionality

[4]. In addition to the ATPG is used in full scan mode. The

methodology proposed

 However, as underlined earlier, a drawback of this

methodology is the potential presence of ISEs; when the

generated test patterns used in the simulation contains an

ISE signal value, with the DUV and the reference model

having different coding styles, the designs may behave

differently, and inducing false error detection. To

overcome this obstacle, we introduced the constraint

extractor tool proposed in this brief in the verification

environment.

 Fig. 8 shows the complete verification

environment. We assume that a reference model is

available. Note that such a model is also required to apply

most common verification methodologies, such as the

constrained based and pseudorandom methodologies. In

this brief, the golden model used has the same level of

detail as the RTL model verified.

Fig: 8Verification tool

Table:3 Verification Circuit Characteristics:

Circuits VHDL lines PI/PO FF Gates

Buffer 15 4/1 4 5

Counter 20 4/1 4 15

B02 25 3/1 4 25

B03 141 11/8 30 149

B05 332 1/6 34 935

 The proposed environment is fully automated and

incorporates three complementary tools: 1) functional

constraint extractor described in this brief; 2) test bench

generator that adapt and apply structural test patterns in

the RTL simulation; and 3) error detector [1] that

monitors the DUV and the reference model responses for

possible errors.

Table:4 FSM Coverage Comparison

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 10 | Oct -2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 1077

FSM State(%) FSM transition(%)

PRA PA PRA PA

Buffer 100 100 100 100

Counter 75 100 66.6 100

B02 71.4 100 66.6 100

B03 100 100 100 100

B05 79 95 61 94

 We implemented the proposed environment on a

Pentium, Dual-Core CPU, 2.2 GHz processor machine, with

1.99 G of RAM. Experiments were run on some ITC’99

benchmark circuits[8]. Experimental results are presented

under two different angles:

1) the effectiveness of the overall verification environment

in terms of coverage, when compared with other

verification methodologies

2)and also find effective statements in the following

program

Table:5 Fault Coverage Comparison

 No. of injected errors PRA(%) PA(%)

Buffer 20 100 100

Counter 20 64 80

B02 20 34 54

B03 20 40 65

B05 20 45 72

VI.CONCLUSION:
 We presented a new simulation-based verification
methodology based on the automated application of
structural ATPG test patterns in the verification process.
In this brief, we have presented a new methodology for
legal HALS values extraction and functional constraints
built to avoid ISEs in generated test patterns used for
verification. The proposed methodology aims to reduce
complexity and avoid heavy computation as compared
with the techniques presented in the literature. We have
to implement these methodology in verilog Programs with
better results than VHDL program. And also find time
taken to verify our program and no of FSM statements are
executed during this process all are results also we have to
proved.

REFERENCES

[1].C. Hobeika, C. Thibeault, and J. F. Boland,
“Functional Constraint Extraction From Register
Transfer Level for ATPG,” ieee transactions on very
large scale integration (vlsi) systems, vol. 23, no. 2,
february 2015

[2]. C. Hobeika, C. Thibeault, and J. F. Boland,
“Automatic verification methodology based on structural
test patterns,” in Proc. Joint IEEE NEWCAS Taisa Conf.,
Jul. 2009, pp. 292–295.
[3] “Functional verification study,” in Industry Study
(Conjunction with Mentor Graphics). San Francisco, CA,
USA: FarWest, 2007.
[4] C. Hobeika, C. Thibeault, and J. F. Boland, “Use of
structural tests in RTL verification,” in Proc. 1st Microsyst.
Nanoelectron. Res. Conf., 2008, pp. 133–136.
[5]B. Ford, “Parsing expression grammars: A recognition-
based syntactic foundation,” ACM SIGPLAN Notices, vol. 39,
pp. 111–122, Jan. 2004.
[6]. C. Hobeika, C. Thibeault, and J. F. Boland, “Illegal state
extraction from register transfer level,” in Proc. 8th IEEE
Int. NEWCAS Conf., Jun. 2010, pp. 245–248.
[7] S. Davidson. (1999). Characteristics of the ITC’99
Benchmark Circuits.[Online]. Available:
http://www.cerc.utexas.edu/itc99-benchmarks
 [8]W. K. Lam, “Hardware design verification,
simulation and formal method based approaches,” in
Prentice-Hall Modern Semiconductor Design Series. Upper
Saddle River, NJ, USA: Person Education Inc.,2005.
[9]C. Hobeika, C. Thibeault, and J. F. Boland. (2013,
Oct.). TechnicalReport: FunctionalConstraint Extraction
from RTL for ATPG [Online]. Available: http://arxiv.org,
arXiv:1310.01001

 BIOGRAPHIES:

Venkata Ramana A M.Tech in

Digital Systems and Computer

Engineering at JNTU,Anantapur. I

am interested in VLSI Design

flow and verification of ASICS at

logic level.

Anusha.J did M.Tech in

JNTU,Anantapur.she is interest

in digital electronics and ASIC

Design implementation. I did

research in computer networks.

http://www.cerc.utexas.edu/itc99-benchmarks
http://arxiv.org/

