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Abstract - The gate level techniques are used in 
simulation to identify ISE’s and also these techniques 
are implemented based on Sequential Automatic Test 
Pattern Generation (ATPG). But now a day’s IC’s are 
very complex so by using above gate level method, it is 
very difficult to compute and also in this process, 
illegal states are occur but this causes unwanted 
behavior and false error detection in the verification 
process. To overcome this problem a new tool is 
proposed based on VHDL Parsing Expression 
Grammar (PEG). Functional Constraint Extraction 
(FCE) at Register Transfer Level approach is used in 
this new tool. This Functional Constraint Extraction 
(FCE) is used in ATPG process to generate pseudo 
functional scan test patterns which avoids ISE’s. The 
end result of this brief is an automatic tool that 
performs HDL parsing and analysis of legal state 
computation and functional constraint generation. 
This approach is also used to avoid the false error 
detection during RTL simulation. 

Index Terms— Parsing Identification, HALS States, 
ATPG, Verification 

  

I. INTRODUCTION 

 As hardware complexity continues to follow 

Moore’s law, verification complexity is also becoming even 

more challenging, with verification now estimated to be 

taking 50%–70% of the total time of a project [1]. . Results 

obtained by applying this methodology have confirmed its 

potential in terms of verification coverage and time 

improvements. Only an experienced Verification 

Consultant can transform an VLSI engineer into a 

Verification Expert. verification folks who are new to CDV 

usually ask, which option [1or 2] is good for achieving 

100% coverage: [1] Minimum number of seeds and 

maximum transactions pretest case[2] Minimum number 

of transactions per test case and many seeds. It's always 

good to consider various factors like the simulation 

runtime, DUT features, unusual bugs etc. while defining 

the test case, rather than just focusing only on reaching 

coverage goals. Most of the verification engineers start 

their career as an HVL expert. They realize the importance 

of Assertion Based Verification, only when they become 

seasoned verification engineers, especially when they take 

the complete ownership of RTL sign-off. If you are working 

in the VLSI domain, especially in the functional verification 

domain, you should know about the latest verification 

methodologies and technologies. Most of the engineers 

run the regressions and spend most of their time on 

analyzing the coverage reports. They wrongly assume that 

they are verifying the chips. Actually they are managing 

the regressions and reporting the bugs to the designers. 

Functional verification continues to be one of the most 

expensive and time-consuming components in a typical 

design process. Practical functional verification relies on 

extensive simulation of directed and/or guided random 

tests due to its flexibility and scalability Shown in Fig.1. 

 

  
Fig 1: The additional tools of the proposed   methodology 

in a standard implementation flow 

 Although simulation-based verification 

can be very effective, its success both in terms of total 

effort spent and final verification coverage achieved 

depends heavily on the quality of the tests in use. Effective 
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tests can achieve higher verification coverage in shorter 

time, which saves engineering resources and improves 

condense on the quality of the design under verification 

(DUV). However, generating effective tests for complex 

designs has always been a challenging problem. Directed 

tests are written to cover corner cases and important 

features of a design. Writing directed tests has been a 

dominant test generation methodology even with the 

emergence of constrained random test generation. 

Directed tests are crucial for verification as in many cases 

they are the only tests that can reach corner cases.  

These patterns are generated by an ATPG tool 

based on a launch-on capture transition fault model. The 

result is a verification environment that can be seamlessly 

integrated in the design flow, without requiring circuit 

modification or remodeling steps. Figure 1 describes a 

standard design flow and its relationship with verification 

and test, more specifically the scan-based test[1] and 

Register Transfer Level (RTL) model verification. 

II. EXISTING METHOD 

 The proposed verification environment encloses 
RT and gate levels. We assume that a SystemC golden 
model is available and used as a reference model by the 
verification system at the system level. Note that such a 
model is also required to apply any verification 
methodology. In this paper, the SystemC golden model 
used has the same level of details as the RTL model 
verified. It is also possible to use a transaction level 
SystemC model as a golden model. In fact, in [2] the 
authors describe how to use RTL test benches for 
verification of a SystemC model at a higher abstraction 
level (as transaction level). 

A. Test bench Generator Tool 

 
Fig:2 Verification tool 

One of the key components of the proposed 
methodology is its automated aspect. In fact, to effectively 
generate verification data for functional VHDL 
descriptions based on structural test patterns, we built up 
an automatic test bench generator that executes the 
following algorithm: 

 

B. Nodes list checker: 
               A list checker module is added to the verification 
environment. A list of transitions and states to be 
simulated based on the FSM model is created, and for each 
simulation the module checks which state/transition had 
been simulated by the patterns and update its list by 
removing the one simulated. After the simulation is 
completed, the set of nodes not covered will include the 
set of states and transitions remaining in the list. This list 
can  be used for further directed simulations, to identify 
the target nodes for directed patterns in order to 
accomplish an even more complete coverage. 

III.PARSING EXPRESSION GRAMMER 

 A  PEG is  a  recognition-based formal  foundation  

for  language syntax. It describes the language syntax in 

terms of a set of rules [6]. A VHDL PEG was defined in [6], 

but the grammar was not complete, as it did not cover 

different condition constructs and overlaps as well as 

design hierarchy. Based on the definition in [6], we 

developed a more complete VHDL PEG described as 

follows. 

1.  ∑ = [keywords, symbols (‘<=’,  ‘(‘…), operators]. In 
Fig. 2, terminal symbols are identified, in upper case. 
2)  N =[Module, entity,architecture,   port,   component, 
signal_type, component_inst,  process,  if_st,  case_st, 
case_comp,   condition,   signal_ass,   operation,   
VHDL_type, label, value, with_st, when_st]. 
3)  es = Module. 
4)  The set of parsing rules P is defined in Table I, where 
terminal 

Table: 1Parsing rules 

Parsin

g 

Rule 

E A
 

P1 Entity architecture Module 

P2 'ENTITY IS' port 'ENTITY END;' Entity 

P3 
'PORT ('(label':'('IN'|'OUT') 

VHDL_type)+');' 
Port 

P4 

Component *'BEGIN' 

(component_inst*|Process*| 

signal_ass*|with_st*|when_st*) 

'END ARCHITECTURE;' 

Architecture 
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P5 
'COMPONENT IS' port 

'END COMPONENT;' 
Component 

P6 'SIGNAL' label'; ' VHDL_type ';' Signal type 

P7 
label; label 'PORT MAP 

('label=>label)+');' 

component_in

st 

P8 

'BEGIN'(if_st*|case_st*|signal_a

ss+) 

'END PROCESS' 

Process 

P9 
(numerical value| 

label)(operator operation)? 
Operation 

P10 

'IF('condition')THEN' 

(case_statement *| if_statement 

*| 

signal_assignment+)('ELSE 

case_statement*| if_statement 

*| 

signal_assignment+)?'END IF;' 

if_st 

P11 
'CASE'label 'IS'(case_ 

component)+ 'END CASE;' 
case_st 

P12 
'WHEN'value=> 

case_st*|if_st| signal_ass+';' 
case_comp 

P13 
Label('<'|'>'|'<'|'>'|'=') 

operation 
Condition 

P14 Label<=(value| operation)';' Signal_ass 

P15 KEY WORDS+ VHDL_type 

P16 [a-z]+ Label 

P17 [0-9]+ Values 

P18 
'WITH' label 'SELECT' 

(signal_ass | 'WHEN'value) 

With_stateme

nt 

P19 

Signal_ass |'WHEN' condition 

('ELSE'| label| 'WHEN'| 

condition)* 

WHEN_st 

Therefore, the analysis performed based on the 
proposed VHDL PEG, is able to identify the majority of 
VHDL constructs except user defined types as well as 
subtypes, files, and loop constructs. 
 

IV.PROPOSED METHODE 
 It is important to specify that we consider two 

types of states:  

 

Fig: 3HALS State identification flow 

 The high abstraction level state (HALS) and the 

low abstraction level or RTL state (simply called state in 

the rest of this brief) related to the state signals. We define 

a high-level state as the set of RTL state signal 

assignments associated with particular conditions within a 

process. So Above HALS state represent in the following 

way that are nothing but RTL States. 

Working with HALS instead of RTL states 

minimizes the computation complexity and time. Instead 

of computing the corresponding results for each unique 

state value and each possible combination, which may 

increase the procedure time and complexity, we compute 

ranges of state signal values that can occur at the same 

time, defining an HALS(Fig 3 and 4). 

 

                                    Fig: 4HALS states 
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Implementing tool: 

 

                Fig: 5 Implanting Tool Flow chart 

A. VHDL Parsing and Identification 

       Our first step in the methodology is a VHDL parsing 

and identification, which corresponds to a lexical and 

syntactic analysis of the VHDL code that helps identify 

different VHDL statements. The parsing is done line by 

line, based on the proposed VHDL PEG[6]. The tool reads 

the HDL line and translates it into a stream of tokens: each 

token is a sequence of characters representing a symbol, 

such as an identifier, an operator, and so on. Therefore, 

based on the VHDL PEG finite set of parsing rules and the 

sequence of tokens, each statement is identified in its 

context, and corresponding data and dependencies are 

extracted and stored in the corresponding statement 

representation. 

B. Module Legal HLS Extraction: 

 The procedure implementations used for the 
module legal HLS extraction is described in [9]. A VHDL 
operation consists of a set of arithmetic or logical 
operators whose inputs can be signals, variables, or 
constants. An operation on N different signals x can be 
modeled as a function f as follows: 
f (a1X1,...,ajXj,...,aNXN), with j ∈{1 ... N} and a= cte; 
1) The function f corresponds to the set of operators; 
2) The inputs of the function correspond to the operands; 
3) The domain (D) of the function corresponds to the set 
of ranges of operand values 

            
4) the range R of f is the set of all resulting outputs 

 
 

 

Fig: 6 Statements identification flow chart 

Here is an example of an operation: c_s <= c_s + 1; 

where the function f is: +; the inputs are: x0= c_s and x1= 1; 

the domain(D)of the function is: D = {[c_smin, c_smax] , [1, 

1]}; the range Rof f is: R(c_s) =[c_smin, c_smax+1]. As for 

the domain, it is initially set to the initial state signal 

values (LV0j) computed based on the respective signal 

types, and is updated with every condition evaluation. 

 HALS Computation: As mentioned earlier, an HALS is 

the set of state signal ranges of values that can appear 

simultaneously in the design under the same conditions. It 

corresponds to the values extracted from signal 

assignments, under the same conditions, as well as the 

actual condition values. Each HALS is, therefore, 

characterized by its constraints that consist of the set of 

conditions, and its effects that consist of the signal 

assignments under these conditions  

C. Design Hierarchy Analysis: 

          During syntactic and lexical analyses, port mapping is 

examined and connections with other instances are 

detected. Design hierarchy borders are crossed to take 

upper-level and lower-level instances into account. A data 

structure is built, where each instance is defined with its 

hierarchy level, its input dependencies as well as its 

output dependencies. 
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Table:2 Binary counter HALS States 

Id_halstate 

I IS O 

In1 C_s Out 

min max min max min max 

1 0 0 0 0 0 0 

2 1 1 1 9 0 0 

3 1 1 0 0 1 1 

 

Mod-5 Counter: 

Id_halstate min max min max min Max 

1 0 0 0 0 0 0 

2 1 1 1 5 0 0 

3 1 1 0 0 1 1 

D. Design Legal HALS Extraction 
            To compute the final design set of legal HALS values, 

we need to combine the set of legal HALS of all the  

instantiated modules while considering instance 

connections and dependencies[1]. The combination 

process is carried out based on the flatten model of the 

design that shows explicitly the instance dependencies 

and connections. All combined sets are built based on 

instance connections while respecting HALS dependencies 

and avoiding having ISEs built as follows: 

  For each pair of connected instances (A and B), 

we compute the resulting combined set of legal HALS 

values whose constraint may be narrowed, as compared 

with the initial sets. Once the whole set Q(A, B) is 

extracted, it will be combined to HALS sets of other 

instances that are connected to A and/or B. 

 

 

 

 

 

For each HALS_{i}(A) \in Q_{A} 

For each HALS_{j}(B) \in Q_{B} 
X= Out (A) \cap_{ }{In (B)} 
//where out/In(M) is the set of possible values of 
//the output/input of the module M 
If X = Ø {then} 
Next; 
Else 
HALS(A,B) = 

 

Q(A, B) = {Q(A, B) U HALS(A, B)} 

End if; 

End for; 

End for. 

          The process continues until all instances of the 

design have been checked. The resulting set of the whole 

process models the legal HALS values of the entire design, 

the detailed procedure is described in [10] and [11]. 

E. Functional Constraint Extraction Algorithm: 
 Our objective is to construct one large functional 

constraint that models the design. To respect the ATPG 

tools requirements, the functional constraint should be a 

Boolean formula over signal nets, which is a list of Boolean 

operations involving several literals, with a literal being 

either a variable involved in the function or its negation. 

This is true for most commercial ATPG tools as well. 

Otherwise, if the ATPG expects a different syntax, our tool 

can easily be adapted to produce the corresponding 

output. After extracting the legal HLS set of the design, we 

proceed to constraint extraction. We first extract, from 

each legal HALS value, a constraint called the HLS 

constraint, which is a conjunction of individual constraints 

whose literals are the state signal bits.  

 The following is description of a pseudo code for 

extracting functional constraints: 

1) k = 1;//number of HALS; 

2) While (k = S){// individual constraints; 

3) List(cok,…cnk) =Create_individual_ constraints(S); 

4) Ck= c0kand ... and ... c nk; 

//conjunction of individual 

constraints; 

5) k = k + 1;}//end while; 

6) //the design constraint is the disjunction of HLS 

constraints; 

7) C = C0 or ... or C. 
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V.  PROPOSED VERIFICATION 

ENVIRONMENT 
           As mentioned before, we proposed in [1] an 

automatic verification environment based on the use of 

structural test patterns as simulation patterns; more 

specifically, the use of launch-on-capture transition test 

vectors with emulated scan registers in RTL simulation[2]. 

To obtain these automatically generated test patterns, 

regular steps of the design flow must  be performed in a  

preliminary way,  namely synthesis, scan insertion, and 

ATPG. 

 
Fig: 7Verification at Simulation level 

 Functional verification continues to be one of the 

most expensive and time-consuming components in a 

typical design process. Practical functional verification 

relies on extensive simulation of directed and/or guided 

random tests due to its flexibility and scalability. Although 

simulation-based verification can be very effective, its 

success both in terms of total effort spent and final 

verification coverage achieved depends heavily on the 

quality of the tests in use. Effective tests can achieve 

higher verification coverage in shorter time, which saves 

engineering resources and improves confidence on the 

quality of the design under verification (DUV).  

 This may seem counterintuitive as those steps are 

generally accomplished once the verification of the RTL 

model is considered satisfactory. By preliminary, we mean 

without any particular constraints (e.g., frequency, area, 

and coverage), as these  steps  have  to  be  redone  once  

the  verification of  the  RTL model is fully completed. 

Consequently, this environment does not aim at verifying 

if the scan insertion is properly performed. Once the test 

patterns are generated (at the gate level), the proposed 

approach emulates the presence of scan register chains 

during RTL simulation-based verification, by associating 

them to state signals forcing, and resulting in 

controllability improvements. In addition, the use of 

launch-on-capture transition as fault model helps simulate 

and exercise the most efficiently the design functionality 

[4]. In addition to the ATPG is used in full scan mode. The 

methodology proposed 

 However, as underlined earlier, a drawback of this 

methodology is the potential presence of ISEs; when the 

generated test patterns used in the simulation contains an 

ISE signal value, with the DUV and the reference model 

having different coding styles, the designs may behave 

differently, and inducing false error detection. To 

overcome this obstacle, we introduced the constraint 

extractor tool proposed in this brief in the verification 

environment. 

    Fig. 8 shows the complete verification 

environment. We assume that a reference model is 

available. Note that such a model is also required to apply 

most common verification methodologies, such as the   

constrained based and pseudorandom methodologies. In 

this brief, the golden model used has the same level of 

detail as the RTL model verified. 

 
Fig: 8Verification tool 

 

Table:3 Verification Circuit Characteristics: 

Circuits VHDL lines PI/PO FF Gates 

Buffer 15 4/1 4 5 

Counter 20 4/1 4 15 

B02 25 3/1 4 25 

B03 141 11/8 30 149 

B05 332 1/6 34 935 

  

 The proposed environment is fully automated and 

incorporates three complementary tools: 1) functional 

constraint extractor described in this brief; 2) test bench 

generator that adapt and apply structural test patterns in 

the RTL simulation; and 3) error detector [1] that 

monitors the DUV and the reference model responses for 

possible errors.  

Table:4 FSM Coverage Comparison 
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FSM State(%) FSM transition(%) 

PRA PA PRA PA 

Buffer 100 100 100 100 

Counter 75 100 66.6 100 

B02 71.4 100 66.6 100 

B03 100 100 100 100 

B05 79 95 61 94 

  

 We implemented the proposed environment on a 

Pentium, Dual-Core CPU, 2.2 GHz processor machine, with 

1.99 G of RAM. Experiments were run on some ITC’99 

benchmark circuits[8]. Experimental results are presented 

under two different angles:  

1) the effectiveness of the overall verification environment 

in terms of coverage, when compared with other 

verification methodologies  

2)and also find effective statements in the following 

program 

 

Table:5 Fault  Coverage Comparison 

 No. of injected errors PRA(%) PA(%) 

Buffer 20 100 100 

Counter 20 64 80 

B02 20 34 54 

B03 20 40 65 

B05 20 45 72 

 

VI.CONCLUSION: 
                We presented a new simulation-based verification 
methodology based on the automated application of 
structural ATPG test patterns in the verification process. 
In this brief, we have presented a new methodology for 
legal HALS values extraction and functional constraints 
built to avoid ISEs in generated test patterns used for 
verification. The proposed methodology aims to reduce 
complexity and avoid heavy computation as compared 
with the techniques presented in the literature. We have 
to implement these methodology in verilog Programs with 
better results than VHDL program. And also find time 
taken to verify our program and no of FSM statements are 
executed during this process all are results also we have to 
proved.  
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