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Abstract - Big data is a term for referring too large and 
complex data sets that are difficult to process and store with 
the existing technologies. Data in the world is growing so fast 
in such a way that it will never be the same. The noise in that 
data is also increasing in the same  manner, this causes a big 
problem in the mining. When searching in uncertain data it 
consists of the existential probabilities. User are only 
interested in an tiny portion of data. There exists many 
techniques for working with big data algorithms to mine the 
uncertain data but they are not giving satisfiable results. So 
we propose an algorithm which will be using the map reduce 
model with the apriori algorithm to mine the uncertain big 
datasets. 
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1.INTRODUCTION 
 

Big data is a broad term for datasets so large or complex 
that traditional data processing applications are inadequate. 
Challenges include analysis, capture, data curation, search, 
sharing, storage, transfer, visualization, querying and 
information privacy. The term often refers simply to the use 
of predictive analytics or certain other advanced methods to 
extract value from data, and seldom to a particular size of 
data set. Accuracy in big data may lead to more confident 
decision making, and better decisions can result in greater 
operational efficiency, cost reduction and reduced risk. 
Analysis of data sets can find new correlations to spot 
business trends, prevent diseases, combat crime and so on. 
Scientists, business executives, practitioners of medicine, 
advertising and governments alike regularly meet difficulties 
with large data sets in areas including Internet search, 
finance and business informatics. Datasets are growing 
rapidly in part because they are increasingly gathered by 
cheap and numerous information-sensing mobile devices, 
aerial (remote sensing), software logs, cameras, 
microphones, Radio-Frequency Identification readers, 
wireless sensor networks. Every day 2.5 exabytes 
(2.5×1018) of data is created. One question for large 
enterprises is determining who should own big data 
initiatives that affect the entire organizations technology 
advances, high volumes of valuable data such as streams of 
banking, financial, marketing, telecommunication, biological, 
medical, life science, and social data are generated in various 

real-life applications in modern organizations and society. 
This leads us into the new era of Big data [18], which refer to 
interesting high-velocity, high value, and/or high-variety 
data with volumes beyond the ability of commonly-used 
software to capture, manage, and process within a tolerable 
elapsed time. Hence, new forms of processing data are 
needed to enable enhanced decision making, insight, process 
optimization, data mining and knowledge discovery. This 
drives and motivates research and practices in Big data 
analytics [1], [23] and Big data mining [3],[20]. Having 
developed systematic or quantitative processes to mine and 
analyse Big data allows us to continuously or iteratively 
explore, investigate, and understand past business 
performance so as to gain new insight and drive science or 
business planning. To handle Big data, researchers proposed 
the use of a high-level programming model called 
MapReduce to process high volumes of data by using parallel 
and distributed computing [25] on large clusters or grids of 
nodes, commodity machines, which consist of a master node 
and multiple worker nodes. As implied by its name, 
MapReduce involves two key functions: “map” and “reduce”. 
An advantage of using the MapReduce model is that users 
only need to focus on (and specify) these “map” and “reduce” 
functions without worrying about implementation details for 
(i) partitioning the input data, (ii) scheduling and executing 
the program across multiple machines, (iii) handling 
machine failures, or (iv) managing inter-machine 
communication. 
 
 

2. BACKGROUND 
 
      Here,  we  provide  some  background  information  about 
(A) mining uncertain data, (B) mining with constraints, (C) 
the MapReduce model and (D) mining with the MapReduce 
model. 

A. Mining Frequent Patterns from Uncertain Data 

Let (i) Item be a set of m domain items and (ii) X = {x1, x2, . . . , 
x k } be a k-itemset (i.e., a pattern consisting of k items), 
where X ⊆ Item and 1 ≤ k ≤ m. Then, a transactional database 
is the set of n transactions, where each transaction tj ⊆ Item 
(for 1 ≤ j ≤ n). The projected database of X is the set of all 
transactions containing X . Unlike precise databases, each 
item xi in a transaction tj = {x1, x2,…, xk} in an uncertain 
database is associated with an existential probability value 
P (xi, tj ), which represents the likelihood of the presence of xi 
in tj [11]. Note that 0 < P (xi, tj ) ≤ 1. The existential 
probability P (X, tj ) of a pattern X in tj 
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It is then the product of the corresponding existential 
probability values of every item x within X when these items 
are indepen- dent [11]: P (X, tj ) =   x∈X P (x, tj ). The expected 
support expSup(X) of X in the database is the sum of P (X, tj ) 
over all n transactions in the database  

 

where P(x, tj) is the existential probability value of item x 
intransaction tj. With this notion of expected support, existing 
tree-based algorithms—such as UF-growth [14], CUF-growth 
[15] and PUF-growth [16]—mine frequent patterns from 
uncertain data as follows. The algorithms first scan the 
uncertain database once to compute the expected support of 
all domain items (i.e., singleton itemsets). Infrequent items 
are pruned as their extensions/supersets are guaranteed to 
be infrequent. The algorithms then scan the database a 
second time to insert all transactions (with only frequent 
items) into a tree (e.g., UF-tree [14], CUF-tree [15], or PUF-
tree [16]). Each node in the tree captures (i) an item x, (ii) its 
existential probability P(x, tj), and (iii) its occurrence count. 
At each step during the mining process, the frequent patterns 
are expanded recursively.A pattern X is frequent in an 
uncertain database if expSup(X) ≥ a user-specified minimum 
support threshold minsup. Given a database and minsup, the 
research problem of frequent pattern mining from 
uncertain data is to discover from the database a complete 
set of frequent patterns having expected support ≥ minsup. 

B. Mining Frequent Patterns that Satisfy User-Specified 
Constraints 
An existing constrained frequent pattern mining framework 
[9], [10], [19] allows the user to use a set of SQL-style 
constraints to specify his interest for guiding the precise 
data mining process so that only those frequently occurring 
sets of market basket items satisfying the user-specified 
constraints are found. This avoids unnecessary computation 
for mining those uninteresting frequent patterns. Besides 
market basket items, the set of constraints can also be 
imposed on items, events or objects in other domains. The 
following are some examples of user constraints. Constraint 
C1 ≡m in(X.Snowfall) ≥ 4cm expresses the user interest in 
finding every frequent pattern X such that the minimum 
amount of snowfall among all meteorological records in X is 
at least 4cm. Similarly, C2 ≡ max(X.Temperature) ≤ −10 ◦C 
says that the maximum temperature among all 
meteorological records matching a pattern X is at most −10 
◦C. Constraint C3 ≡ X.Location = Anchorage expresses the user 
interest in finding every frequent pattern X such that all  
vents in X are held in Anchorage, AK, USA; C4 ≡ X.Weight ≥ 
32kg says that the weight of each object in X is at least 32kg. 
Constraints C5 ≡ sum(X.Snowfall) ≤ 15cm says that the 
cumulative snowfall on all selected meteorological records 
in X is at most 15cm; C6 ≡ diff(X.Temperature) = 
max(X.Temperature) − min(X.Temperature) ≤ 20 ◦C says 
that the difference between the maximum and minimum 
temperatures in X is at most 20 ◦C. User-specified constraints 
can generally be categorized into several overlapping classes 
according to the properties that they possess. The first four 
aforementioned constraints in particular can be categorized 

into a popular class of constraints called succinct anti-
monotone (SAM) constraints, which possess the properties 
of both succinctness and anti-monotonicity. 

Definition 1: An itemset SSj ⊆ I t e m is a succinct set if it 
can be expressed as a result of selection operation σp  
where (i) σ is the usual SQL-style selection operator, (ii) p is a 
selection predicate and (iii) Item is a set of domain items. A 
powerset of items SP ⊆ 2Item is a succinct powerset if there is 
a fixed number of succinct sets SS1, . . ., SSk ⊆ Item such that 
SP can be expressed in terms of the powersets of SS1, . . ., SSk 
using set union and/or set difference operators. A constraint 
C is succinct [10] provided that the collection of patterns 
satisfying C is a succinct powerset. 

Definition 2: A constraint C is anti-monotone [10] if and 
only if all subsets of a pattern satisfying C also satisfy C. 
A frequent pattern X is valid in an uncertain database 
if such a frequent pattern also satisfies the user-specified 
constraints. Given (i) an uncertain database, (ii) minsup and 
(iii) user-specified constraints (e.g., the SAM constraints), the 
research problem of constrained frequent pattern mining 
from uncertain data is to discover from the database a 
complete set of patterns having expected support ≥ minsup 
(i.e., frequent patterns), which also satisfy the user-specified 
constraints (i.e., valid patterns). 

C. The MapReduce Programming Model As a high-level 
programming model for processing vast amounts of data, 
MapReduce [6] usually uses parallel and distributed 
computing on clusters or grids of nodes (i.e., computers). The 
ideas behind MapReduce can be described as follows. As 
implied by its name, MapReduce involves two key functions: 
“map” and “reduce”. The input data are read, divided into 
several partitions (sub problems), and assigned to different 
processors. Each processor executes the map function on 
each partition (subproblems). The map function takes a pair 
of key, value  data and returns a list of key, value  pairs as an 
intermediate result: map: key1, value1 → list of key2, value2 , 
where (i) key1 & key2 are keys in the same or different 
domains, and (ii) value1 & value2 are the corresponding 
values in some domains. Afterwards, these pairs are shuffled 
and sorted. Each processor then executes the reduce 
function on (i) a single key from this intermediate result 
together with (ii) the list of all values that appear with this 
key in the intermediate result. The reduce function 
“reduces”—by combining, aggregating, summarizing, 
filtering, or transforming the list of values associated with a 
given key (for all k keys) and returns (i) a list of k pairs of 
keys and values, (ii) a list of k values, or simply (iii) a single 
(aggregated or summarized) value: reduce: key2, list of 
value2 →list of key3, value3 reduce: key2, list of value2 → list 
of value3, or reduce: key2, list of value2 → value3, where (i) 
key2 is a key in some domains, and (ii) value2 & value3 are 
the corresponding values in some domains. Examples of 
MapReduce applications include the construction of an 
inverted index as well as the word counting of a document. 

D. Mining Frequent Patterns Using the MapReduce 
Programming Model 

Earlier works on MapReduce focused either on data 
processing [6] or on some data mining tasks other than 
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frequent pattern mining (e.g., outlier detection [7], structure 
mining [24]). Recently, Lin et al. [17] proposed three Apriori 
based algorithms called SPC, FPC and DPC to mine frequent 
patterns from precise data. Among them, SPC uses single-pass 
counting to find frequent patterns of cardinality k at the k-the 
pass (i.e., the k-th database scan) for k ≥ 1. FPC uses fixed 
passes combined-counting to find all patterns of cardinalities 
k, (k + 1), ..., (k + m) in the same pass or database scan. On the 
one hand, this fixed-passes technique fixes the number of 
required passes from K (where K is the maximum cardinality 
of all frequent patterns that can be mined from the precise 
data) to a user-specified constant. On the other hand, due to 
combined-counting, the number of generated candidates is 
higher than that of SPC. In contrast, DPC uses dynamic-passes 
combined-counting, which takes the benefits of both SPC and 
FPC by taking into account the workloads of nodes when 
mining frequent patterns with MapReduce. Like these three 
algorithms, our proposed algorithm also uses MapReduce. 
However, unlike these three algorithms (which mine frequent 
patterns from precise data using the Apriori-based approach), 
our proposed algorithm mines frequent patterns from 
uncertain data using a tree-based approach. Note that the 
search space for frequent pattern mining for uncertain data is 
much larger than that for precise data due to the presence of 
the existential probability values.  

 

 

3. OUR ALGORITHM FOR MINING UNCERTAIN BIG 
DATA WITH MAPREDUCE 
     Given (i) uncertain Big data, (ii) user-defined minsup, 
(iii) a user-specified constraint C (e.g., a SAM constraint), the 
research problem of constrained frequent pattern mining 
from uncertain Big data is to discover from Big data a 
complete set of patterns having expected support ≥ minsup 
and satisfying C (i.e., valid frequent patterns). 
In this section, we propose our algorithm—which uses 
MapReduce—to mine valid frequent patterns from high 
volumes of uncertain data in a tree-based pattern-growth 
fashion (i.e., in a divide-and-conquer fashion). The algorithm 
uses two sets of the “map” and “reduce” functions during the 
Big data mining process: (A) One set for mining frequent 
singletons and (B) another set for mining frequent non-
singleton patterns. 
A. Mining Valid Frequent Singletons from Big Data 
The key idea behind how our proposed algorithm mines 
frequent patterns (both singletons and non-singletons) that 
satisfy SAM constraints is based on the following 
observations. 
Observation 1 : Due to succinctness, we can precisely 
enumerate all and only those patterns that satisfy the SAM 
constraints by using a member generating function. For 
example, the set of patterns satisfying  
C1 ≡ min (X.Snowfall ) ≥ 4cm, 
which expresses the user interest in finding every frequent 
pattern X such that the minimum amount of snowfall among 
all meteorological records in each X is at least 4cm, is a 
succinct powerset. Thus, the set of patterns satisfying C1 

can be expressed as 2σSnowfall ≥ 4cm(Item). The 
corresponding member generating function can be 
represented as {X | X ⊆ σSnowfall ≥4cm (Item ) }, which 
precisely enumerates all and only those patterns that satisfy 
C1: All these patterns must be comprised of only records 
with snowfall ≥ 4cm. Consequently, valid frequent patterns 
for C1 would be those frequent ones among the valid 
patterns satisfying C1. 
Observation 2 : Due to anti-monotonicity, if a pattern does 
not satisfy the SAM constraints, all its supersets are 
guaranteed not to satisfy the SAM constraints. Thus, any 
pattern that does not satisfy the SAM constraints can be 
pruned. With the above observations, our proposed 
algorithm mines frequent patterns that satisfy the user-
specified SAM constraints by performing the following key 
steps. First, our algorithm reads high volumes of uncertain 
Big data. As each item in the uncertain Big data is associated 
with an existential probability value, the algorithm computes 
the expected support of all domain items (i.e., singleton 
patterns) by using MapReduce. The expected support of any 
pattern can be computed by using Equation (1). Moreover, 
when computing singleton patterns, such an equation can be 
simplified to become the following:  

 
where P(x, tj) is an existential probability of item x in 
transaction tj. Specifically, the algorithm divides the 
uncertain Big data into several partitions and assigns them 
to different processors. The map function receives 
transaction ID, content of that transaction  as input. For 
every transaction tj, the map function emits a key, value  pair 
for each item x ∈ tj. The question is: What should be the key 
and value in the emitted pair? A native attempt is to emit x, 1  
for each occurrence of x ∈ tj. It would work well when 
mining precise data because each occurrence of x leads to an 
actual support of 1. In other words, occurrence of x is the 
same as the actual support of x when mining precise data. 
However, this is not the case when mining uncertain data. 
The occurrence of x can be different from the expected 
support of x when mining uncertain data. For instance, 
consider an item d with existential probability of 0.9 that 
appears only once in the entire uncertain Big database. Its 
expected support may be higher than that of another item f, 
which appears three times but with an existential probability 
of 0.2 in each appearance. Then, expSup( {d }) = 0.9 > 0.6 = 
expSup( {f }).Hence, instead of emitting x, 1  for each 
occurrence of x ∈ t j, our algorithm emits x, P(x, tj)  for each 
occurrence of x ∈ tj. In other words, the map function can be 
specified as follows:  
 For each  tj ∈ partition of the uncertain Big data do 
 for each item x ∈ tj  do 
 emit x, P(x, tj) .  
This results in a list of x, P(x, tj)  pairs with many different 
x and P(x, tj) for the keys and values. Afterwards, these 
x, P(x, tj)  pairs are shuffled and sorted to form x, list of 
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P(x, tj) . Each processor then executes the reduce function on 
these shuffled and sorted x, list of P(x, tj)  pairs and applies 
constraint checks on every item x to obtain the expected 
support of only valid x (i.e., {x } that satisfies the SAM 
constraint CSAM). In other words, the reduce function can 
be specified as follows:  
For each x ∈ x, list of P(x, tj)  do 
if {x } satisfies CSAM then  
set expSup( {x }) = 0; 
for each P(x, tj) ∈ list of P(x, tj) do 
expSup( {x }) = expSup( {x }) + P(x, tj); 
if expSup( {x }) ≥ minsup then 
emit  {x }, expSup( {x }) . 
In a high-level abstract view, the set of the map and reduce 
functions for mining valid frequent singletons from Big data 
can be described as follows: map: ID of transaction tj, 
content of tj → list of x, P(x, tj) ,  in which the master node 
reads and divides uncertain Big data in partitions. The 
worker node corresponding to each partition then outputs 
the x, P(x, tj)  pairs for each domain item x. Then, the reduce 
function sums all existential probabilities of x for each valid x 
to compute its expected support: reduce: x, list of P(x, tj) 
→list of valid frequent {x }, expSup( {x }) .  
Example 1: Let us consider a tiny sample set of an uncertain 
Big database and its auxiliary information as shown 
in Table I with (i) the user-defined minsup=0.9 and (ii) a 
user-specified constraint CSAM ≡ min(X.Snowfall) ≥ 4cm 
(which expresses the user interest in finding every frequent 
pattern X such that the minimum amount of snowfall among 
all meteorological records in X is at least 
4cm). Based on the auxiliary information, we learn that 
domain items a, b, c, e & f (but not d) satisfy CSAM. 
Then, for the first transaction t1, the map function outputs 
a, 0.9 , b, 1.0 , c, 0.5 , d, 0.9 , e, 1.0 , f, 0.2 . Similarly, 
for the second transaction t2, the map function outputs 
a, 0.8 , b, 0.8 , c, 1.0 , e, 0.2 , f, 0.2 ; for the third transaction t3, 
the map function outputs a, 0.4 , f, 0.2 . These pairs are then 
shuffled and sorted. Afterwards, the reduce Function is read 
as, [0.9, 0.8, 0.4]  , b, [1.0, 0.8]  , c, [0.5, 1.0]  , d, [0.9]  , e, [1.0, 
0.2]  & f, [0.2, 0.2, 0.2]  , and outputs {a }, 2.1  , {b }, 1.8  , {c }, 
1.5  & {e }, 1.2  ( i.e.,  valid singletons and their corresponding 
expected support).  Note that the reduce function does not 
read d, [0.9], let alone output {d}, 0.9, because {d} does not 
satisfy CSAM. On the other hand, although the reduce 
function reads f, [0.2, 0.2, 0.2] It does not output  {f}, 0.6 
because valid {f} is infrequent. 
B . Min in g Valid Frequent Non - singleton Patterns from Big 
Data After applying the first set of map-reduce functions, we 
obtain all valid frequent singletons (i.e., domain items that 
satisfy the user-specified constraints) and their associated 
existential support values. The next step is an important and 
computationally intensive step. Our proposed algorithm 
rereads each transaction in the uncertain Big database to 
form an {x}-projected database (i.e., a collection of 
transactions containing x) for each valid frequent singleton 
{x} returned by the first reduce function. The map function 
can be specified as follows:  

For each tj ∈ partition of the uncertain Big data do 
for each {x } ∈  {x }, expSup( {x })  do 
emit  {x }, prefix of tj ending with x . 
As all valid patterns must be comprised of only valid 
singleton 
items (due to the succinctness and anti-monotonicity), our 
proposed algorithm keeps only those valid singleton items 
returned by the first reduce function in each prefix of tj 
when forming an {x }-projected database. Note that no 
additional constraint check is required when forming the 
projected database or mining frequent patterns. 
The worker node corresponding to each projected database 
then builds appropriate trees (e.g., UF-tree, CUF-tree, or PUF-
tree) based on the projected databases assigned to the 
worker node to mine every valid frequent non-singleton 
pattern X (with cardinality k, where k ≥ 2). The worker node 
also outputs X, expSup(X), i.e., every valid frequent non-
singleton pattern with its expected support: 
For each {x } ∈ {x }-projected database do 
build a tree for the {x }-projected database to find X; 
if expSup(X) ≥ minsup then 
emit X, expSup(X)  
In a high-level abstract view, this second set of map-reduce 
functions for mining valid frequent non-singleton patterns 
from Big data can be described as follows: map: ID of 
transaction tj, content of tj → list of valid frequent {x }, part 
of tj with x , (5) in which the master node rereads and 
divides uncertain Big data in partitions. The worker node 
corresponding to each partition helps to form an {x }-
projected database for every valid frequent item x in the 
transactions assigned to that partition. The {x}-projected 
database consists of prefixes of relevant transactions (from 
the uncertain Big database) that end with x. More precisely, 
the worker node outputs {x}, portion of tj for forming the 
{x}-projected database pairs. Then, the reduce function 
shuffles and sorts these pairs of {x }- projected databases, 
from which valid frequent non-singleton patterns can be 
found and their expected support values can be computed: 
reduce: valid frequent {x }, {x }-projected database→ list of 
valid frequent X, expSup(X) . (6)  
Example 2: Let us continue with Example 1, where  
(i) minsup=0.9 and (ii) CSAM ≡ min(X.Snowfall) ≥ 4cm. 
Recall that {a}, {b}, {c} and {e} are valid frequent singletons. 
Our algorithm rereads the uncertain Big database. After 
reading the first transaction t1, the (second) map function 
outputs {b }, {a:0.9, b:1.0 }  (where {a:0.9, b:1.0 } is a prefix of 
t1 ending with item b), {c }, {a:0.9, b:1.0, c:0.5 } and {e }, 
{a:0.9, b:1.0, c:0.5, e:1.0 } (where {a:0.9, b:1.0, c:0.5, e:1.0 } 
contains only valid frequent items—i.e., it does not contain 
invalid item d). Note that this map function does not output 
{a}, {a: 0.9} because {a: 0.9 } does not contain any valid 
frequent item other than itself (i.e., such a prefix of t1 does 
not contribute to the mining of non-singletons). Moreover, 
this map function does not output{f },  a:0.9, b:1.0, c:0.5,e:1.0, 
f:0.2 } either, but due to a different reason. The reason here 
is because {f} is invalid. Similarly, after reading the second 
transaction t2, the map function outputs {b }, {a:0.8,b:0.8 } , 



          International Research Journal of Engineering and Technology (IRJET)      e-ISSN: 2395 -0056 

               Volume: 03 Issue: 03 | Mar-2016                      www.irjet.net                                                               p-ISSN: 2395-0072 

 

© 2016, IRJET       |                  Impact Factor value: 4.45           |              ISO 9001:2008 Certified Journal            |       Page 223 
 

{c }, {a:0.8, b:0.8, c:1.0 }  and  {e }, {a:0.8, b:0.8,c:1.0, e:0.2 } . 
These pairs are then shuffled and sorted. Afterwards, the 
reduce function reads {b}, {b}-projected database. Based on 
this {b}-projected database (which consists of two sub 
transactions {a: 0.9, b: 1.0} and {a: 0.8, b: 0.8}), a tree is built. 
Consequently, valid frequent pattern {a, b} with an expected 
support of 1.54 is found. Similarly, the reduce function reads 
{c}, {c}-projected database. It builds a tree based on this {c }-
projected database (which consists of two sub transactions 
{a:0.9, b:1.0, c:0.5 } and {a:0.8, b:0.8, c:1.0 }), and finds valid 
frequent patterns {a, c }, {a, b, c } & {b, c } with expected 
support values of 1.25, 1.09 & 1.3, respectively. The reduce 
function then reads  {e}, {e}-projected database. It builds a 
tree based on this {e }-projected database (which consists of 
two sub transactions {a:0.9, b:1.0, c:0.5, e:1.0 } and {a:0.8, 
b:0.8, c:1.0, e:0.2 }), and finds valid frequent patterns{a, e } & 
{b,e} with expected support values of 1.06 & 1.16. 
To summarize, the first set of map-reduce functions discover 
four valid frequent singletons (with their corresponding 
expected support values): {a}, 2.1, {b}, 1.8, {c}, 1.5 and {e}, 
1.2. The second set of map-reduce functions discover six 
valid frequent non-singleton patterns (with their 
corresponding expected support values): {a, b }, 1.54 , {a, b, c 
}, 1.09 , {a, c }, 1.25 ,  {a, e }, 1.06 ,{b, c }, 1.3  and {b, e }, 1.16 . 
Hence, our algorithm finds a total of ten frequent patterns 
satisfying CSAM. 
C. Pushing Constraint Checks into the First Map Function 
Recall from Section III-A that the first reduce function 
applies constraint checks to verify whether {x } satisfies the 
user-specified CSAM (i.e., if {x } is valid), then the reduce 
function computes the expected support of valid singleton x  
and returns only frequent singleton {x }. Alternatively, to 
handle the user-specified SAM constraint CSAM, we could 
push CSAM into the mining process earlier (by pushing it 
into the map function instead of the reduce function as 
shown in Section III-A). For instance, we could push the 
constraint checking into the map function so that we only 
emit x, P(x, tj)  for each item x ∈ tj that satisfy CSAM: 
For each tj ∈ partition of the uncertain Big data do 
For each item x ∈ tj and {x} satisfies CSAM do 
emit x, P(x, tj) . 
Afterwards, these valid x, P(x, tj)  pairs are shuffled and 
sorted. Each processor then executes the reduce function on 
the shuffled and sorted pairs to obtain the expected support 
of x. In other words, an alternative reduce function can be 
specified as follows: 
For each x ∈ valid x, list of P(x, tj)  do 
set expSup( {x }) = 0; 
for each P(x, tj) ∈ list of P(x, tj) do 
expSup( {x }) = expSup( {x }) + P(x, tj); 
if expSup( {x }) ≥ minsup then  
emit {x}, expSup( {x}) . 
In a high-level abstract view, this alternative set of the map 
and reduce functions for mining valid frequent singletons 
from Big data can be described as follows: 
map: ID of transaction tj, content of tj → list of valid x, P(x, tj) 
, (7) in which the master node reads and divides uncertain 

Big data in partitions. The worker node corresponding to 
each partition then outputs the valid x, P(x, tj)  pairs for each 
domain item x. Then, the reduce function sums all existential 
probabilities of x for each valid x to compute its expected 
support: reduce: valid x, list of P(x, tj) →list of valid frequent 
{x}, expSup ({x}). (8)  
Example 3 : For comparison between the two approaches 
for mining valid frequent singletons from Big data (i.e., 
comparing the current approach of pushing constraint 
checks into the first map function with the approach of 
pushing constraint checks into the first reduce function), let 
us revisit 
Example 1. We mine the same a tiny sample set of an 
uncertain Big database as shown in Table I with (i) min su 
p=0.9 and (ii) CSAM ≡ min(X.Snowfall) ≥ 4cm. Again, 
based on the auxiliary information, we learn that domain 
items a, b, c, e & f (but not d) satisfy CSAM. Then, for 
the first transaction t1, the map function outputs a, 0.9 , 
b, 1.0 , c, 0.5 , e, 1.0 , f, 0.2 . Note that, by pushing the 
constraint checks into the map function, we no longer emit 
d, 0.9 —let alone perform any bookkeeping in the reduce 
function—because {d } does not satisfy CSAM. Similarly, 
for the second transaction t2, the map function outputs 
a, 0.8 , b, 0.8 , c, 1.0 , e, 0.2 , f, 0.2 ; for the third transaction t3, 
the map function outputs a, 0.4 , f, 0.2 . These 
pairs are then shuffled and sorted. Afterwards, the reduce 
function reads a, [0.9, 0.8, 0.4] , b, [1.0, 0.8] , c, [0.5, 1.0] , 
e, [1.0, 0.2]  & f, [0.2, 0.2, 0.2] , and outputs  {a }, 2.1 , 
 {b }, 1.8 ,  {c }, 1.5  &  {e }, 1.2  as valid singletons and their 
corresponding expected support values. Although the reduce 
function reads f, [0.2, 0.2, 0.2] , it does not output  {f}, 0.6 
because valid {f } is infrequent. Note that, as the map 
function does not emit d, [0.9] , the reduce function does not 
need to read the invalid {d} and thus saves some 
computation. As observed from the above example, there are 
pros and cons between the two approaches for mining valid 
frequent singletons from Big data. For instance, the approach 
that pushes constraint checks into the first reduce function 
(as presented in Section III-A) requires fewer constraint 
checks because the constraint checks are delayed until all 
pairs are shuffled and sorted. Consequently, it only performs 
constraint checks on at most m domain items to see if they 
satisfy CSAM. In contrast, the approach that pushes 
constraint checks into the first map function (as presented 
here in this section) performs constraint checks on all 
occurrences of items in every transaction in the Big 
uncertain database, which is normally. Hence, pushing 
constraint checks into the reduce function is time-efficient 
(due to the reduction in the number of constraint checks), 
especially when the uncertain Big data consist of only a few 
domain items such as DNA sequences (in which the number 
of domain items are m=4 nucleobases “A”, “T”, “C” & “G”) or 
RNA sequences (in which the number of domain items are 
m=4 nucleobases “A”, “U”, “C” & “G”). On the other hand, the 
approach that pushes constraint checks into the first map 
function (as presented here in this section) requires less 
bookkeeping because it emits x, P(x, tj)  pairs only for those 
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items that satisfy CSAM. Consequently, fewer pairs need to 
be shuffled and sorted. Hence, pushing constraint checks into 
the map function is both space-efficient (due to the reduction 
in the number of pairs returned by the map function) and 
time-efficient (due to the reduction in the number of pairs to 
be shuffled and sorted), especially when high volumes of 
high-variety data come at a high velocity such as Big data 
streams. 
D. Mining Frequent Patterns that Satisfy AM Constraints 
So far, we have described how our proposed algorithm 
mines uncertain Big data with MapReduce for frequent 
patterns that satisfy user-specified SAM constraints. 
Although 
many of the commonly used constraints (e.g., the first four 
constraints C1–C4 mentioned in Section II-B) possess the 
properties of both anti-monotonicity and succinctness, there 
are some constraints that do not possess both properties 
(e.g.,  
non-SAM constraints C5 & C6 in Section II-B). To handle 
these non-SAM constraints, we exploit one of these 
properties. 
For instance, we exploit the property of anti-monotonicity. 
Based on Definition 2, if a pattern X does not satisfy an anti-
monotone (AM) constraint CAM, then all its supersets do not 
satisfy CAM. Hence, such an invalid X can be pruned as it 
does not contribute to the mining of frequent patterns of 
future (higher) cardinalities. In this case, we adapt our 
algorithm by exploiting the property of anti-monotonicity as 
follows. We reuse the same approach as described in Section 
III-A or III-C to mine valid frequent singletons from an 
uncertain Big database using the first set of map-reduce 
functions. At the end of this step, the reduce function returns 
a list of valid frequent singletons with their expected support 
values. However, the second set of map-reduce functions for 
handling AM constraints is different due to the following 
observations. 
Observation 3: Let V be the set of domain items that 
individually satisfy the SAM constraints. Then, due to 
succinctness and anti-monotonicity, any non-singleton 
pattern X comprising items from V (i.e., X ⊆ V) is guaranteed 
to satisfy the same SAM constraints. Thus, no constraint 
checks need to be performed when mining valid non-single 
to n patterns. 
Observation 4: Let V be the set of domain items that 
individually satisfy the AM (but not succinct) constraints. 
Then, due to anti-monotonicity, n o t every non-singleton 
pattern X comprising items from V is guaranteed to satisfy 
the same AM constraints. In other words, X ⊆ V may be 
invalid, and thus constraint checks need to be performed 
when mining valid non-singleton patterns. Based on 
Observation 4, we adapt our algorithm by performing 
additional constraint checks in the second reduce function 
for handling AM constraints (cf. the second reduce function 
for handling SAM constraints described in Section III-B): 
For each {x} ∈ {x}-projected database do 
build a tree for the {x }-projected database to find X; 
if expSup (X) ≥ minsup and X satisfies CAM then 

emit X, expSup(X) . 
 
4. EXPERIMENTAL RESULTS 
In this section, we evaluate our proposed algorithm in 
mining user-specified constraints from uncertain Big data. 
We used different benchmark datasets, which include real-
life datasets (e.g., accidents, connect4, and mushroom) from 
the UCI Machine Learning Repository available in  
(http://archive.ics.uci.edu/ml/) and the FIMI Repository 
(http://fimi.ua.ac.be/). We also used IBM synthetic datasets, 
which were generated using the IBM Quest Dataset 
Generator [2]. For our experiments, the generated data 
ranges from 2M to 10M transactions with an average 
transaction length of 10 items from a domain of 1K items. As 
the above real-life and synthetic datasets originally 
contained only precise data, we assigned to each item 
contained in every transaction an existential probability 
from the range (0,1]. All experiments were run using either 
(i) a single machine with an Intel Core i3 2-core processor 
(1.73 GHz) and 8 GB of main memory running a 64-bit 
Windows 7 operating system, or (ii) the Amazon Elastic 
Compute Cloud (EC2) cluster specifically, High-Memory 
Extra Large (m2.xlarge) computing nodes 
(http://aws.amazon.com/ec2).Experimental results show 
that, in terms of accuracy, our algorithm returned the same 
collection of valid frequent patterns as those returned by the 
existing mining framework [9], [10], [19] for finding valid 
frequent patterns from precise data. However, in terms of 
flexibility, our algorithm is not confined to finding valid 
frequent patterns from a database in which existential 
probability values of all items are 1. Our algorithm is capable 
of finding valid frequent patterns from any database, in 
which existential probability values of all items are ranging 
from 0 to 1. The same comments apply to the experimental 
results for our similar experiment with a user-specified AM 
constraint. Moreover, we also experimented with (i) an 
uncertain database and (ii) a user specified SAM constraint 
with 100% selectivity (so that every item is selected). 
Experimental results show that, in terms of accuracy, our 
algorithm returned the same collection of  frequent patterns 
as those returned by the UF-growth [14], CUF-growth [15] 
and PUF-growth [16]. However, in terms of flexibility, our 
algorithm is not confined to handling SAM constraints with 
100% selectivity. Our algorithm is capable of handling SAM 
constraints with any selectivity. Again, the same comments 
apply to the experimental results for our similar experiment 
with a user-specified AM constraint. 
In the second experiment, we demonstrated the efficiency 
of our algorithm. (e.g., < 20,000 seconds) than the runtimes 
(e.g., > 120,000 seconds) required by UF-growth [14]. 
Moreover, shows that our algorithm led to high speedup 
(e.g., 7 to 10 times) even with just 11 nodes. Furthermore, 
show the runtimes of our algorithm decreased when the user 
defined minsup increased. In the third experiment, we 
demonstrated the benefits of constraint pushing in reducing 
the search space of Big data mining. The benefits become 
more obvious they show that, when selectivity decreased 
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(i.e., fewer frequent patterns satisfy the constraints), 
runtimes also decreased, because (I) fewer pairs were 
returned by the map function, (ii) fewer pairs were shuffled 
and sorted by the reduce function, and/or (iii) fewer 
constraint checks were performed. 
 

5. CONCLUSIONS 
 
Existing algorithms mostly focus on association analysis 
enabled by mining interesting patterns from precise 
databases. However, there are situations in which data are 
uncertain. As items in each transaction of these probabilistic 
databases of uncertain data are usually associated with 
existential probabilities expressing the likelihood of these 
items to be present in the transaction, the search space for 
mining from uncertain data is much larger than mining from 
precise data. This matter is worsened as we move into the 
era of Big data. Furthermore, in many real-life applications, 
users may be interested in only a tiny portion of this large 
search space. To avoid wasting lots of time and space in 
computing all frequent patterns first and pruning 
uninteresting ones as a post-processing step, we proposed in 
this paper a tree-based algorithm that (I) allows users to 
express their interest in terms of succinct anti-monotone 
(SAM) constraints and (ii) uses MapReduce to mine 
uncertain Big data for frequent patterns that satisfy the user-
specified constraints. As a result, our algorithm returns all 
and only those patterns that are interesting to the users. 
Moreover, although we focused mostly on handling SAM 
constraints, we also discussed how our algorithm handles 
constraints that are anti monotone (AM) but not succinct. 
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