
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 05 | May-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 521

Types of Scheduling Algorithms in Parallel Computing

Arun Seth, Vishaldeep Singh

Assistant Professor, Department Of Computer Science & Engineering, Guru Nanak Dev University, Regional
Campus Gurdaspur, Punjab, India

Assistant Professor, Department Of Computer Science & Engineering, Guru Nanak Dev University Amritsar, Punjab,
India

---***---
Abstract - In this paper various scheduling techniques for
parallel computing are discussed like Longest Processing Time,
List scheduling and approximation techniques like heuristic
algorithms are discussed. Then some other scheduling
techniques, load balancing and thread scheduling for parallel
computing is discussed. Then summary of various scheduling
algorithms is presented in the end of this paper.

Key Words: Load balancing, Static scheduling, dynamic
scheduling, Gang scheduling, Genetic algorithm.

1. INTRODUCTION

In computing Scheduling refers to a set of policies which
define the order of execution of processes. From all of the
available resources of a computer system that needs
scheduling before use, the CPU is one of the most critical of
them. Multiprogramming is one of the basic and important
scheduling technique. The scheduling in CPU is done to keep
it as busy as possible. In parallel computing, multiple
processors have to be scheduled, and it needs to manage the
resources for all the processors. In managing the resources
for multiple processors, it should be ensured that, there
should not be any overlapping of the resources, and it should
not give any conflicting results. So the scheduling in
multiprocessors is more difficult than scheduling in a single
processor unit.
In scheduling of multiple processors it should be ensured
that any processor should not be overloaded and any
processor should not be under loaded. So the overall system
should be balanced. In multi-programmed memory systems,
when there are multiple ready processes in the main
memory, the scheduler must decide the order of execution of
processes. But in parallel processing system, as there will be
multiple processors, there will be multiple queues, so there
is need of scheduling multiple queues simultaneously. The
scheduling algorithms for multiple processors should be
capable of scheduling all the queues optimally.

1.1 BATCH PROCESSING

The jobs were executed in a group in the order in which
they were entered into the system.

1.2 MULTIPROGRAMMING

There are multiple processes in the memory and there
was need to implement scheduling algorithms.

1.3 PARALLEL PROCESSING

There is execution of multiple processes simultaneously,
so there is increasing demand of more processing speed. In
which there were multiple processors and which were
executing different instructions simultaneously. In it there is
need of scheduling techniques to make them more efficient
and get better results.

2. SCHEDULING IN PARALLEL COMPUTING

Symmetric Multi-processing (SMP), Massively Parallel
Processing (MPP) units, Cluster computing and Non Uniform
Memory Access (NUMA) are the. Symmetric Multi-Processor
is a computer architecture in which multiple numbers of
processors are connected via bus or crossbar to access the
single shared main memory. This architecture can only be
scaled up to a dozen processors due to limited amount of
available memory bandwidth. Programming model
implemented in SMPs is simple because all the processes can
access entire system memory. Clusters computers are
combination of multiple symmetric multi processor
computer nodes to provide more processing power. MPPs
are similar to clusters because they also support multiple
connected nodes. But in MPP the memory bandwidth is
designed in such a way that a large number of computer
nodes can be added to it. Most powerful supercomputers are
all MPP systems. The main limitation of MPP and cluster
computing is its message passing. In NUMA architecture
associated processors have their own local memory.
Processors can access non-local memory through an
interconnection network, which increases the delay in
processing.

3. BASIC PARALLEL SCHDULING

Fig -1: Basic Parallel Processing

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 05 | May-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 522

4. CONSIDERATIONS IN PARALLEL SCHEDULING

The various parameters those needed to be considered
while scheduling in parallel computing are as follows:

 Check which task should be executed by which
processor.

 Minimize total turnaround time and total response
time for all the processes.

 Balance the workload on all the available processors.

 Order of execution of various queues.

 Finally join the results of all the processors and to
give the consistent overall result to the user.

 Maximum and optimal use of all the resources.

To consider all these issues in parallel scheduling, we
need the scheduling algorithms explained in following
sections.

5. SCHEDULING POLICIES IN PARALLE COMPUTING

Scheduling is difficult in Parallel Computing is difficult as
compare to scheduling in serial computers. So in it, we need
more sophisticated algorithms for scheduling.

Scheduling in parallel computing is NP-Complete
problem.

The algorithms for parallel computing are:

 Longest Processing Time (LPT)

 Look-ahead optimized scheduling (LOS)

 List Scheduling

There are some Heuristic algorithms for parallel
scheduling, which are:

 Opportunistic Load Balancing (OLB)

 User Directed Allocation (UDA)

The explanation to these algorithms is:

5.1 LONGEST PROCESSING TIME

In this technique the list of available processes is sorted in
decreasing order of size, and largest sized process is
allocated to processor which is least loaded.

Fig – 2: Example of Longest Processing Time

Here T1 is the longest process and it is assigned to processor
1, because it is the least loaded processor in this case.

5.2 LOOKAHEAD OPTIMIZED SCHEDULING

In this technique each processor has its own ready queue and
it looks for the future incoming requests, and it stores only
those pages in its memory that may come in memory in near
future.

5.3 LIST SCHEDULING

In this scheduling, it makes a list of processes according to
their priority and assigned the highest priority process to the
least loaded processor.

Then there are also some Heuristic algorithms of scheduling
in parallel processing, which are:

 Opportunistic Load Balancing: In this scheduling,
the next task is assigned to the next free processor.

 User Directed Allocation: In it user assigns the next
task to the processor with lowest expected time to
complete

6. TYPES OF MULTIPROCESSOR SCHEDULING

 Thread scheduling
 Load sharing/balancing

 6.1 THREAD SCHEDULING
Issues in thread scheduling:

- Multi-threading is useful to decouple different
activities

- It must ensure that critical activities must be
performed prior to those activities that are non-
critical.

- To know whether threads will interfere with
other thread.

- Can abstract out separate descriptors for
canonical behavioral classes.

- During execution fairness is not guaranteed
between different threads.

Fig -3: Precedence Relation in Thread Scheduling [2]

Application Model:
An application consists of several threads. Each thread has
its own arrival time, its workload, and different precedence

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 05 | May-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 523

relations with other threads. The precedence relationships
are maintained by application designers through spinlocks.
When a running thread tries to read the shared data, it must
do busy wait until it has exhausted its time-slice or until
another thread has released its access on the shared data. To
describe the precedence relationships among threads,
synchronization-waiting period (SWP) and synchronization-
completing period (SCP) are used.
In the figure shown above, One SWP corresponds to one SCP,
which belongs to two threads. For example, suppose there is
an application which has 4 threads, which are t1 to t4, and
their precedence relationships are illustrated. In this
example, t1 must do busy wait for SWP units of time, until
thread t3 executes for SCP11 units of time. In this work, it is
assumed that when an application enters the sys-tem, OS is
not aware of any existing precedence relationships among
threads.

6.1.1 THREAD SCHEDULING ALGORITHM
For thread scheduling in multi-processing, the algorithm is
Synchronization aware dynamic scheduling. Flow chart for
above stated algorithm is:

Fig -4: Flowchart of Synchronization aware Thread
Scheduling [2]

This scheduling consists of three main procedures: priority
assignments, thread dispatch, and thread migration. A
periodic system interrupt is needed by scheduling algorithm
to collect information of thread behaviors, including the
number of SWPs and the number of SCPs. In the following
sections, the strategies of three procedures employed in
scheduling algorithm are discussed.

(a) Priority assignment: There are two steps in the
priority assignment procedure, namely
synchronization sampling and priority assignment
game.

(i) Synchronization sampling: A thread is usually
responsible for a specific job, so we have to group
the threads based on their type of job.

(ii) Priority assignment game: With the given set of
threads and their synchronization values, priority to
different threads is assigned in a non cooperative way.
When a new thread first enters the system, the
scheduling algorithm assigns an initial priority to it,
after that scheduling algorithm performs
synchronization sampling for it.

(b) Thread dispatch: When a new thread enters the
system, the operating system scheduler dispatches it
to a processor with the shortest ready queue, that is,
the core with the smallest number of threads in its
ready queue. However, the priorities of each thread
could be different, and the difference in time-slice
between a high priority thread and a low-priority
thread is very large.

(c) Thread migration: When the ready queue of a core

becomes empty, we say that the core is idle. The OS
scheduler uses a thread migration strategy to achieve
better core utilization when it finds a core has become
idle.

6.1.1 EXPERIMENTAL RESULTS & REAL WORLD
IMPLEMENTATION

For its implementation there is a multi-core thread
scheduling simulator using Borland C++ Builder 2009. The
thread scheduler is implemented in Linux kernel version
2.6.5. The simulator includes the ready queue structures the
scheduler with scheduling algorithm and our
synchronization-aware scheduling algorithm (SA)

Chart -1: Frequency and Power of UltraSparc T2 Core [2]

6.2 LOAD BALANCING

Let a distributed dataset which has 4 sites and data is evenly

distributed on all sites. The different sites will run their

piece of code on their own set of data and try to figure out

the relationship between the data. It is possible that the data

contained at sites 0, 2, and 3 may converge much faster than

the data at site 1. If this is the case, the three sites which

finished first will remain idle while site 1 finishes. When an

attempt is made to balance the workload on different sites,

then the parameters that need to be considered are:

processing speed of that site and the cost associated with

transfer of data from one site to another site.

There are two types of load balancing:

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 05 | May-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 524

 Static Load balancing

 Dynamic Load balancing

6.2.1 STATIC LOAD BALANCING

The load is assigned to each processor before the execution
of the processor. Once a load assigned to a processor would
not be changed. In static load balancing, different
processing models are: Client-Server model and another is
distributed model.

Static Load Balancing is better when:
 Using homogeneous cluster
 Each processing site has an equal amount of work

assigned.
Static Load Balancing performs badly, when:

 Non homogeneous clusters are used and speed
difference between these clusters is not considered.

 work distribution is uneven

Now static load balancing with genetic algorithm is
discussed.

Genetic algorithm for static scheduling: Genetic algorithms
are generalized solution for selection problem. In GA, the
individuals of a population of potential solutions to a problem
having good genetic characteristics have greater survival and
reproduction possibilities. Those candidates which would not
be suitable for the system would not be appreciated by genetic
algorithm. So from the genetic algorithm we can figure out the
most promising candidate for scheduling.

Fig -5: Block of Processors and Processes

In this scheduling algorithm, the genetic operator affects
only the processes. They select the place where the process
will be executed and at what execution time it will be
executed.

Cross-Over: The genetic algorithm applies a proposed
crossover operator to generate two new individuals into the
new generation. It is a process in which firstly the
information of genes of parent is taken, then in the second
step the related information is swapped. In the stage of
getting the genes, the processors of the parents are divided
into two partitions: even processors and odd processors. So
from the partition, the first processor would get the
information from an even processor. The second new

processor would get the information from an odd processor.
[1]

Fig -6: Crossover of Processor and Processes

In swapping of repeated information, duplicate jobs assigned
to a processor would be searched, and the duplicate jobs at
the same position in two different processors would be
considered.

Fig -7: First step Cross-Over

The second step of the cross over is:

Fig -8: Second step Cross-Over

Mutation: The goal of the uniform mutation is to exchange
two neighbor genes without violating precedence
relationship in order to create an individual that could not
have been produced by the crossover operator.[1]

Fig -9: Mutation Process

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 05 | May-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 525

6.2.2 DYNAMIC LOAD BALANCING

The dynamic Load balancing is of two further types:

 Task-oriented: When one processing site finishes its
task, it is assigned another task.

 Data-oriented: When one processing site finishes its
task before other sites, the site with the most work gives
the idle site some of its data to process.

Here Dynamic Scheduling with the help of Gang
scheduling is discussed.

6.3 GANG SCHEDULING

A local scheduler in Concurrent Gang is composed of two
main parts: the Gang scheduler and the local task scheduler.
The Gang Scheduler schedules the next thread indicated in
the trace diagram at the arrival of a synchronization signal.
The local task scheduler is responsible for scheduling local
threads that do not need global coordination and it is similar
to a UNIX scheduler. The Gang Scheduler has precedence
over the local task scheduler. [5]

Fig -10: Basic Gang Scheduling Model

An advantage of space sharing is the elimination of
multiprogramming, which eliminates the context switching
overhead. However, an equally clear disadvantage is the time
wasted when a CPU blocks and has nothing at all to do until
it becomes ready again. Consequently, people have looked
for algorithms that attempt to schedule in both time and
space together, especially for processes that create multiple
threads, which usually need to communicate with one
another.
To see the kind of problem that can occur when the threads
of a process (or processes of a job) are independently
scheduled, consider a system with
threads A0 and A1 belonging to process A and
threads B0 and B1 belonging to process B.
threads A0 and B0 are timeshared on CPU0; threads
A1 and B1 are timeshared on CPU1. Threads A0 and A1 need
to communicate often. The communication pattern is
that A0 sends A1 a message, with A1 then sending back a
reply to A0, followed by another such sequence. Suppose
that luck has it that A0 and B 1 start first. [6]

Fig -11: Thread communication in Gang scheduling

In time slice 0, A0 sends A1 a request, but A1 does not get it
until it runs in time slice 1 starting at 100 msec. It sends the
reply immediately, but A0 does not get the reply until it runs
again at 200 msec. The net result is one request-reply
sequence every 200 msec. So the given solution is not very
good.
The solution to this problem is gang scheduling, which is an
outgrowth of co-scheduling Gang scheduling has three parts:

 Groups of related threads are scheduled as a unit, a
gang.

 All members of a gang run simultaneously, on
different timeshared CPUs.

 All gang members start and end their time slices
together.

Fig -12: Gang scheduling with six CPUs

7. CONCLUSIONS

In this paper, we have studied some scheduling techniques
for parallel computing. The scheduling techniques are
threading scheduling, load balancing. In which thread
scheduling is basically scheduling the different threads to
different processor, which may be a problem, because it may
happen that two threads of the same process are allocated to
different processor, and if they need to communicate with
each other, then this type of scheduling technique is not for
these types of problems. And in load balancing, we have
studied two types of load balancing, which are static load
balancing and dynamic load balancing. Static scheduling is
suitable where you have advance knowledge of the workload
and all the iteration performed on the chunk of the data. But
if the total workload and all the computations are not known,
then the dynamic load balancing is more suitable. In it we can
assign the load dynamically to that processor, which is least
loaded.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 05 | May-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 526

REFERENCES

[1] Renata Mederiros de Carvalho, Rucardi Massa F. Lima
“An efficient algorithm for static task scheduling in parallel
applications” IEEE 2011

[2] Chic-Shen Lin, Pao-Ann Hsiung “Synchronization-Aware
Dynamic Thread Scheduling for improving Performance and
saving energy in Multi-Core systems” IEEE 2012

[3] http://www.fer.unizg.hr/_download/ repository/
Grudenickvalifikacijski.pdf

[4] Ravreet Kaur, Dr. Gurvinder Singh “Genetic Algorithm
Solution for Scheduling multiprocessor environment” IEEE
2012

[5] Fabricio Alves Barbosa da Silva, Isaac D. Scherson
“Improvements in Parallel Job Scheduling using Gang
Service” IEEE 2011

[6] http://lovingod.host.sk/tanenbaum/ MULTIPLE-
PROCESSOR-SYSTEMS.html

