
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 06 | June-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 588

A STUDY ON BEST FIRST SEARCH

1, M.Sinthiya, 2, Dr.M. Chidambaram

Dept. of Computer Science

Rajah Serfoji Government Arts College

---***---

Abstract - Finding the exact search result of cloud storage
is central to many operations in a variety of areas, including
probabilistic reasoning and constraint satisfaction. This
search space differs from those where best- first typically
applied, because a solution search list is evaluated by its
maximum cost instead of the sum of its users searching data
costs. My thesis shows how to make best-first search
admissible on max-cost best and first data for overall server
data list in storage server. Also employ best-first heuristic
search to reduce the memory requirement while still
eliminating all irrelevant data in the search result. My thesis
describes that the algorithms end the exact data list and
order of magnitude. The purpose of this thesis, RFM
technique is based on user search event to allocate the cost
for data’s in storage server, to specify loyal and ranked data
list. Also it is used for classification based on minimum and
maximum cost of data list to obtain useful rules for
implementing effective data relationship management.

Key Words: Best First Search , Heuristic Search , Data
Mining , Tree , Shortest Path

1.INTRODUCTION

1.1 Overview

 Data structures such as trees, tries, and hash
tables are used in a vast variety of applications for
managing sets of distinct strings. These structures are
chosen for a particular application that depends on
factors such as how well they scale, memory
requirements, speed, and whether it is required that
the strings be kept in sort order. Text collections used
in practice range from news and law archives, business
reports, and collections or email, to repositories of
documents garnered from the WWW. Such text
collections can easily contain many millions of distinct
words, and the number grows more or less linearly
with collection size. The collections themselves range
from gigabytes to terabytes, consisting of millions of
documents or more; at the upper extreme, and the
popular search engine Google indexes over a billion
web pages. Practical management and querying of text
collections relies on the use of efficient string data

structures that offer fast insertion, search, and deletion
of string keys.

 Testing the structures on such large-scale data
sets led to interesting discoveries. Surprisingly, on text
collections from 100 Mb to 45 Gb, the relative speeds of
the various structures were almost constant, Hash
tables (assuming an efficient string hashing function)
are the fastest of the structures, and found that
performance can be significantly improved through the
simple strategy of using chains to manage collisions
and move- to-front within chains.

 Trees are several times slower and,
surprisingly, existing adaptive and balanced tree
structures were no faster than standard binary trees.
However, our novel variant of adaptive tree, the fab
tree, yielded significant improvements in performance.
Trees require inordinate volumes of memory, but are
fast. The underlying principle of the burst tree is that it
stores, not individual strings, but small sets of strings
that share a common prefix. It might be argued that
the performance on a small set of data is a major
component of processing costs. One such example is,
again, indexing of text collections. During the index
construction process, it is necessary to identify the set
of distinct words that occurs in each document, that is,
it undertakes the task of per-document vocabulary
accumulation. Most of the individual documents are
small and a few hundred words or so but the task of
collating these words in a dynamic structure is an
important cost overall. More generally, in any
application in which a small data structure is
frequently consulted, inefficiency can significantly
degrade performance of the application as a whole.

 Compared to the task of managing large sets of
strings, different relative performance is to be
expected: for example, over only a small number of
words of adaptive and balanced structures are unlikely
to have the time to reach the equilibrium that in
principle might give them an efficiency advantage,
presented the results of experiments on a variety of
sets of documents. Overall, burst tries are faster than

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 06 | June-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 589

trees, but by a smaller margin than was observed for
larger data sets. Hash tables can be faster again, if sort
order is not required, but particularly in comparison to
the results for large data sets speed is critically
dependent on hash table size. The slowest structure of
all is the tree, a striking contrast to the efficiency of this
structure on large data sets.

1.2 Search Trees

 A standard binary search tree (BST) stores in
each of its nodes a key together with a pointer to each
of the node’s two children. A query for a key q starts at
the root; if q is not found in a node, a comparison
between q and the node’s key determines which
branch downwards the query, a new node may be
inserted. The performance of a BST depends on the
insertion order of keys. The worst case is of O(n) for a
BST with n nodes and occurs if the keys are inserted in
short order yielding to long sticks. In our large scale
practical experiments on string data sets drawn from
the web with billions of string occurrences and millions
of distinct strings, the performance of a BST was
surprisingly good, although a small number of strings
in short order at the start of the data led to dramatic
degeneration in performance.

 A BST should not be used in practice for this
task. Considering per-document processing of a text
collection. Can reasonably assume that the vast
majority of documents will not consist of strings in
short order, therefore average logarithmic search cost
should dominate. The performance of a BST in this
case depends much more on the characteristics of the
input. If the collection is skew, as in text where a small
percentage of the distinct strings account for a large
proportion of the text. Common keys are likely to be
observed early in a document. They world then be
stored in the upper tree levels. Where only a few
comparisons are needed to access them. The common
strings tend to be short, further reducing total
processing costs. Hence. a BST should be well. Suited
to the task of per-document vocabulary accumulation.

 The cost of string comparisons during a tree
traverse; can be reduced as the search is narrowed: if
the query string is known to be lexicographically
greater than international “the first six characters can
be ignored in subsequent comparisons. However, have
found in a range of experiment on large data sets that
the additional tests and operations needed to identify
how many characters to ignore cost significantly more

than the savings, and do not use this technique in any
tree structure used in our experiments.

 AVL trees and red-black trees are variants of
BSTs that reorganize the tree on insertion to maintain
approximate balance. They achieve the logarithmic
worst case bound by storing some additional
information in each node. A single bit in a red-black
tree and two bits in a AVL tree. AVL trees and red-
black trees guarantee the absence of long sticks but
due to the reorganization commonly-accessed keys are
not necessarily clustered at the top three levels. On the
other hand, for a skew input where most accesses are
not insertions the cost of balancing is kept low. The
benefits of having a balanced tree structure in contrast
to a BST could therefore offset the additional costs that
incur at insertion time.

1.3 Sequential Reuse Distance Analysis

 Reuse distance analysis can be extremely
useful, but also costly. Consequently, many approaches
and optimizations have been proposed in the literature,
ranging from the full analysis to probabilistic
approaches that trade accuracy for performance. To
our knowledge, our work is the first attempt at
paralyzing reuse distance analysis to leverage multiple
cores or nodes in a parallel system to accelerate the
analysis. Our approach to parallel reuse distance
analysis is compatible with many existing sequential
data reference analysis algorithms. The development
in this paper utilizes the efficient sequential reuse
distance analysis algorithm developed.

1.4 Naive Algorithm

 A naïve approach to reuse distance analysis
uses a stack data structure to maintain an ordered list
of data references. This stack simulates the behavior of
an infinite sized, fully associative cache. Initially the
stack is empty and data references are pushed onto the
head in trace order. When pushing a reference, the
stack is traversed starting at the head to determine if
there was previous reference to this data element. If
the data reference is found. The old instance is
removed and pushed onto the head. The distance from
the head to the position of the old instance is recorded
as the stack, or reuse distance for the new reference. If
the data reference is not found, this is the first
reference to this data element and it is recorded as
having a distance of infinity (corresponding to a
compulsory cache miss). For a trace of length N
containing M distinct references. N elements must be

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 06 | June-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 590

processed and at each step an O(M). The space
complexity is O(M) since the list can contain at most
one entry per distinct data address in reference trace.

1.5 Tree-Based Algorithm

 Several tree-based reuse distance analysis
algorithms have been developed to reduce the O(M)
cost of stack traversal in the naïve algorithm to O(log
M). Often a splay tree is used to enhance the efficiency
of this structure. These algorithms generally make use
of two data structures; a a hash table to store the
timestamp of the most recent reference to each data
element and a tree that can be used to efficiently
determine the number of distinct references since the
last time a data element was referenced. Naïve
algorithm is the popular tree-based reuse distance
analysis algorithm. In this algorithm, a hash table H
maps data references to their most recent access
timestamp. A binary tree is maintained that holds one
entry for each data reference seen thus far and is
sorted according to timestamp. Sub tree sums are
maintained at each node for the number of elements in
the sub tree rooted at the node. Thus the process of
counting the distance associated with a data reference
is that of traversing the tree from the root to that data
reference and accumulating the sum along the way.

 The algorithm maintains a balanced binary tree
with at most one entry per data reference. Each node
contains the reference, the timestamp of the last access.
And the sum of the weights in its sub tree. Insertion
and deletion are performed using the standard
algorithm for balanced binary trees, which ensures that
the ordering is preserved and that the tree remains
balanced. When performing the distance operation.
Find the timestamp of the last access to the current
data element using the hash table and then apply the
distance calculation algorithm.

1.6. Related Searches

1.6.1. Uniform Cost search

 Uniform cost search is a cost based search and
it will give an output based on cost. Where the cost is
the path cost g(n).

1. It Measures the cost to each node.
2. It is optimal and complete.
3. It can be very slow.

1.6.2. Hill Climbing Search

 Expand the node you think is nearest to goal.
Where the estimate of distance to goal is h(n). Because
it keeps no history, the algorithm cannot recover from
failures of its policy. A major problem of hill-climbing
is their tendency to become stuck at local data.

1. It Estimates how far away the goal is.

2. It is neither optimal nor complete.

3. It can be very fast.

1.6.3. A* Search

 A* search is a combination of uniform cost and
hill climbing search. The function of A* search has
shown below.

1. Uniform cost = g (n) is the cost to get
to a node.

2. Hill Climbing = h (n) is the estimated
distance to the goal.

3. A* = f (n) = g (n) + h (n)

Can think of f (n) as the estimated cost of the cheapest
solution that goes through node. If the heuristic is
optimistic, that is to say, it never overestimates the
distance to the goal, then A* is optimal and complete
that goal. But some complexity in A* algorithm. A*
with worst case is space complexity, but an iterative
deepening version is possible.

1.7 Best – First search

 The Best-first search uses two sets. One is open
dataset (those generated but not yet selected) another
one is closed dataset (already selected).

 Best-first search progresses by choosing a node
with the best f-value in the Open list for expansion.
The node is removed from the Open list and each of its
children’s are generated. For each child node that is
generated, best-first search checks the Open and
Closed lists to ensure that it is not a duplicate of a
previously generated node or, if it is, that it represents
a better path than the previously generated duplicate.
If that is the case, then the node is inserted into the
closed list and a new node is chosen for expansion.
This continues until a goal node is chosen for
expansion.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 06 | June-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 591

 Different best-first search algorithms are
constructed by choosing different evaluation functions.
Frequently the evaluation function is constructed by
combining a measurement of the cost incurred by a
partial solution path, denoted by the function g(n), and
an optimistic estimate of the cost of any path that
follows from a node, denoted by the function h(n). The
well-known best-first search algorithm uses the
evaluation function f(n) = g(n) + h(n). In the
elimination order search space, the cost of a complete
solution path is the width of the corresponding order.
It is computed by taking the maximum elimination cost
along the solution path, where the cost of a particular
elimination is the degree of the vertex being
eliminated. A reasonable g-function would thus be the
maximum cost incurred in reaching a node. A
reasonable h-function would be an optimistic estimate
of the maximum cost along some path from the current
state to a goal state. These can be combined into the
evaluation function f(n) = max g(n), h(n).

Figure 1.1 Best-First Search Diagram.

1.8 Process Flow of Best-first Search

1. Put the start node s on a list called OPEN of
unexpanded nodes.

2. If OPEN is empty exit with failure; no solutions
exists.

3. Remove the first OPEN node n at which f is
minimum (break ties arbitrarily), and place it
on a list called CLOSED to be used for
expanded nodes.

4. Expand node n, generating all its successors
with pointers back to n.

5. If any of no’s successors is a goal node, exit
successfully with the solution obtained by
tracing the path along the pointers from the
goal back to s.

6. For every successor n’ on n:

I. Calculate f (n’)

II. If n’ was neither on OPEN nor on
CLOSED, add it to OPEN. Attach a
pointer from n’ back to n. Assign the
newly computed f(n’) to node n’.

III. If n’ already resided on OPEN or
CLOSED, compare the newly
computed f(n) with the value
previously assigned to n’. If the old
value is lower, discard the newly
generated node. If the new value is
lower, substitute it for the old (n’
now points back to n instead of to its
previous predecessor). If the
matching node n’ resided on CLOSED,
move it back to OPEN.

IV. Go to step 2.

7. Go to step 2.

1.9 Search Flow of Best-First Search

1. Open=A5; closed=[]

2. evaluate A5;open=[B4,C4,D6];closed=[A5]

3. evaluate
B4;open=[C4,E5,F5,D6];closed=[B4,A5]

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 06 | June-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 592

4. evaluate
C4;open=[H3,G4,E5,F5,D6];=closed=[C4,B4,
A5]

5. evaluate
H3;open[O2,P3,G4,E5,F5,D6];closed=[H3,C
4,B4,A5]

6. evaluate
O2;open=[P3,G4,E5,F5,D6];closed=[O2,H3,
C4,B4,A5]

7. Evaluate P3; the solution is found!

 Figure 1.2 Best-First Search
Flow.

1.10 RFM model

 In this thesis, I include the concepts of RFM
analysis into sequential pattern mining process. For a
given subsequence, each dataset sequence contributes
its own regency, frequency, and monetary scores to
represent user data importance.

2. LITERATURE REVIEW

This paper shows the practical performance of
the following algorithms. Used the data structures
which were indicated in the original papers. This paper
presents an alternative data structure multi-level link
list and apply the heuristic technique to solve shortest
path problem. The results indicate that use of this type
of data structure helps in improving the performance
of algorithms drastically.

 Presented major class of heuristic algorithms.
The comparison shows that though all these algorithms
can be applied to find the shortest path, but should not
be used unless there is a real-time, event driven actions
are anticipated. The comparison gives us clear idea
that best-first nodes. However there may be
interesting scenarios that may come out when these
algorithms are ascent hill climbing algorithms are not
suitable for problems such as shortest path finding.
This is due to the fact that there is no assurance of
getting final optimal solution for all the cases. Best first
and A*algorithms on the other hand ensure optimal
solution for all the cases. Best first and A* algorithms
on the other hand ensure optimal solution for limited
graph size. For larger number of nodes these

algorithms not only tend to take more time but the
optimality factor may be of concern.

 The approach adopt uses weighted heuristic
search to find an approximate solution quickly, and
then continues the weighted search to find improved
solutions as well as to improve a bound on the sub
optimality of the current solution. When the time
available to solve a search problem is limited or
uncertain, this creates an anytime heuristic search
algorithm that allows search time and solution quality.
Analyse the properties of the resulting Anytime A*
algorithm. And consider its performance in three
domains; sliding-title puzzles, STRIPS planning, and
multiple sequence alignment. To illustrate the
generality of this approach, also describe how to
transform the memory efficient search algorithm
Recursive Best-First search (RBFS) into an anytime
algorithm.

 The simplicity of the approach makes it very
easy to use. It is also widely applicable. Not only can it
be used with other search algorithms that explore
nodes in best first order, such as RBFS, have shown
that it is effective in solving a wide range of search
problems. As a rule, it is effective whenever a
suboptimal solution can be found relatively quickly
using a weighted heuristic, and finding a probably
optimal solution takes much longer. That is, it is
effective whenever weighted heuristic search is
effective. If the weight is chosen appropriately. Have
shown that this approach can create a search algorithm
with attractive anytime properties without
significantly delaying convergence to a provably
optimal solution. Conclude that anytime heuristic
search provides an attractive approach to challenging
search problems. Especially when the time available to
find a solution is limited or uncertain.

 This paper analyses the problem of UHRs in
planning in detail, and proposes a two level search
framework as a solution. In Greedy Best-First Search
with Local Exploration (GBFSLE), a local exploration is
started from within a global GBFS whenever the search
seems stuck in UHRS. Two different local Random walk
Search (LRW). The two new planners LAMA-2011.
Both are shown to yield clear improvements in terms
of both coverage and search time on standard
international planning Competition benchmarks,
especially for domains that are proven to have large or
unbounded UHRs.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 06 | June-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 593

 While local exploration has been investigated
before in the Context of local search planners, it also
serves to facilitate Escaping from UHRS for greedy
best-first search. The new Framework of GBFS-LF,
GBFS with local exploration, has been tested
successfully in two different realizations, adding Local
greedy best-first search in GBFS-LS and random walks
In GBFS-LRW.

 This paper proposed and evaluated the power
of best-first search over AND/OR search spaces in
graphical models. The main virtue of the AND/OR
representation is its sensitivity to the structure of the
graphical model, which can translate into significant
time savings. Indeed, in recent years depth-first
AND/OR Branch-and-Bound algorithms were shown to
be very effective when exploring such search spaces,
especially when using caching. Since best-first
strategies are known to be superior to depth-first when
memory is utilized, exploring the best-first control
strategy is called for. In this paper introduce two
classes of best-first AND/OR search algorithms: those
that explore a context-minimal AND/OR search graph
and use static variable orderings, and those that use
dynamic variable orderings but explore an AND/OR
search tree. The superiority of the best-first search
approach is demonstrated empirically on various real-
world benchmarks.

This paper considered Weighted Best First
(WBF) search schemes, popular for path-finding
domain, as approximations and as anytime schemes for
the MAP task. Author demonstrate empirically the
ability of these schemes to effectively provide
approximations with guaranteed sub optimality and
also show that as anytime scheme, Depth-First Branch
and-Bound.

 In this paper extended advanced best-first
scheme for graphical model into a weighted scheme
and evaluated its performance in comparison with a
highly competitive Branch and Bound scheme. Our
empirical results show that weighted best-first is
valuable in providing relatively fast solutions together
with sub optimality bounds. Demonstrated that
weighted best-first search schemes should definitely be
included in the set of good optimization schemes for
solving MPE/MAP tasks. The weight mechanism can
mitigate the memory/time trade off in a useful way
that can be harnessed into an anytime scheme that not
only improves with time, but can also guarantee its
level of sub optimality.

 This paper particularly, focused on an approach
which distributes and schedules work among
processors based on a hash function of the search state.
Use this approach to parallelize the A* algorithm in the
optimal sequential version of the Fast Downward
planner. The scaling behavior of the algorithm is
evaluated experimentally on clusters using up to 128
processors, a significant increase compared to previous
work in parallelizing planners. This approach scales
well, allowing us to effectively utilize the large amount
of distributed memory to optimally solve problems
which require hundreds of gigabytes of RAM to solve.
Also show that this approach scales well for a single,
shared-memory multicore machine.

 In this paper, above mention author compare
different approaches to parallel best-first search in a
shared-memory setting. Present a new method, PBNF
that uses abstraction to partition the state space and to
detect duplicate states without requiring frequent
locking. PBNF allows speculative expansions when
necessary to keep threads busy. We identify and fix
potential live lock conditions in our approach, proving
its correctness using temporal logic. Our approach is
general, allowing it to extend easily to suboptimal and
anytime heuristic search. In an empirical comparison
on STRIPS planning, grid path finding, and sliding tile
puzzle problems using 8-core machines, we show that
A*, weighted A* and Anytime weighted A*
implemented using PBNF yield faster search than
improved versions of previous parallel search
proposals.

 The objective of this paper is to present a
comprehensive methodology to discover the
knowledge for selecting targets for direct marketing
this study expanded RFM model by including two
parameters, time since first purchase or length of
customer relationship and cost of a customer. Authors
in this paper first review the CRM concept and RFM
model and next propose modified model. In the
empirical study Authors examine a case study,
insurance study. Authors cluster the insurance
customer with k-means algorithm. The result show
that the modified model is better than base RFM model.

 In this study authors examine the RFM model
and authors tried to make the model more efficient
variables time of relationship and associated costs
added to the model. Authors used association rules to
compare two models. The result was that the new
model works better than the RFM.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 06 | June-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 594

 These methods provide a lot of opportunities in
the market sector. This paper deals with mining
algorithms and methods (especially RFM analysis) and
their use in Six Sigma methodology, especially in
DMAIC phases. DMAIC stands for Define, Measure,
Analyse, Improve and Control. Our research is focused
on improvement of Six Sigma phases (DMAIC phases).
With implementation of RFM analysis (as a part of Data
Mining) to Six Sigma (to one of its phase). We can
improve the results and change the Sigma performance
level of the process. We used C5.0, QUES, CHAID and
Neural Network algorithms. The results are in
proposal of selected Data Mining methods into DMAIC
phases.

 The RFM model provides an effective measure
for customers’ consumption behavior analysis, where
three variables, namely, consumption interval,
frequently, and money amount are used to quantify a
customer’s loyalty and contribution. Based on the RFM
value, customers can be clustered into different groups
and the group information is very useful in market
decision making. However, most previous works
completely left out important characteristics of
purchased products, such as their prices and lifetimes,
and apply the RFM measure on all of a customer’s
purchased products. This renders the calculation of
the RFM value unreasonable or insignificant for
customer analysis. In this paper, we propose a new
framework called GRFM (for group RFM) analysis to
alleviate the problem. The new measure method takes
into account the characteristics of the purchased items
so that the calculated the RFM value for the customers
are strongly related to their purchased items and can
correctly reflect their actual consumption behavior.
Moreover, GRFM employs a constrained clustering
method PICC (for Purchased Items-Constrained
Clustering) that could base on a cleverly designed
purchase pattern table to adjust original purchase
records to satisfy various clustering constraints as well
as to decrease re-clustering time. The GRFM allows a
customer to belong to different clusters, and thus to be
associated with different loyalties and contributions
with respect to different characteristics of purchased
items. Final, the clustering result of PICC contains
extra information about the distribution status inside
each cluster that could help the manager to decide
when is most proper to launch a specific sales
promotion campaign. Our experiments have confirmed
the above observations and suggest that GRFM can play
an important role in building a personalized

purchasing management system and an inventory
management system.

 RFM (Recency, Frequency and Monetary)
model has been widely applied in many practical areas
in a long history, particularly in direct marketing. By
adopting RFM model, decision makers can effectively
identify valuable customers and then develop effective
marketing strategy. This paper aims to provide a
comprehensive review on the application of RFM
model. In addition, this paper depicts the definition
and the scoring scheme of RFM and summarizes how
RFM model has been effectively applied in a wide
variety of areas. Furthermore, this paper presents the
advantages and disadvantages of the RFM models are
also exploited. Finally, this paper describes the
extended RFM model via a presentation of how RFM
combines with other variables and models.

3. PROBLEM DEFINITION AND METHODOLOGY

3.1. Problem

 Best-first search is admissible on max-cost
problem. There are multiple equivalent definitions of
search that suggest unique ways of thinking about the
problem. Our efforts are focused on finding best search
data list to user required results in terms of optimal
data cost elimination orders. Eliminating a min cost
from a data server is defined as the process of adding a
cost between every pair of the data neighbors that are
not already adjacent, then removing the vertices and all
incident cost from the storage. A data eliminating
order is a total order over the data’s in storage. An
algorithm that finds the exact search of a server can
dramatically improve the performance of exact
inference and thereby increase the size of problems
that can be solved in practice. This search space has
many duplicate data, and propose using algorithms,
like best-first search, that detect and eliminate all of
them. The version of best-first search is most often
used in practice, which applies to shortest-path
problems.

3.2. Problem Solving

 Obviously the user wants to use heuristic
search, but for some domains (as we’ll see later) good
heuristics are hard to produce. If not, there are
memory and time considerations.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 06 | June-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 595

 BFS and the like are guaranteed to find short
path (data)s, but use a little of memory.

 DFS is much faster, but isn’t guaranteed to find
a solution and takes lot of memory. Even for heuristic
search sometimes it does the equivalent of DFS on the
heuristic value.

 Best first search is a type of graph search
algorithm. Here the nodes are expanded one at time by
choosing lowest evaluation value. This evaluation
value is a result of heuristic function giving a measure
of distance to the goal node. For typical applications
such as shortest path (data) problems, the evaluation
function will be accurate as it accounts for distance or
an absolute value. Best first search is combination of
breadth and depth first search. Depth first search has
an advantage of arriving at solution without computing
all data’s in the storage server, whereas breadth first
arriving at solution without computing all data’s in the
storage server, whereas breadth first arriving at
solution without search ensured that the process does
not get trapped. Best-first search, being combination of
these two, permits switching between path (data).

 At every stage the data’s among the generated
ones, the best suitable data is selected for further
expansion, may be this data belong to the same level or
different, thus can toggle between depth-first and
breadth-first. This method involves search result to
avoid duplication, and also requires two separate lists
for processing. OPEN list keeps the data whose
heuristic values are determined, but yet to be
expanded. CLOSE list have the data which have been
already checked, further these data are kept in this list
to ensure no duplications. It implies that the OPEN list
has the data’s which need to be considered for further
processing and the entries in CLOSE list indicate the
data’s which may not be re-required in further steps.

3.3 Methodology

OPEN = (initial state)

While OPEN is not empty or until a goal is found

Do

1. Remove the best node from OPEN, call it n.

2. If n is the goal state, back trace path to n
(through recorded parents) and return
path.

3. Create n’ s successors.

4. Evaluate each successor, add it to OPEN,
and record its parent.

Done.

3.4 RFM Model

 The next step involves determining values and
scoring RFM variables and using them as inputs of
clustering algorithm. Output of the RFM model
consists of three fields of each customer: frequently,
recently and monetary. RFM model is proposed by
Hughes, and has been used in direct marketing for
several decades. This model identifies customer
behavior and represents customer behavior
characteristics by three variables:

1. Recency of the last purchase (access)
which refers to the interval between latest
customer purchase and time analysis of
customer data.

2. Frequency of the purchase (access) a which
refers to the number of transactions in a
particular period.

3. Monetary value of the purchase (access)
which refers to consumption amount (like
data size) in a particular period.

RFM model can be used in different areas by different
people: Therefore, RFM can mean different things to
different people. Classic RFM ranks each data based on
valuable against other customers (access) and RFM
Score will be assigned to each and every data.

 In my thesis I have used this technique to
reduce the memory space based on the needs.

4. CONCLUSION AND FUTURE WORK

4.1 Conclusion

 I have presented major class of heuristic
algorithms. Though all the algorithms can be applied
to find the shortest path, but should not be used unless
there is a real-time, event driven action are anticipated.
The comparison gives us clear idea that best-first
search algorithms are very well suitable when goal
node cannot be reached from all nodes. However there

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 06 | June-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 596

may be interesting scenarios that may come out when
these algorithms are applied with different data
structures. The results clearly indicate that steepest
ascent hill climbing algorithms are not suitable for
problem such as shortest path finding. This is due to
the fact that there is no assurance of getting final
optimal solution for all the cases. Best first algorithms
on the other hand ensure optimal solution for limited
graph size. For larger number of nodes these
algorithms not only tend to take more time but the
optimality factor may be of concern.

4.2 Future Work

 The primary goal of future work will be to
increase the size of problems that can be solved in a
reasonable amount of time. One approach for doing
this is to continue and investigate algorithms that
eliminate all duplicate nodes, specifically disk-based
search. These methods greatly increase the amount of
available memory by utilizing external disk-based
search. These methods greatly increase the amount of
available memory by utilizing external disk storage
while limiting the added costs in terms of running time.

 Another approach for solving larger problems
involves constant-space algorithms. The idea behind
these methods is to use all the available memory to
eliminate as many duplicates as possible. This can be
done with a memory-bounded version of best-first
search, or by adding a transposition table to depth-first
branch-and-bound. Finally, since anytime algorithms
are useful in some contexts it will be interesting to
evaluate anytime variants of the algorithms developed
in this paper. This can be done by finding a min-fill
path from interior search nodes.

4. REFERENCES

[1] “Comparison of various heuristic Search techniques
for finding Shortest path “Mr. Girish p potdar, dr.r.c.
thool. Vol. 5, No.4, July 2014.

[2] “Anytime Heuristic Search” Eric A. Hansen, Rong
Zhou Submitted 05/06; published 03/07.

[3] “Adding Local Exploration to Greedy Best-First
Search in Satisficing Planning” Fan Xie and Martin
Muller and Robert Holte Proceedings of the Twenty-
second International Conference on Automated
Planning and Scheduling (ICAPS-2012)

[4] “Best-First AND/OR Search for Graphical Models”
Radu Marinescu and Rina Dechter. 2007, Association
for the Advancement of Artificiallntelligence
(www.aaai.org).

[5] “Weighted Best First Search for Map” Natalia
Flerova, Radu Marinescu, Rina Dechter, Thayer, and
Rum (2010).

[6] “Scalable, Parallel Best-First Search for Optimal
Sequential Planning” Akihiro Kishimoto, Alex
Fukunaga, Adi Botea and Hansen (2007).

[7] “Best-First Heuristic Search for Multicore
Machines” Ethan Burns, Sofia Lemons, Wheeler Ruml
Journal of Artificial Intelligence Research 39 (2010)
689-743.

[8] “ Customer Segmentation based on Modified RFM
Model in the Insurance Industry” Reza Allahyari Soeini
Ebrahim Fathalizade SIMULATION Online First,
published on October 22, 2009.

[9] “Six Sigma Methodology with Recently, Frequently
and Monetary Analysis Using Data Mining” Andrej
Trnka Received 8 June 2005; Revised 20 November
2006; Accepted 22 November 2006.

[10] “Group RFM analysis as a novel frame work to
discover better customer consumption behavior” Hui-
Chu Chang, Hsiao-Ping Tsai vol. 4007, pp. 109-120.
Springer, Heidelberg (2006).

[11] “A review of the application of RFM mode” Jo-Ting
Weil, Shih-Yen Lin and Hsin-Hung Wu CA, pp. 39-48.
SIAM, Philadelphia, PA (2002).

[12] D. Dreyfus, (1967) “An appraisal of some shortest
path algorithms”, Journal of the Operations Research
Society of America, Vol. 17 Issue 3, pp 395-412.

[13] A.V. Goldberg, (2001) “A simple shortest path
algorithm with linear average time”, In proceeding 9th
ESA, Lecture notes in computer science LNSC 2161. Pp
230-261.

[14] B.V. Cherkassy, A.V. Goldberg, T.Radzik, (1996)
“Shortest Path Algorithms: theory and experimental
evaluation”, Mathematical Programming, 73 (2) pp
129-74.

[15] J.W. Lark, C.C. White III, K. Syverson., (1995) “A
best first search algorithm guided by a set- valued

http://www.aaai.org/

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 06 | June-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 597

heruistic”, IEEE Transactions on Systems, Man, and
Cybernetics, Vol. 25, pp 1097-1101.

[16] R.K. Ahuja, K. Mehlhorn, J.B. Orlin and R.E. Tarjan,
(April 1990) “Faster algorithms for shortest path
algorithms”, Journal of the Association for Computing
Machinery, Vol. 37, No.2, pp 213-223.

[17] D.P. Bertekas, (1991) “The auction algorithms for
shortest paths”. SIAM J. Opt, Vol. 1, pp 425-447.

AUTHORS

[1]M.Sinthiya

Msc, Mphil (computer science)

Rajah Serfoji Government Arts College

[2] Dr.M. Chidambaram Msc, Mphil, MBA, PhD
(Asst.Proff)
Rajah Serfoji Government Arts College

 APPENDIX

Find Shortest Distance

 As an illustration of Dijkstra’s procedure, let us
find the distance from vertex B to vertex G in the
digraph shown in Figure A1.

Figure A1. Simple weighted graph

Input: A search graph problem with cost on the arcs

Output: The minimal cost path from start node to a goal
node.

a) Expand the cheapest next node.
b) Cost is the vertex cost g (n)
c) Expand the node you think is nearest to goal
d) The estimate of distance is h (n) counted

path distance
e) The estimate the next vertex is not avail

distance is assigned infinity
f) Measures the cost to each node.
g) Is optimal and complete.
h) Can very slow.
i) Can combine them to create an optimal and

complete algorithm.
j) f (n) = g(n) + h(n)

A Heuristic is a function that, when applied to a state,
returns a distance that is an estimate of the goal.

 In other words, the heuristic tells us
approximately how far the state is from the goal state.
Note said “approximately”. Distance might
underestimate or overestimate the merit of a state. But
for reasons which will see, heuristics that only
underestimate are very desirable, and are called
admissible.

 Vertex = v

 Distance = d

 Path p = Add Next node

 Path-cost = Distance to node in miles.

 Minimum = Minimum time, least fuel.

 Path-cost = Number of node moved.

 Minimum = Least time to solve.

