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Abstract - Finding the exact search result of cloud storage 
is central to many operations in a variety of areas, including 
probabilistic reasoning and constraint satisfaction. This 
search space differs from those where best- first typically 
applied, because a solution search list is evaluated by its 
maximum cost instead of the sum of its users searching data 
costs. My thesis shows how to make best-first search 
admissible on max-cost best and first data for overall server 
data list in storage server. Also employ best-first heuristic 
search to reduce the memory requirement while still 
eliminating all irrelevant data in the search result. My thesis 
describes that the algorithms end the exact data list and 
order of magnitude.  The purpose of  this thesis, RFM 
technique is based on user search event to allocate the cost 
for data’s in storage server, to specify loyal and ranked data 
list. Also it is used for classification based on minimum and 
maximum cost of data list to obtain useful rules for 
implementing effective data relationship management. 
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1.INTRODUCTION  
 
1.1 Overview  

 Data structures such as trees, tries, and hash 
tables are used in a vast variety of applications for 
managing sets of distinct strings.  These structures are 
chosen for a particular application that depends on 
factors such as how well they scale, memory 
requirements, speed, and whether it is required that 
the strings be kept in sort order.  Text collections used 
in practice range from news and law archives, business 
reports, and collections or email, to repositories of 
documents garnered from the WWW.  Such text 
collections can easily contain many millions of distinct 
words, and the number grows more or less linearly 
with collection size.  The collections themselves range 
from gigabytes to terabytes, consisting of millions of 
documents or more; at the upper extreme, and the 
popular search engine Google indexes over a billion 
web pages.  Practical management and querying of text 
collections relies on the use of efficient string data 

structures that offer fast insertion, search, and deletion 
of string keys. 

 Testing the structures on such large-scale data 
sets led to interesting discoveries.  Surprisingly, on text 
collections from 100 Mb to 45 Gb, the relative speeds of 
the various structures were almost constant, Hash 
tables (assuming an efficient string hashing function) 
are the fastest of the structures, and found that 
performance can be significantly improved through the 
simple strategy of using chains to manage collisions 
and move- to-front within chains. 

 Trees are several times slower and, 
surprisingly, existing adaptive and balanced tree 
structures were no faster than standard binary trees.  
However, our novel variant of adaptive tree, the fab 
tree, yielded significant improvements in performance.  
Trees require inordinate volumes of memory, but are 
fast.  The underlying principle of the burst tree is that it 
stores, not individual strings, but small sets of strings 
that share a common prefix.  It might be argued that 
the performance on a small set of data is a major 
component of processing costs.  One such example is, 
again, indexing of text collections.  During the index 
construction process, it is necessary to identify the set 
of distinct words that occurs in each document, that is, 
it undertakes the task of per-document vocabulary 
accumulation.  Most of the individual documents are 
small and a few hundred words or so but the task of 
collating these words in a dynamic structure is an 
important cost overall.  More generally, in any 
application in which a small data structure is 
frequently consulted, inefficiency can significantly 
degrade performance of the application as a whole. 

 Compared to the task of managing large sets of 
strings, different relative performance is to be 
expected: for example, over only a small number of 
words of adaptive and balanced structures are unlikely 
to have the time to reach the equilibrium that in 
principle might give them an efficiency advantage, 
presented the results of experiments on a variety of 
sets of documents.  Overall, burst tries are faster than 
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trees, but by a smaller margin than was observed for 
larger data sets.  Hash tables can be faster again, if sort 
order is not required, but particularly in comparison to 
the results for large data sets speed is critically 
dependent on hash table size.  The slowest structure of 
all is the tree, a striking contrast to the efficiency of this 
structure on large data sets. 

1.2 Search Trees     

 A standard binary search tree (BST) stores in 
each of its nodes a key together with a pointer to each 
of the node’s two children.  A query for a key q starts at 
the root; if q is not found in a node, a comparison 
between q and the node’s key determines which 
branch downwards the query, a new node may be 
inserted.  The performance of a BST depends on the 
insertion order of keys.  The worst case is of O(n) for a 
BST with n nodes and occurs if the keys are inserted in 
short order yielding to long sticks.  In our large scale 
practical experiments on string data sets drawn from 
the web with billions of string occurrences and millions 
of distinct strings, the performance of a BST   was 
surprisingly good, although a small number of strings 
in short order at the start of the data led to dramatic 
degeneration in performance. 

 A BST should not be used in practice for this 
task. Considering per-document processing of a text 
collection. Can reasonably assume that the vast 
majority of documents will not consist of strings in 
short order, therefore average logarithmic search cost 
should dominate.  The performance of a BST in this 
case depends much more on the characteristics of the 
input.  If the collection is skew, as in text where a small 
percentage of the distinct strings account for a large 
proportion of the text. Common keys are likely to be 
observed early in a document.  They world then be 
stored in the upper tree levels. Where only a few 
comparisons are needed to access them.  The common 
strings tend to be short, further reducing total 
processing costs.  Hence. a BST should be well.  Suited 
to the task of per-document vocabulary accumulation. 

 The cost of string comparisons during a tree 
traverse; can be reduced as the search is narrowed: if 
the query string is known to be lexicographically 
greater than international “the first six characters can 
be ignored in subsequent comparisons.  However, have 
found in a range of experiment on large data sets that 
the additional tests and operations needed to identify 
how many characters to ignore cost significantly more 

than the savings, and do not use this technique in any 
tree structure used in our experiments. 

 AVL trees and red-black trees are variants of 
BSTs that reorganize the tree on insertion to maintain 
approximate balance. They achieve the logarithmic 
worst case bound by storing some additional 
information in each node. A single bit in a red-black 
tree and two bits in a AVL tree.  AVL trees and red-
black trees guarantee the absence of long sticks but 
due to the reorganization commonly-accessed keys are 
not necessarily clustered at the top three levels.  On the 
other hand, for a skew input where most accesses are 
not insertions the cost of balancing is kept low.  The 
benefits of having a balanced tree structure in contrast 
to a BST could therefore offset the additional costs that 
incur at insertion time. 

1.3 Sequential Reuse Distance Analysis 

 Reuse distance analysis can be extremely 
useful, but also costly.  Consequently, many approaches 
and optimizations have been proposed in the literature, 
ranging from the full analysis to probabilistic 
approaches that trade accuracy for performance. To 
our knowledge, our work is the first attempt at 
paralyzing reuse distance analysis to leverage multiple 
cores or nodes in a parallel system to accelerate the 
analysis. Our approach to parallel reuse distance 
analysis is compatible with many existing sequential 
data reference analysis algorithms.  The development 
in this paper utilizes the efficient sequential reuse 
distance analysis algorithm developed. 

1.4 Naive Algorithm 

 A naïve approach to reuse distance analysis 
uses a stack data structure to maintain an ordered list 
of data references.  This stack simulates the behavior of 
an infinite sized, fully associative cache. Initially the 
stack is empty and data references are pushed onto the 
head in trace order.  When pushing a reference, the 
stack is traversed starting at the head to determine if 
there was previous reference to this data element.  If 
the data reference is found. The old instance is 
removed and pushed onto the head. The distance from 
the head to the position of the old instance is recorded 
as the stack, or reuse distance for the new reference.  If 
the data reference is not found, this is the first 
reference to this data element and it is recorded as 
having a distance of infinity (corresponding to a 
compulsory cache miss).  For a trace of length N 
containing M distinct references.  N elements must be 
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processed and at each step an O(M).  The space 
complexity is O(M) since the list can contain at most 
one entry per distinct data address in reference trace. 

1.5 Tree-Based Algorithm 

 Several tree-based reuse distance analysis 
algorithms have been developed to reduce the O(M) 
cost of stack traversal in the naïve algorithm to O(log 
M).  Often a splay tree is used to enhance the efficiency 
of this structure.  These algorithms generally make use 
of two data structures; a a hash table to store the 
timestamp of the most recent reference to each data 
element and a tree that can be used to efficiently 
determine the number of distinct references since the 
last time a data element was referenced.  Naïve 
algorithm is the popular tree-based reuse distance 
analysis algorithm. In this algorithm, a hash table H 
maps data references to their most recent access 
timestamp. A binary tree is maintained that holds one 
entry for each data reference seen thus far and is 
sorted according to timestamp.  Sub tree sums are 
maintained at each node for the number of elements in 
the sub tree rooted at the node.  Thus the process of 
counting the distance associated with a data reference 
is that of traversing the tree from the root to that data 
reference and accumulating the sum along the way. 

 The algorithm maintains a balanced binary tree 
with at most one entry per data reference. Each node 
contains the reference, the timestamp of the last access. 
And the sum of the weights in its sub tree. Insertion 
and deletion are performed using the standard 
algorithm for balanced binary trees, which ensures that 
the ordering is preserved and that the tree remains 
balanced.  When performing the distance operation. 
Find the timestamp of the last access to the current 
data element using the hash table and then apply the 
distance calculation algorithm. 

1.6. Related Searches 

1.6.1. Uniform Cost search 

 Uniform cost search is a cost based search and 
it will give an output based on cost.  Where the cost is 
the path cost g(n). 

1. It Measures the cost to each node. 
2. It is optimal and complete. 
3. It can be very slow. 

 

1.6.2. Hill Climbing Search 

 Expand the node you think is nearest to goal.  
Where the estimate of distance to goal is h(n).  Because 
it keeps no history, the algorithm cannot recover from 
failures of its policy.  A major problem of hill-climbing 
is their tendency to become stuck at local data. 

1. It Estimates how far away the goal is. 

2. It is neither optimal nor complete. 

3. It can be very fast. 

1.6.3. A* Search 

 A* search is a combination of uniform cost and 
hill climbing search.  The function of A* search has 
shown below. 

1. Uniform cost  = g (n) is the cost to get 
to a node. 

2. Hill Climbing = h (n) is the estimated 
distance to the goal. 

3. A*  = f (n) = g (n) + h (n) 

Can think of f (n) as the estimated cost of the cheapest 
solution that goes through node.  If the heuristic is 
optimistic, that is to say, it never overestimates the 
distance to the goal, then A* is optimal and complete 
that goal.  But some complexity in A* algorithm.  A* 
with worst case is space complexity, but an iterative 
deepening version is possible. 

1.7 Best – First search  

 The Best-first search uses two sets.  One is open 
dataset (those generated but not yet selected) another 
one is closed dataset (already selected). 

 Best-first search progresses by choosing a node 
with the best f-value in the Open list for expansion.  
The node is removed from the Open list and each of its 
children’s are generated.  For each child node that is 
generated, best-first search checks the Open and 
Closed lists to ensure that it is not a duplicate of a 
previously generated node or, if it is, that it represents 
a better path than the previously generated duplicate.  
If that is the case, then the node is inserted into the 
closed list and a new node is chosen for expansion.  
This continues until a goal node is chosen for 
expansion.   
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 Different best-first search algorithms are 
constructed by choosing different evaluation functions.  
Frequently the evaluation function is constructed by 
combining a measurement of the cost incurred by a 
partial solution path, denoted by the function g(n), and 
an optimistic estimate of the cost of any path that 
follows from a node, denoted by the function h(n).  The 
well-known best-first search algorithm uses the 
evaluation function f(n) = g(n) + h(n).  In the 
elimination order search space, the cost of a complete 
solution path is the width of the corresponding order.  
It is computed by taking the maximum elimination cost 
along the solution path, where the cost of a particular 
elimination is the degree of the vertex being 
eliminated.  A reasonable g-function would thus be the 
maximum cost incurred in reaching a node.  A 
reasonable h-function would be an optimistic estimate 
of the maximum cost along some path from the current 
state to a goal state.  These can be combined into the 
evaluation function f(n) = max g(n), h(n). 

 

 

Figure 1.1 Best-First Search Diagram. 

 

1.8 Process Flow of Best-first Search 

1. Put the start node s on a list called OPEN of 
unexpanded nodes. 

2. If OPEN is empty exit with failure; no solutions 
exists. 

3. Remove the first OPEN node n at which f is 
minimum (break ties arbitrarily), and place it 
on a list called CLOSED to be used for 
expanded nodes. 

4. Expand node n, generating all its successors 
with pointers back to n. 

5. If any of no’s successors is a goal node, exit 
successfully with the solution obtained by 
tracing the path along the pointers from the 
goal back to s. 

6. For every successor n’ on n: 

I. Calculate f (n’) 

II. If n’ was neither on OPEN nor on 
CLOSED, add it to OPEN.  Attach a 
pointer from n’ back to n.  Assign the 
newly computed f(n’) to node n’. 

III. If n’ already resided on OPEN or 
CLOSED, compare the newly 
computed f(n) with the value 
previously assigned to n’. If the old 
value is lower, discard the newly 
generated node.  If the new value is 
lower, substitute it for the old (n’ 
now points back to n instead of to its 
previous predecessor).  If the 
matching node n’ resided on CLOSED, 
move it back to OPEN. 

IV. Go to step 2. 

7. Go to step 2. 

1.9 Search Flow of Best-First Search 

 

1. Open=A5; closed=[] 

2. evaluate A5;open=[B4,C4,D6];closed=[A5] 

3.  evaluate 
B4;open=[C4,E5,F5,D6];closed=[B4,A5] 
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4. evaluate 
C4;open=[H3,G4,E5,F5,D6];=closed=[C4,B4,
A5] 

5. evaluate 
H3;open[O2,P3,G4,E5,F5,D6];closed=[H3,C
4,B4,A5] 

6. evaluate 
O2;open=[P3,G4,E5,F5,D6];closed=[O2,H3,
C4,B4,A5] 

7. Evaluate P3; the solution is found! 

                       Figure 1.2 Best-First Search 
Flow. 

1.10 RFM model 

 In this thesis, I include the concepts of RFM 
analysis into sequential pattern mining process.  For a 
given subsequence, each dataset sequence contributes 
its own regency, frequency, and monetary scores to 
represent user data importance. 

 

2. LITERATURE REVIEW 

This paper shows the practical performance of 
the following  algorithms.  Used the data structures 
which were indicated in the original papers. This paper 
presents an alternative data structure multi-level link 
list and apply the heuristic technique to solve shortest 
path problem.  The results indicate that use of this type 
of data structure helps in improving the performance 
of algorithms drastically. 

 Presented major class of heuristic algorithms.  
The comparison shows that though all these algorithms 
can be applied to find the shortest path, but should not 
be used unless there is a real-time, event driven actions 
are anticipated.  The comparison gives us clear idea 
that best-first nodes.  However there may be 
interesting scenarios that may come out when these 
algorithms are ascent hill climbing algorithms are not 
suitable for problems such as shortest path finding. 
This is due to the fact that there is no assurance of 
getting final optimal solution for all the cases.  Best first 
and A*algorithms on the other hand ensure optimal 
solution for all the cases.  Best first and A* algorithms 
on the other hand ensure optimal solution for limited 
graph size.  For larger number of nodes these 

algorithms not only tend to take more time but the 
optimality factor may be of concern. 

 The approach adopt uses weighted heuristic 
search to find an approximate solution quickly, and 
then continues the weighted search to find improved 
solutions as well as to improve a bound on the sub 
optimality of the current solution.  When the time 
available to solve a search problem is limited or 
uncertain, this creates an anytime heuristic search 
algorithm that allows search time and solution quality. 
Analyse the properties of the resulting Anytime A* 
algorithm. And consider its performance in three 
domains; sliding-title puzzles, STRIPS planning, and 
multiple sequence alignment. To illustrate the 
generality of this approach, also describe how to 
transform the memory efficient search algorithm 
Recursive Best-First search (RBFS) into an anytime 
algorithm. 

 The simplicity of the approach makes it very 
easy to use.  It is also widely applicable.  Not only can it 
be used with other search algorithms that explore 
nodes in best first order, such as RBFS, have shown 
that it is effective in solving  a wide range of search 
problems.  As a rule, it is effective whenever a 
suboptimal solution can be found relatively quickly 
using a weighted heuristic, and finding a probably 
optimal solution takes much longer.  That is, it is 
effective whenever weighted heuristic search is 
effective.  If the weight is chosen appropriately.  Have 
shown that this approach can create a search algorithm 
with attractive anytime properties without 
significantly delaying convergence to a provably 
optimal solution.  Conclude that anytime heuristic 
search provides an attractive approach to challenging 
search problems. Especially when the time available to 
find a solution is limited or uncertain. 

 This paper analyses the problem of UHRs in 
planning in detail, and proposes a two level search 
framework as a solution. In Greedy Best-First Search 
with Local Exploration (GBFSLE), a local exploration is 
started from within a global GBFS whenever the search 
seems stuck in UHRS.  Two different local Random walk 
Search (LRW).  The two new planners LAMA-2011.  
Both are shown to yield clear improvements in terms 
of both coverage and search time on standard 
international planning Competition benchmarks, 
especially for domains that are proven to have large or 
unbounded UHRs. 
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 While local exploration has been investigated 
before in the Context of local search planners, it also 
serves to facilitate Escaping from UHRS for greedy 
best-first search.  The new Framework of GBFS-LF, 
GBFS with local exploration, has been tested 
successfully in two different realizations, adding Local 
greedy best-first search in GBFS-LS and random walks 
In GBFS-LRW. 

 This paper proposed and evaluated the power 
of best-first search over AND/OR search spaces in 
graphical models.  The main virtue of the AND/OR 
representation is its sensitivity to the structure of the 
graphical model, which can translate into significant 
time savings.  Indeed, in recent years depth-first 
AND/OR Branch-and-Bound algorithms were shown to 
be very effective when exploring such search spaces, 
especially when using caching.  Since best-first 
strategies are known to be superior to depth-first when 
memory is utilized, exploring the best-first control 
strategy is called for.  In this paper introduce two 
classes of best-first AND/OR search algorithms: those 
that explore a context-minimal AND/OR search graph 
and use static variable orderings, and those that use 
dynamic variable orderings but explore an AND/OR 
search tree.  The superiority of the best-first search 
approach is demonstrated empirically on various real-
world benchmarks. 

This paper considered Weighted Best First 
(WBF) search schemes, popular for path-finding 
domain, as approximations and as anytime schemes for 
the MAP task.  Author demonstrate empirically the 
ability of these schemes to effectively provide 
approximations with guaranteed sub optimality and 
also show that as anytime scheme, Depth-First Branch 
and-Bound. 

 In this paper extended advanced best-first 
scheme for graphical model into a weighted scheme 
and evaluated its performance in comparison with a 
highly competitive Branch and Bound scheme.  Our 
empirical results show that weighted best-first is 
valuable in providing relatively fast solutions together 
with sub optimality bounds.  Demonstrated that 
weighted best-first search schemes should definitely be 
included in the set of good optimization schemes for 
solving MPE/MAP tasks.  The weight mechanism can 
mitigate the memory/time trade off in a useful way 
that can be harnessed into an anytime scheme that not 
only improves with time, but can also guarantee its 
level of sub optimality. 

 This paper particularly, focused on an approach 
which distributes and schedules work among 
processors based on a hash function of the search state.  
Use this approach to parallelize the A* algorithm in the 
optimal sequential version of the Fast Downward 
planner.  The scaling behavior of the algorithm is 
evaluated experimentally on clusters using up to 128 
processors, a significant increase compared to previous 
work in parallelizing planners.  This approach scales 
well, allowing us to effectively utilize the large amount 
of distributed memory to optimally solve problems 
which require hundreds of gigabytes of RAM to solve.  
Also show that this approach scales well for a single, 
shared-memory multicore machine. 

 In this paper, above mention author compare 
different approaches to parallel best-first search in a 
shared-memory setting.  Present a new method, PBNF 
that uses abstraction to partition the state space and to 
detect duplicate states without requiring frequent 
locking.  PBNF allows speculative expansions when 
necessary to keep threads busy.  We identify and fix 
potential live lock conditions in our approach, proving 
its correctness using temporal logic.   Our approach is 
general, allowing it to extend easily to suboptimal and 
anytime heuristic search.  In an empirical comparison 
on STRIPS planning, grid path finding, and sliding tile 
puzzle problems using 8-core machines, we show that 
A*, weighted A* and Anytime weighted A* 
implemented using PBNF yield faster search than 
improved versions of previous parallel search 
proposals. 

 The objective of this paper is to present a 
comprehensive methodology to discover the 
knowledge for selecting targets for direct marketing 
this study expanded RFM model by including two 
parameters, time since first purchase or length of 
customer relationship and cost of a customer.  Authors 
in this paper first review the CRM concept and RFM 
model and next propose modified model.  In the 
empirical study Authors examine a case study, 
insurance study.  Authors cluster the insurance 
customer with k-means algorithm.  The result show 
that the modified model is better than base RFM model. 

 In this study authors examine the RFM model 
and authors tried to make the model more efficient 
variables time of relationship and associated costs 
added to the model.  Authors used association rules to 
compare two models.  The result was that the new 
model works better than the RFM. 
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 These methods provide a lot of opportunities in 
the market sector.  This paper deals with mining 
algorithms and methods (especially RFM analysis) and 
their use in Six Sigma methodology, especially in 
DMAIC phases.  DMAIC stands for Define, Measure, 
Analyse, Improve and Control.  Our research is focused 
on improvement of Six Sigma phases (DMAIC phases).  
With implementation of RFM analysis (as a part of Data 
Mining) to Six Sigma (to one of its phase). We can 
improve the results and change the Sigma performance 
level of the process.  We used C5.0, QUES, CHAID and 
Neural Network algorithms.  The results are in 
proposal of selected Data Mining methods into DMAIC 
phases. 

 The RFM model provides an effective measure 
for customers’ consumption behavior analysis, where 
three variables, namely, consumption interval, 
frequently, and money amount are used to quantify a 
customer’s loyalty and contribution.  Based on the RFM 
value, customers can be clustered into different groups 
and the group information is very useful in market 
decision making.  However, most previous works 
completely left out important characteristics of 
purchased products, such as their prices and lifetimes, 
and apply the RFM measure on all of a customer’s 
purchased products.  This renders the calculation of 
the RFM value unreasonable or insignificant for 
customer analysis.  In this paper, we propose a new 
framework called GRFM (for group RFM) analysis to 
alleviate the problem.  The new measure method takes 
into account the characteristics of the purchased items 
so that the calculated the RFM value for the customers 
are strongly related to their purchased items and can 
correctly reflect their actual consumption behavior.  
Moreover, GRFM employs a constrained clustering 
method PICC (for Purchased Items-Constrained 
Clustering) that could base on a cleverly designed 
purchase pattern table to adjust original purchase 
records to satisfy various clustering constraints as well 
as to decrease re-clustering time.  The GRFM allows a 
customer to belong to different clusters, and thus to be 
associated with different loyalties and contributions 
with respect to different characteristics of purchased 
items.  Final, the clustering result of PICC contains 
extra information about the distribution status inside 
each cluster that could help the manager to decide 
when is most proper to launch a specific sales 
promotion campaign.  Our experiments have confirmed 
the above observations and suggest that GRFM can play 
an important role in building a personalized 

purchasing management system and an inventory 
management system. 

 RFM (Recency,  Frequency and Monetary) 
model has been widely applied in many practical areas 
in a long history, particularly in direct marketing.  By 
adopting RFM model, decision makers can effectively 
identify valuable customers and then develop effective 
marketing strategy.  This paper aims to provide a 
comprehensive review on the application of RFM 
model.  In addition, this paper depicts the definition 
and the scoring scheme of RFM and summarizes how 
RFM model has been effectively applied in a wide 
variety of areas.  Furthermore, this paper presents the 
advantages and disadvantages of the RFM models are 
also exploited.  Finally, this paper describes the 
extended RFM model via a presentation of how RFM 
combines with other variables and models. 

 

3. PROBLEM DEFINITION AND METHODOLOGY 

3.1. Problem 

 Best-first search is admissible on max-cost 
problem.  There are multiple equivalent definitions of 
search that suggest unique ways of thinking about the 
problem.  Our efforts are focused on finding best search 
data list to user required results in terms of optimal 
data cost elimination orders.  Eliminating a min cost 
from a data server is defined as the process of adding a 
cost between every pair of the data neighbors that are 
not already adjacent, then removing the vertices and all 
incident cost from the storage.  A data eliminating 
order is a total order over the data’s in storage.  An 
algorithm that finds the exact search of a server can 
dramatically improve the performance of exact 
inference and thereby increase the size of problems 
that can be solved in practice.  This search space has 
many duplicate data, and propose using algorithms, 
like best-first search, that detect and eliminate all of 
them.  The version of best-first search is most often 
used in practice, which applies to shortest-path 
problems. 

3.2. Problem Solving 

 Obviously the user wants to use heuristic 
search, but for some domains (as we’ll see later) good 
heuristics are hard to produce.  If not, there are 
memory and time considerations. 
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 BFS and the like are guaranteed to find short 
path (data)s, but use a little of memory.   

 DFS is much faster, but isn’t guaranteed to find 
a solution and takes lot of memory.  Even for heuristic 
search sometimes it does the equivalent of DFS on the 
heuristic value. 

 Best first search is a type of graph search 
algorithm.  Here the nodes are expanded one at time by 
choosing lowest evaluation value.  This evaluation 
value is a result of heuristic function giving a measure 
of distance to the goal node.  For typical applications 
such as shortest path (data) problems, the evaluation 
function will be accurate as it accounts for distance or 
an absolute value. Best first search is combination of 
breadth and depth first search.  Depth first search has 
an advantage of arriving at solution without computing 
all data’s in the storage server, whereas breadth first 
arriving at solution without computing all data’s in the 
storage server, whereas breadth first arriving at 
solution without search ensured that the process does 
not get trapped.  Best-first search, being combination of 
these two, permits switching between path (data). 

 At every stage the data’s among the generated 
ones, the best suitable data is selected for further 
expansion, may be this data belong to the same level or 
different, thus can toggle between depth-first and 
breadth-first.  This method involves search result to 
avoid duplication, and also requires two separate lists 
for processing.  OPEN list keeps the data whose 
heuristic values are determined, but yet to be 
expanded.  CLOSE list have the data which have been 
already checked, further these data are kept in this list 
to ensure no duplications.  It implies that the OPEN list 
has the data’s which need to be considered for further 
processing and the entries in CLOSE list indicate the 
data’s which may not be re-required in further steps. 

3.3 Methodology 

OPEN = (initial state) 

While OPEN is not empty or until a goal is found  

Do 

1. Remove the best node from OPEN, call it n. 

2. If n is the goal state, back trace path to n 
(through recorded parents) and return 
path. 

3. Create n’ s successors. 

4. Evaluate each successor, add it to OPEN, 
and record its parent.   

Done. 

3.4 RFM Model 

 The next step involves determining values and 
scoring RFM variables and using them as inputs of 
clustering algorithm.  Output of the RFM model 
consists of three fields of each customer: frequently, 
recently and monetary.  RFM model is proposed by 
Hughes, and has been used in direct marketing for 
several decades.  This model identifies customer 
behavior and represents customer behavior 
characteristics by three variables: 

1. Recency of the last purchase (access) 
which refers to the interval between latest 
customer purchase and time analysis of 
customer data. 

2. Frequency of the purchase (access) a which 
refers to the number of transactions in a 
particular period. 

3. Monetary value of the purchase (access) 
which refers to consumption amount (like 
data size) in a particular period. 

RFM model can be used in different areas by different 
people: Therefore, RFM can mean different things to 
different people.  Classic RFM ranks each data based on 
valuable against other customers (access) and RFM 
Score will be assigned to each and every data. 

 In my thesis I have used this technique to 
reduce the memory space based on the needs. 

 

4. CONCLUSION AND FUTURE WORK 

4.1 Conclusion 

 I have presented major class of heuristic 
algorithms.  Though all the algorithms can be applied 
to find the shortest path, but should not be used unless 
there is a real-time, event driven action are anticipated.  
The comparison gives us clear idea that best-first 
search algorithms are very well suitable when goal 
node cannot be reached from all nodes.  However there 
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may be interesting scenarios that may come out when 
these algorithms are applied with different data 
structures.  The results clearly indicate that steepest 
ascent hill climbing algorithms are not suitable for 
problem such as shortest path finding.  This is due to 
the fact that there is no assurance of getting final 
optimal solution for all the cases.  Best first algorithms 
on the other hand ensure optimal solution for limited 
graph size.  For larger number of nodes these 
algorithms not only tend to take more time but the 
optimality factor may be of concern. 

4.2 Future Work 

 The primary goal of future work will be to 
increase the size of problems that can be solved in a 
reasonable amount of time.  One approach for doing 
this is to continue and investigate algorithms that 
eliminate all duplicate nodes, specifically disk-based 
search.  These methods greatly increase the amount of 
available memory by utilizing external disk-based 
search.  These methods greatly increase the amount of 
available memory by utilizing external disk storage 
while limiting the added costs in terms of running time. 

 Another approach for solving larger problems 
involves constant-space algorithms.  The idea behind 
these methods is to use all the available memory to 
eliminate as many duplicates as possible.  This can be 
done with a memory-bounded version of best-first 
search, or by adding a transposition table to depth-first 
branch-and-bound.  Finally, since anytime algorithms 
are useful in some contexts it will be interesting to 
evaluate anytime variants of the algorithms developed 
in this paper.  This can be done by finding a min-fill 
path from interior search nodes. 
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                           APPENDIX 

Find Shortest Distance 

 As an illustration of Dijkstra’s procedure, let us 
find the distance from vertex B to vertex G in the 
digraph shown in Figure A1. 

 

Figure A1. Simple weighted graph 

 

 

 

 

Input: A search graph problem with cost on the arcs 

Output: The minimal cost path from start node to a goal 
node. 

a) Expand the cheapest next node. 
b) Cost is the vertex cost g (n) 
c) Expand the node you think is nearest to goal 
d) The estimate of distance is h (n) counted 

path distance 
e) The estimate the next vertex is not avail 

distance is assigned infinity  
f) Measures the cost to each node. 
g) Is optimal and complete. 
h) Can very slow. 
i) Can combine them to create an optimal and 

complete algorithm. 
j) f (n) = g(n) + h(n) 

A Heuristic is a function that, when applied to a state, 
returns a distance that is an estimate of the goal. 

 In other words, the heuristic tells us 
approximately how far the state is from the goal state.  
Note said “approximately”. Distance might 
underestimate or overestimate the merit of a state.  But 
for reasons which will see, heuristics that only 
underestimate are very desirable, and are called 
admissible. 

 Vertex = v 

 Distance = d 

 Path p = Add Next node 

 Path-cost = Distance to node in miles. 

 Minimum = Minimum time, least fuel. 

 Path-cost = Number of node moved. 

 Minimum = Least time to solve. 

 

 

 

 


