
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 06 | June-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET ISO 9001:2008 Certified Journal Page 944

INCREMENTAL MAPREDUCE IN BIG DATA ENVIRONMENT

Kabila

 PG Scholar, Department of Computer Science and Engineering, Institute of Road and Transport Technology, Erode – 638316.

---***---

Abstract - New data and updates are growing bigger
and the results of data mining applications turn out to be
stable. In this paper we use Incremental MapReduce and
it is the extension of the map reduces. Map reduce have
been used widely in mining. Incremental MapReduce
process key-value pair level incremental processing. It
process only key-value pair level incremental processing
somewhat than task level re-computation and it also
support sophisticated iterative techniques. In addition to
this map reduce we have introduced the K-Nearest
Neighbor This model allows us to bring the output again a
large dataset. To map gases will determine the K-n
Neighbors in different splits of the data. Incremental Map
performs the operation once it get the data from the K-N.

Keywords- Incremental MapReduce, key-value pair, k-
Nearest Neighbour, re-computation.

1.INTRODUCTION (Size 11 , cambria font)

Today huge amount of digital data is being accumulated in
many important areas, including e-commerce, social
network, finance, health care, education, and environment. It
has become increasingly popular to mine such big data in
order to gain insights to help business decisions or to
provide better personalized, higher quality services. In
recent years, a large number of computing frameworks have
been developed for big data analysis. Among these
frameworks, MapReduce (with its open-source
implementations, such as Hadoop) is the most widely used in
production because of its simplicity, generality, and
maturity. We focus on improving Map Reduce in this paper.
Big data is constantly evolving. As new data and updates are
being collected, the input data of a big data mining algorithm
will gradually change, and the computed results will become
stale and obsolete over time. In many situations, it is
desirable to periodically refresh the mining computation in
order to keep the mining result sup-to-date.

2. Problem identification
Today huge amount of digital data is being accumulated in
many important areas, including e-commerce, social
network, finance, health care, education, and environment. It
has become increasingly popular to mine such big data in
order to gain insights to help business decisions or to
provide better personalized, higher quality services. In
recent years, a large number of computing frameworks have
been developed for big data analysis. Among these
frameworks, MapReduce (with its open-source

implementations, such as Hadoop) is the most widely used in
production because of its simplicity, generality, and
maturity. We focus on improving Map Reduce in this paper.
Big data is constantly evolving. As new data and updates are
being collected, the input data of a big data mining algorithm
will gradually change, and the computed results will become
stale and obsolete over time. In many situations, it is
desirable to periodically refresh the mining computation in
order to keep the mining result sup-to-date.

2. Existing system

The PageRank algorithm computes ranking scores of
web pages based on the web graph structure for supporting
web search. However, the web graph structure is constantly
evolving web pages and hyper-links are created, deleted, and
updated. As the underlying web graph evolves, the PageRank
ranking results gradually become stale, potentially lowering
the quality of web search. Therefore, it is desirable to refresh
the PageRank computation regularly. Incremental
processing is a promising approach to refreshing mining
results. Given the size of the input big data, it is often very
expensive to rerun the entire computation from scratch.
Incremental processing exploits the fact that the input data
of two subsequent computations A and B are similar. Only a
very small fraction of the input data has changed. The idea is
to save states in computation A, re-use A’s states in
computation B, and perform re-computation only for states
that are affected by the changed input data. A number of
previous studies (including Percolator, CBP) have followed
this principle and designed new programming models to
support incremental processing. Unfortunately, the new
programming models (BigTable observers in Percolator,
stateful translate operators in CBP) are drastically different
from MapReduce, requiring programmers to completely re-
implement their algorithms.Incoop extends MapReduce to
support incremental processing. It has two main limitations.
First, Incoop supports only task-level incremental
processing. That is, it saves and reuses states at the
granularity of individual Map and Reduce tasks. Each task
typically processes a large number of key-value pairs (kv
pairs). If Incoop detects any data changes in the input of a
task, it will rerun the entire task. While this approach easily
leverages existing MapReduce features for state savings, it
may incur a large amount of redundant computation if only a
small fraction of kv-pairs have changed in a task. Second,
Incoop supports only one-step computation, while important
mining algorithms, such as PageRank, require iterative
computation. Incoop would treat each iteration as a separate

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 06 | June-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET ISO 9001:2008 Certified Journal Page 945

MapReduce job. However, a small number of input data
changes may gradually propagate to affect a large portion of
intermediate states after a number of iterations, resulting in
expensive global re-computation after wards.The Bulk
Synchronous Processing (BSP) model. The computation is
broken down into a sequence of super steps. In each super
step, a Compute function is invoked on each vertex. It
communicates with other vertices by sending and receiving
messages and performs computation for the current vertex.
This model can efficiently support a large number of
iterative graph algorithms. It provides a group wise
processing operator Translate that takes state as an explicit
input to support incremental analysis. But it adopts a new
programming model that is very different from Map Reduce.
In addition, several research studies support incremental
processing by task-level re-computation, but they require
users to manipulate the states on their own. In contrast,
Incremental MapReduce exploits a fine-grain kv-pair level
re-computation that are more advantageous. Incremental
processing for iterative application, Proposes a timely
dataflow paradigm that allows stateful computation and
arbitrary nested iterations. To support incremental iterative
computation, programmers have to completely rewrite their
MapReduce programs. In comparison, extend the widely
used MapReduce model for incremental iterative
computation. Existing MapReduce programs can be slightly
changed to run on incremental MapReduce for incremental
processing.

4. Proposed System.

Propose Incremental MapReduce, an extension to
MapReduce that supports fine-grain incremental processing
for both one step and iterative computation. Compared to
previous solutions, Incremental MapReduce incorporates the
following three novel features

4.1 Fine-grain incremental processing using MRBG-
store

Incremental Map Reduce supports kv-pair level fine-
grain incremental processing in order to minimize the
amount of re-computation as much as possible. Model the
kv-pair level data flow and data dependence in a Map Reduce
computation as a bipartite graph, called MRB Graph. A
MRBG-Store is designed to preserve the fine-grain states in
the MRB Graph and support efficient queries to retrieve fine-
grain states for incremental processing.

4.2 General-Purpose Iterative Computation
With modest extension to MapReduce API, previous

work proposed Incremental MapReduce to efficiently
support iterative computation on the MapReduce platform.
However, it targets types of iterative computation where
there is a one-to-one/all-to-one correspondence from
Reduce output to Map input. In comparison, our current
proposal provides general-purpose support, including not

only one-to-one, but also one-to-many, many-to-one, and
many-to-many correspondence. Enhance the Map API to
allow users to easily express loop-invariant structure data,
and propose a Project API function to express the
correspondence from Reduce to Map. While users need to
slightly modify their algorithms in order to take full
advantage of Incremental MapReduce, such modification is
modest compared to the effort to re-implement algorithms
on a completely different programming paradigm.

4.3 Icremental Processing For Computation.

 Incremental iterative processing is substantially more
challenging than incremental one-step processing because
even a small number of updates may propagate to affect a
large portion of intermediate states after a number of
iterations. To address this problem, propose to reuse the
converged state from the previous computation and employ
a change propagation control (CPC) mechanism. We also
enhance the MRBG-Store to better support the access
patterns in incremental iterative processing. To our
knowledge, IncrementalMapReduce is the first MapReduce-
based solution that efficiently supports incremental iterative
computation.

5 System Architecture Diagram.

 Fig -1: System Architecture Diagram.

6. Module Description
6.1 Collect data blocks Module

Huge amount of digital data is being accumulated in
e-commerce, social network, finance, health care, education
environment. It has become increasingly popular to mine
such big data in order to gain insights to help business
decisions or to provide better personalized, higher quality

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 06 | June-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET ISO 9001:2008 Certified Journal Page 946

services. In recent years, a large number of computing
frameworks have been developed for big data analysis. As
new data and updates are being collected, the input data of a
big data mining algorithm will gradually change, and the
computed results will become stale and obsolete over time.
Given the size of the input big data, it is often very expensive
to rerun the entire computation from scratch. Divides a file
into equal-sized blocks and stores the blocks across a cluster
of machines. The MapReduce system runs a Job Tracker
process on a master node to monitor the job progress, and a
set of Task Tracker processes on worker nodes to perform
the actual Map and Reduce tasks.

6.2 Iterative computation Module
Incremental iterative processing is substantially

more challenging than incremental one-step processing
because even a small number of updates may propagate to
affect a large portion of intermediate states after a number of
iterations.

To reuse the converged state from the previous computation
and employ a change propagation control (CPC) mechanism.
Also enhance the MRBG-Store to better support the access
patterns in incremental iterative processing. Incremental
MapReduce is the first MapReduce-based solution that
efficiently supports incremental iterative computation
.Including not only one-to-one, but also one-to-many, many-
to-one, and many-to-many correspondence. Enhance the
Map API to allow users to easily express loop-invariant
structure data, and API function to express the
correspondence from Reduce to Map. While users need to
slightly modify their algorithms in order to take full
advantage of Incremental MapReduce, such modification is
modest compared to the effort to re-implement algorithms
on a completely different programming paradigm.

6.2 Fine-Grain Incremental Processing Module

Incremental MapReduce supports kv-pair level fine-
grain incremental processing in order to minimize the
amount of re-computation as much as possible. The kv-pair
level data flow and data dependence in a MapReduce
computation as a bipartite graph A MRBG-Store is designed
to preserve the fine-grain states in the MRBGraph and
support efficient queries to retrieve fine-grain states for
incremental processing. The Map function takes a kv-pair
(K1; V 1) as input and computes zero or more intermediate
kv-pairs (K2; V 2). Then all (K2; V 2) is grouped by K2. The
Reduce function takes a K2 and a list of V 2 as input and
computes the final output kv-pairs (K3; 3). The fine-grain
incremental processing engine with an example application,
which computes the sum of in-edge weights for each vertex
in a graph. The Map input is the adjacency matrix of the
graph. Every record corresponds to a vertex in the graph. K1

is vertex id i, and V 1 contains “j1:wi;j1 ; j2:wi;j2 ; ...” where j
is a destination vertex and wi;j is the weight of the out-edge.
Given such a record, the Map function outputs intermediate
kv pair hj;wi;ji for every j. The shuffling phase groups the
edge weights by the destination vertex. Then the Reduce
function computes for a vertex j the sum of all its in-edge
weights as Pi wi;j.

6.3 Incremental Map reduce Re-computation
Module

Incremental MapReduce expects delta input data
that contains the newly inserted, deleted, or modified kv-
pairs as the input to incremental processing. The engine
merges the delta MRBGraph and the preserved MRBGraph to
obtain the updated MRBGraph using the algorithm. Each
datasets the engine deletes the corresponding saved edge
state. For each Vertex, the engine first checks duplicates, and
inserts the new edge if no duplicate exists, or else updates
the old edge if duplicate exists uniquely identifies an
MRBGraph edge. Since an update in the Map input is
represented as a deletion and an insertion, any modification
to the intermediate edge state consists of a deletion followed
by an insertion. For each affected K2, the merged list of V 2
will be used as input to invoke the Reduce function to
generate the updated final results. Incremental MapReduce
re-computes the Reduce instance associated with each
changed MRBGraph edge. For a changed edge, it queries the
MRGB-Store to retrieve the preserved states of the in-edges
of the associated K2, and merge the preserved states with
the newly computed edge changes.

7 Implementation

7.1 Performance and result for mapReduce

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 06 | June-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET ISO 9001:2008 Certified Journal Page 947

Fig 2: Performance of MapReduce

Fig 3: Result of map and Reduce

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 06 | June-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET ISO 9001:2008 Certified Journal Page 948

Fig 4: Analytic Report for MapReduce

Fig 5:Analytic Report for MapReduce

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 06 | June-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET ISO 9001:2008 Certified Journal Page 949

8. CONCLUSIONS

 In this work ,we focus on the problem of stale of
data when data are frequently arriving data .To avoid this we
are using incremental MapReduce along with k-nearest
neighbour.i2MapReduce combines a fine-grain incremental
engine, a general-purpose iterative model, and a set of
effective techniques for incremental iterative computation.
Real-machine experiments show that i2MapReduce can
significantly reduce the run time for refreshing big data
mining results compared to re-computation on both plain
and iterative MapReduce.

REFERENCES

[1] P. Bhatotia, A. Wieder, R. Rodrigues, U. A. Acar, and R.
Pasquin, “Incoop: Mapreduce for incremental computations,”
in Proc. 2nd ACM Symp. Cloud Comput., 2011, pp. 7:1–7:14.

[2] S. Brin, and L. Page, “The anatomy of a large-scale
hypertextual web search engine,” Comput. Netw. ISDN Syst.,
vol. 30, no. 1–7, pp. 107–117, Apr. 1998.

[3] Y. Bu, V. Borkar, J. Jia, M. J. Carey, and T. Condie, “Pregelix:
Big(ger) graph analytics on a dataflow engine,” in Proc. VLDB
Endowmen,2015, vol. 8, no. 2, pp. 161–172.nage., 2011, pp.
7–14.

[4] Y. Bu, B. Howe, M. Balazinska, and M. D. Ernst, “Haloop:
Efficient iterative data processing on large clusters,” in Proc.
VLDB Endowment,2010, vol. 3, no. 1–2, pp. 285–296.

[5] J. Cho and H. Garcia-Molina, “The evolution of the web
and implications for an incremental crawler,” in Proc. 26th
Int. Conf. Very Large Data Bases, 2000, pp. 200–209.

[6] J. Dean and S. Ghemawat, “Mapreduce: Simplified data
processing on large clusters,” in Proc. 6th Conf. Symp. Opear.
Syst. Des. Implementation, 2004, p. 10.

[7] S. Ewen, K. Tzoumas, M. Kaufmann, and V. Markl,
“Spinning fast iterative data flows,” in Proc. VLDB
Endowment, 2012, vol. 5, no. 11, pp. 1268–1279.

[8] J. Ekanayake, H. Li, B. Zhang, T. Gunarathne, S.-H. Bae, J.
Qiu, and G. Fox, “Twister: A runtime for iterative
mapreduce,” in Proc. 19th ACM Symp. High Performance
Distributed Comput., 2010, pp. 810–818.

[9] T. J€org, R. Parvizi, H. Yong, and S. Dessloch, “Incremental
recomputations
in mapreduce,” in Proc. 3rd Int. Workshop Cloud Data

[10] U. Kang, C. Tsourakakis, and C. Faloutsos, “Pegasus: A
peta-scale graph mining system implementation and

observations,” in Proc. IEEE Int. Conf. Data Mining, 2009, pp.
229–238.

[11] Y. Low, D. Bickson, J. Gonzalez, C. Guestrin, A. Kyrola,
and J. M. Hellerstein, “Distributed graphlab: A framework for
machine learning and data mining in the cloud,” in Proc.
VLDB Endowment, 2012, vol. 5, no. 8, pp. 716–727.

[12] D. Logothetis, C. Olston, B. Reed, K. C. Webb, and K.
Yocum, “Stateful bulk processing for incremental analytics,”
in Proc. 1st ACM Symp. Cloud Comput., 2010, pp. 51–62.

[13] S. Lloyd, “Least squares quantization in PCM,” IEEE
Trans. Inform. Theory., vol. 28, no. 2, pp. 129–137, Mar.
1982.

[14] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I.
Horn, N. Leiser, and G. Czajkowski, “Pregel: A system for
large-scale graph processing,” in Proc. ACM SIGMOD Int.
Conf. Manage. Data, 2010, pp. 135–146.

[15] S. R. Mihaylov, Z. G. Ives, and S. Guha, “Rex: Recursive,
deltabased data-centric computation,” in Proc. VLDB
Endowment, 2012, vol. 5, no. 11, pp. 1280–1291.

[16] D. G. Murray, F. McSherry, R. Isaacs, M. Isard, P. Barham,
and M. Abadi, “Naiad: A timely dataflow system,” in Proc.
24th ACM Symp. Oper. Syst. Principles, 2013, pp. 439–455.

[17] C. Olston and M. Najork, “Web crawling,” Found. Trends
Inform. Retrieval, vol. 4, no. 3, pp. 175–246, 2010.

[18] D. Peng and F. Dabek, “Large-scale incremental
processing using distributed transactions and notifications,”
in Proc. 9th USENIX Conf. Oper. Syst. Des. Implementation,
2010, pp. 1–15.

[19] R. Power and J. Li, “Piccolo: Building fast, distributed
programs with partitioned tables,” in Proc. 9th USENIX Conf.
Oper. Syst. Des. Implementation, 2010, pp. 1–14.

[20] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M.
McCauley, M. J. Franklin, S. Shenker, and I. Stoica, “Resilient
distributed datasets: A fault-tolerant abstraction for, in-
memory cluster computing,” in Proc. 9th USENIX Conf. Netw.
Syst. Des. Implementation, 2012, p. 2.

[21] Y. Zhang, S. Chen, Q. Wang, and G. Yu, “i2mapreduce:
Incremental mapreduce for mining evolving big data,” CoRR,
vol. abs/ 1501.04854, 2015.

[22] Y. Zhang, Q. Gao, L. Gao, and C. Wang, “imapreduce: A
distributed computing framework for iterative
computation,” J. Grid Comput., vol. 10, no. 1, pp. 47–68, 2012.

