
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 06 | June-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET ISO 9001:2008 Certified Journal Page 971

“AN OPTIMIZED PARALLEL ALGORITHM FOR LONGEST COMMON

SUBSEQUENCE USING OPENMP”

1HanokPalaskar, 2Prof.TausifDiwan

1 M.Tech Student, CSE Department, Shri Ramdeobaba College of Engineering and Management, Nagpur, India

2Assistant Professor, CSE Department, ShriRamdeobaba College of Engineering and Management, Nagpur,India
---***---

Abstract - Finding the Longest Common Subsequence
has many applications, such as in the field of
bioinformatics and computational genomics. The LCS
problem consist of an optimal substructure and
overlapping sub problems, problems which have such
properties can be solved using dynamic programming
problem solving technique. Due to the enormous
growth in the database sizes, it becomes difficult to
solve problems like LCS in less amount of time using
classical sequential algorithms. To overcome this
problem parallel algorithms are the best solution. In
this paper we have presented an optimized parallel LCS
algorithm, using OpenMP, for Multi-Core architectures.
We have optimized our parallel algorithm by load
balancing among the threads, we have divided the
score matrix into three parts; growing region, stable
region and shrinking region depending upon the
number of subproblems and have schedule the
subproblems effectively to processing cores for optimal
utilization of multicore technology. We realize the
implementations of our optimized parallel LCS
algorithm on Intel Dual-Core and Quad-Core processors
using OpenMP with different scheduling policies. Our
optimized parallel algorithm achieves approximately
2.5 speedup factor over the conventional sequential
algorithm approach on Intel Quad-Core.

Key Words:LCS, Dynamic Programming, Parallel

Algorithm, OpenMP.

1. INTRODUCTION

Dynamic programming is widely used for discrete
and combinatorial optimization problems.
Dynamic programming is based on storing all
intermediate results in a tabular form, so as to
utilize it for further computations. Due to its
amenable computational approach, this technique
has been largely adopted for solving various
optimization problems, including matrix chain
multiplication, longest common subsequence,
binary knapsack, travelling salesman problem and
so on.

The LCS problem deals with comparing two or
more sequence and finding the maximum length
subsequence which is common to two or more
given sequences. The LCS algorithm is widely
used in many areas, which includes the field of
gene engineering to compare DNA of patients
with that of healthy ones. Also, due to the
digitization of information plagiarism has become
more convenient, which is evidently displayed in
lots of research work. By comparing the similarity
between different texts, the detection technique
may be realized by LCS algorithm. Apart from this
LCS also has application in the areas of speech
recognition, file comparison and in the field of
bioinformatics.
In the field of bioinformatics most of the common
studies have evolved towards a more large scale,
for e.g., study and analysis of proteome/ genome
instead of a single protein/gene. Therefore, it has
become more and more difficult to perform these
analyses using sequential algorithms on a single
computer. For these kind of massive
computations bioinformatics now requires
parallel algorithms. Unlike serial algorithm,
parallel algorithms can be executed a part at a
time on different processing devices and these
parts at the end can be combined to get the
correct result. Because of the spread of
multithreading processors and the multicore
machines in the marketplace, it is now possible to
create parallel programs for uniprocessors also,
and can be utilize to solve the large scale
problems like LCS. To perform the parallel
processing on multicore machines, lots of shared
memory API tools are available; one of such is
OpenMP which provides the various constructs
which can be added to sequential programs
written in C/C++, Fortran. Using various
Scheduling constructs of OpenMP we can balance
the load among the threads thus allowing us to
schedule the sub problems of dynamic
programming effectively to processing cores for
optimal utilization of multicore processors.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 06 | June-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET ISO 9001:2008 Certified Journal Page 972

In this paper we have performed parallelization of
Positional_LCS algorithm using OpenMP
constructs, as the Positional_LCS algorithm
focuses only on the matched position it has less
execution time as compared to other DP-LCS
algorithms. We have also performed the
optimization on our parallel LCS algorithm by
using different Scheduling constructs on
computation regions of the score matrix. Our
paper is organized as follows: section 2 deals with
the problem definition and the related work.
Section 3 describes the background of
Positional_LCS algorithm and OpenMP tool.
Section 4 explains our proposed parallel
algorithm and its optimization. In section 5 and
section 6 we have presented our experimental
results and conclusion respectively.

2. Related Work

Most of the existing algorithms use DP technique
to compute LCS. The main concept of DP is to
compute current state from previous state. Let x1
and x2 are two given sequences and L[i,j] is the
score matrix computed using recursion equation
defined in equation (1). Scanning the score matrix
L[i,j] gives us the required LCS.

0 if i or j = 0,
L[i,j] = L[i-1,j-1] + 1 if x1[i] = x2[j], Eq.(1)
 Max(L[i,j-1],L[i-1,j]), if x1[i]≠x2[j]

For the example x1=CTGCTCACCG and
x2=CTTCTCAAAT the score matrix is computed
using Eq.(1). Table 1 shows the score matrix for
given two sequences.

Table (1) Score Matrix

 j 0 1 2 3 4 5 6 7 8 9 10

i C T T C T C A A A T

0 0 0 0 0 0 0 0 0 0 0 0

1 C 0 1 1 1 1 1 1 1 1 1 1

2 T 0 1 2 2 2 2 2 2 2 2 2

3 G 0 1 2 2 2 2 2 2 2 2 2

4 C 0 1 2 2 3 3 3 3 3 3 3

5 T 0 1 2 3 3 4 4 4 4 4 4

6 C 0 1 2 3 4 5 5 5 5 5 5

7 A 0 1 2 3 4 5 5 6 6 6 6

8 C 0 1 2 3 4 5 5 6 6 6 6

9 C 0 1 2 3 4 5 5 6 6 6 6

10 G 0 1 2 3 4 5 5 6 6 6 6

Scanning of the score matrix gives us the required
LCS which is CTCTCA in this case. In DP technique
main computational process to get the required
LCS is the computation of the score matrix and
scanning of the entire score matrix. For the two
input sequence of size n n2 calculations are
required to compute the score matrix and n2 time
is required to scan the score matrix to get the
required LCS.
In [1] authors proposed parallelization of LCS
problem using Dynamic Programming technique.
They have presented parallelization approach for
solving LCS problem on GPU, and using CUDA and
OpenCL they have implemented their proposed
algorithm on NVIDIA platform. Computation of
score matrix is carried out in anti-diagonal
fashion in order to eliminate dependency. Using
OpenMP API they have implemented their
proposed algorithm on CPU.
Instead of dynamic programming technique in [2]
authors have proposed an algorithm based on the
Dominant Point approach which make use of the
divide-and-conquer technique. They have divided
the score matrix into the size of LCS and have
used two algorithms Union() and Find() to
compute the output. This algorithm is also
suitable for the Multiple LCS.
In [3] author proposed a parallel algorithm for
LCS which is based on the calculation of the
relative positions of the characters. This algorithm
recognizes and rejects all those subsequences
which fail to generate the next character of LCS.
Drawback of this algorithm is that it requires
having the knowledge of number of characters
being used in the sequence in advance.
Parallelization of this algorithm uses the multiple
processors where number of processors should
be equal to number of characters.
Instead of computing the entire score matrix of
n×n, in [4] authors have used the optimized
technique of the theorems which calculates the
score matrix of order p×n where p is less than n.
For the computation of the LCS they have devised
a formula which gives the required LCS from the
score matrix without backtracking. Parallelization
of this algorithm is done by using OpenMP
constructs for the Multi-Core CPUs
In [4] authors have proposed a new algorithm for
LCS, Postional_LCS. Instead of focusing on both
matched and unmatched positions of sequences
this algorithm focus only on matched positions
and stores those positions in a separate array. To
compute the required LCS this algorithms does
not use backtracking on the score matrix instead,
it access the array which have the positions of

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 06 | June-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET ISO 9001:2008 Certified Journal Page 973

matched characters. In this paper we have
presented the optimized parallel version of this
Positional_LCS algorithm.

3. BACKGROUND

3.1 Positional LCS

In DP approach of finding LCS, to find the value of
current position L[i, j] in score matrix its three
adjacent cells namely L[i-1,j], L[i,j-1] and L[i-1,j-1]
values are used. Table 2 provides the adjacent
positions of the score matrix L[i,j].

Left Top Right Top
L[i-1,j-1] L[i-1,j]

L[i,j-1] L[i,j]
Left Bottom

Current Position

Table (2) Adjacent Positions for Score Matrix

If a matching occurs at ith position of the
sequence x1 and jth position of the sequence x2,
then value of current position L[i,j] is computed
by incrementing the value of its left top position in
score matrix by one, i.e. L[i,j] = L[i-1, j-1] +
1.Otherwise, the value of current position L[i,j] is
computed as maximum value of its left bottom
position L[i,j-1] right top position L[i-1,j]. So value
of the current position L[i,j] is max (L[i-1,j] and
L[i,j-1]).
LCS always occurs only at matching positions of
the sequences. Last occurrence of the matching
position is the left top position. Positional_LCS use
an array namely Parent[i,j] to store this left top
position L[i-1, j-1]. Whenever we get a new
matching at the position (i,j), the value of current
position L[i,j] is computed by adding one with its
left top position value and current LCS position is
stored in Parent[i,j].
By maintaining this parent array, scanning the
entire score matrix (both matched and unmatched
positions), to get the required LCS, is eliminated.
Parent matrix gives the required LCS. Parent
matrix stores the left top positions, the first time
where LCS matching occurred. This algorithm
compares the current score value and the
maximum score value. If the maximum score
value is less than the current score value, then
next new LCS matching occurs.
The current score value at this point is stored in
the Parent matrix. In other words, the Parent
matrix contains the positions of the characters of

required LCS. Parent matrix itself produces the
required LCS, instead of scanning entire matrix.

3.2 OpenMP

OpenMP is one of the favorite Application
Programming Interface used for parallelization on
the shared memory architecture, adopted by a
majority of high performance community due to
its higherprogramming efficiency. OpenMP is
shared memory programming fork join model
that provides various directives and library
functions for creating and managing a team of
threads. Various synchronization and work
sharing constructs are provided by OpenMP, using
which we automatically or manually divide the
task among threads. OpenMP provides four
different types of scheduling for assigning the
loop iterations to different threads: static,
dynamic, guided and runtime.Schedule clause is
provided for specifying schedule and numbers of
iterations i.e. chunk size. In static scheduling,
chunks are assigned to processing cores in round
robin fashion. It is the simplest kind of scheduling
with minimum overhead. In dynamic scheduling,
thread requests for new chunk as it finishes the
assigned chunk. In the guided scheduling thread
request for newer chunks, but chunk size is
calculated as the number of unassigned iterations
divided by the total number of threads in the
team. Guided scheduling seems to be more
efficient scheduling, but involves a little bit of
overheads in the calculation of chunk size. In
runtime scheduling, schedule and optional chunk
size are set with the help of environment
variables. The details of scheduling techniques are
discussed in [8, 9].

4. PROPOSED PARALLEL ALGORITHM

In this section we present the parallel version on
Positional_LCS for Multi-Core CPUs using
OpenMP. First we discuss the parallelization
approach we used to parallelize the algorithm and
then we present the optimization which we have
applied to our parallel algorithm.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 06 | June-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET ISO 9001:2008 Certified Journal Page 974

4.1 The Parallelization Approach

When we observe the construction of score matrix
using dynamic programming approach we can see
the value of current element L[i,j] is depends on
the three entries in the score matrix; L[i-1, j-1],
L[i-1,j], L[i,j-1]. In other words, L[i,j] depends on
data in the same column and same row. That
implies, we cannot compute the cells in the same
row or column in parallel.

Fig. 1 Data Dependency in Score Matrix

To compute the elements of score matrix in
parallel, we start computing from L1,1 then L2,1
and L1,2 at the same time and so on. We can see
that computation of elements which are in the
same diagonal can be done in parallel. To perform
the computation of score matrix in parallel we are
computing elements of score matrix in diagonal
manner instead of row wise (see Fig. 2).

Fig. 2 The Parallelization Approach

4.2 Parallel Algorithm

In this paper we have use OpenMP and C language
for the parallelization of the sequential algorithm.
For the parallelization we have computed the
score matrix diagonally, and for computation of
elements in the same diagonal we have applied

OpenMP constructs on the inner for loop (see
Fig.3). We have also restricted the number of
threads equals to the number of cores in the
machine to avoid the computation overhead.
Pseudo-code for our proposed parallel algorithm
can be given as follows:

ALGORITHM L(A,B)
INPUT STRING A AND STRING B
OUTPUT LCS OF A AND B
Begin
(1) Initialization of matrix elements L(m,n)

(2) Computation of elements of score matrix
diagonally in parallel manner and maintaining the
parent array to store the matched positions

(3) Printing LCS from parent matrix

End

Fig. 3 Parallel Region in Code

4.3 Optimization

Due to non-uniformity in the inherent
dependence in dynamic programming algorithms,
it becomes necessary to schedule the sub
problems of dynamic programming effectively to
processing cores for optimal utilization of
multicore technology. For the optimization of our
parallel algorithm we have used the load
balancing. We have divided the score matrix of
LCS in three parts; growing region, stable region
and shrinking region depending on whether the
number of sub problems increases, remain stable
or decreases uniformly phase by phase
respectively. Fig. 4 represents the region wise
partition and

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 06 | June-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET ISO 9001:2008 Certified Journal Page 975

arrows indicate direction of parallelization
strategies for the LCS.

Fig. 4 Parallelization Strategy and Region Wise
Distribution of Score Matrix

For each phase, the numbers of subproblems are
assigned to the threads which are handled by the
chunk size parameter in OpenMP and finally
threads execute those assigned subproblems over
physical cores which are handled by a scheduling
policy in OpenMP. We have performed the
experiments using three different scheduling
policies on each phase and based on experimental
results we have chosen best policy for each phase
in order to get the optimized results.

5. RESULT AND COMPARISON

5.1 Experimental Results of Parallel
Algorithm

We have evaluated the performance of our
Optimized Parallel LCS on Intel Dual Core
processor with CPU clock 2.00 GHz, 2 CPU cores, 4
GB of RAM and Intel Quad Core processor with
CPU clock 2.3GHz, 4 CPU cores, 4 GB of memory.
The operating system used for performance
evaluation is Obuntu 14.1 32-bit Linux with GNU
GCC compiler 4.8.3 with OpenMP.
Speed up is computed by taking ratio of time
taken by serial algorithm to time taken by parallel
algorithm. For the Dual-Core processor 1.42
speedup is computed, while on Quad Core
processor 2.15 speed up is computed. As all
speedups are greater than one, OpenMP performs
better as compared to the sequential algorithm.
Table 3 shows the experimental results of serial
algorithm and parallel algorithm and Fig. 5
represents the graphical representation of
comparison of serial and parallel algorithms for
different input size.

Table 3 Execution Time Comparison

Fig 5

5.2 Experiment Results of Optimization

In this section we present the experiment results
of our parallel algorithm after the optimization.
We have divided the score matrix computation
into growing phase, stable phase and shrinking
phase and have applied the Static, Dynamic and
Guided constructs of OpenMP to get the optimized
result. Table 4 and 5 shows the experimental
results of different scheduling schemes on Dual-
Core and Quad-Core processors respectively and
Fig. 6 shows the graphical representation of
comparison of different scheduling policies. Time
is in seconds.

Time

(ms)

Number of Characters

N=500 N=1000 N=6000 N=10000

Quad-

Core

15.52 20.48 383.7 835.5

Dual-

Core

14.86 31.29 682.7 1476.0

Serial 12.37 30.92 935.7 2259.6

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 06 | June-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET ISO 9001:2008 Certified Journal Page 976

Table 4 Scheduling on Dual-Core

Table 5 Scheduling on Quad-Core

Fig. 6 Scheduling on Quad-Core and Dual-Core

5.3 Result Analysis

From the experimental results we have observed
that when the input size is greater than 1000
parallel algorithm takes less time than the serial
one. But when input size is small then the
sequential algorithm is faster than the parallel
algorithm. For this we have set one threshold
value in our algorithm if the input size is less than
threshold value our algorithm will execute serially
and if input size is greater than threshold
algorithm will execute parallel. Guided Scheduling
is the best for the Dual-Core processor when
applied on the shrinking region and Static
Scheduling on the growing region. Whereas, Static
Scheduling is best for the Quad-Core processor
when applied on the shrinking region as well as
on growing region.

6. CONCLUSION AND FUTURE WORK

Problem of LCS have the variety of applications in
the domain of bioinformatics, pattern recognition
and data mining. Due to the recent developments
in the multi-core CPUs, for the problems having
large size input parallel algorithms using OpenMP
are one of the best ways to solve these problems.
In this paper we have presented an Optimized
Parallel algorithm using OpenMP for Multi-Core
CPUs.We have observed from our experimental
results that our optimized parallel algorithm is
faster than the sequential LCS algorithm for the
large input size. We also conclude that Guided
scheduling is best for the Dual-CoreProcessors
while Static scheduling is best for Quad-Core
processors. In future we can extend this algorithm
to support Multiple Longest Common
Subsequence; also we can implement this
algorithm on Graphical Processing Unit (GPU)
using CUDA or OpenCL and study the
performance. This algorithm can also be
implemented on distributed memory architecture
using hybrid of OpenMP and MPI.

Input Size Scheduling Type

Static Dynamic Guided

6000 0.691 1.370 0.682

8000 1.123 2.076 0.994

10000 1.473 3.104 1.445

Input

Size

Scheduling Type

Static Dynamic Guided

6000 0.386 0.788 0.404

8000 0.573 1.180 0.593

10000 0.843 1.758 0.860

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 06 | June-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET ISO 9001:2008 Certified Journal Page 977

7. REFERENCES

[1] Amine Dhraief, RaikIssaoui,
AbdelfettahBelghith, “Parallel Computing the
Longest Common Subsequence (LCS) on GPUs:
Efficiency and Language Suitability”, The First
International Conference on Advanced
Communications and Computation, 2011.

[2] Quingguo Wang, Dmitry Korkin, Yi Shang, “A
Fast Multiple Longest Common Subsequnce
(MLCS)Algorithm”,IEEE transaction on knowledge
and data engineering, 2011.

[3] AmitShukla, SuneetaAgrawal, “A Relative
Position based Algorithm to find out the Longest
Common Subsequence from Multiple Biological
Sequnces ”, 2010 International Conference on
Computer and Communication Technology, pages
496 – 502.

[4]R. Devika Ruby, Dr. L. Arockiam, “Positional
LCS: A position based algorithm to find Longest
Common Subsequence (LCS) in Sequence
Database (SDB)”, IEEE International Conference
on Computational Intelligence and Computing
Research, 2012.

[5] Jiamei Liu, Suping Wu “Research on Longest
Common Subsequence Fast Algorithm”, 2011
International Conference on Consumer
Electronics, Communications and Networks,
pages 4338 – 4341.

[6] ZhongZheng, Xuhao Chen, Zhiying Wang, Li
Shen, Jaiwen Li “Performance Model for OpenMP
Parallelized Loops ”, 2011 International
Conference on Transportation, Mechanical and
Electrical Engineering (TMEE), pages 383-387.

[7] Rahim Khan, Mushtaq Ahmad, Muhammad
Zakarya, “Longest Common Subsequence Based
Algorithm for Measuring Similarity Between Time
Series: A New Approach” World Applied Sciences
Journal, pages 1192-1198.

[8] Jiaoyun Yang, Yun Xu,“A Space-Bounded
Anytime Algorithm for the Multiple Longest
Common Subsequence Problem”, IEEE transaction
on knowledge and data engineering, 2014.

[9] I-Hsuan Yang, Chien-Pin Huang, Kun-Mao
Chao, “A fast algorithm for computing a longest
common increasing subsequence”, Information
Processing Letters, ELSEVIER, 2004.

[10] Yu Haiying, Zhao Junlan, Application of
Longest Common Subsequence Algorithm in
Similarity Measurement of Program Source Codes.
Journal of Inner Mongolia University, vol. 39, pp.
225–229, Mar 2008.

[11] KrsteAsanovic, RasBodik, Bryan, Joseph,
Parry, Samuel Williams, “The Landscape of
Parallel Computing Research: A view from
Berkeley” Electrical Engineering and Computer
Sciences University of California at Berkeley,
December 2006.

[12] Barbara Champman, Gabriel Jost, Ruud Van
Der Pas “Using OpenMP”, 1-123

