
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 06 | June-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 3028

Progressive WEBAPP : Review
Rahul Surendra Mishra

Master of Computer Application

VESIT, Chembur, Mumbai

University of Mumbai

--***--

Abstract - Mobile apps have now found everywhere .
Google has proposed a way to have one app be equal on both
web and on mobile devices – Progressive Web Apps. Such
apps take advantage of the modern web and browser
capabilities to provide a full native app experience on any
form factor. Progressive apps load quickly even on slow
network connections, send push notifications, and have a
splash screen and an icon on the home screen. When
launched from the home screen, these apps blend into the
environment; they’re top-level, full-screen, and work offline.
Progressive web apps are an interesting forward look into
the future of mobile apps.
Hybrid mobile development with a single Android/iOS

codebase using HTML3, CSS3, JavaScript and various

frameworks (Cordova/PhoneGap, Ionic, NativeScript, etc.)

can aid is reducing some of the associated costs. However,

hybrid mobile is not yet mature enough to fully replace

native mobile apps. They often don’t provide the proper

native experience across the entire functional space. This

dissonance has caused some to look for a better way. One

idea, originating from Google, defines a new take on a

mobile app called a “Progressive Web App.”

Key Words: WebApp, progressive, offline, app install
banners, Application shell, Service workers, Flipkart
lite.

1. INTRODUCTION

A progressive web app combines the best experiences of the
web and an app. They don't require any installation. The
word 'progressive' comes from the relationship that the user
builds with the app over time. The app loads quickly, even
when the user is on bad networks. It can send relevant push
notifications to the user and has an icon on the home screen
and loads as top-level, full screen experience.
The main characteristics of a progressive web app are:[1]

Progressive – Work for every user on all browsers.
Responsive – Operate seamlessly across all form factors.

Connectivity independent – Work offline or on low
quality network connections.
App-like – App-style interactions and navigation.
Fresh – Always up-to-date.
Secure – Served only via HTTPS.
Discoverable – Are identifiable as “applications,”
allowing search engine discovery.
Re-engageable – Make user re-engagement easy
through features like push notifications.
Installable – Allow users to easily “keep” apps they find
most useful on their home screen.
Linkable – Easily share via URL with no app store
installations required.

2. Background

The mobile Web existed for years as a subset of the World
Wide Web that was trimmed down, slow and ugly. The
mobile Web existed in WAP and m.website.com pages that
would load on limited smartphone and tablet browsers that
could not handle the full Web.
For a few years it looked like the old, dirty mobile Web was
going to die. Adaptive and responsive design came to make
full websites look good on mobile with rich and immersive
experiences. The “mobile” bit was going to be stripped out
and all we were left with was the Web, in all its glory, from
any device we decide to access it.But it now looks like the
mobile Web is making a comeback. Instead of breaking
down barriers between the mobile Web and the full Web, a
group of technology companies is working to try and make
the mobile version of the Web faster.
Apps are fast and the mobile websites are slow. In 2015, this
particular problem has been one of the prime conversations
in Web and app publishing and development. A new
architecture is coming that will help bridge the gap between
performance of Web and native apps and may finally
provide the solution to building apps and websites that are
fast and reliable for the mobile age.
In a nut shell, progressive Web apps start out as tabs in
Chrome and become progressively more “app” like the more
people use them, to the point where they can be pinned on
the home screen of a phone or in the app drawer and have

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 06 | June-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 3029

access to app-like properties such as notifications and offline
use. Progressive Web apps are linkable with an URL, fully
responsive and secure.[3]

3. Why WEBAPP

In September 2015, research firm comScore released an
extraordinary survey about how people actually use
websites and apps. From an engagement perspective, the
Web is a mile wide and an inch deep. Apps are the opposite,
an inch wide and a mile deep. Apps are fast and the mobile
websites are slow.

Chart-1: App & Mobile Web usage

The Web reaches wider audiences than apps. But apps
dominate in time spent. So there is need of something that
combines the best experiences of the web and the app. A new
architecture is coming that will help to combine the best
experiences of the web and the app and may finally provide
the solution to building apps and websites that are fast and
reliable. With Progressive Web Apps, Google has seen
engagement levels of websites approach nearly that of
native apps.[4]

4. Architecture
For speed and functionality, progressive Web apps rely on
two functions: Application Shell Architecture and Service
Workers.

4.1 Application Shell Architecture:
An application shell is the minimal HTML, CSS, and
JavaScript powering a user interface. The application shell
should:

 Load fast
 Be cached
 Dynamically display content

An application shell is the secret to reliably good
performance. Think of your app’s shell like the bundle of
code you’d publish to an app store if you were building a
native app. It’s the load needed to get off the ground, but
might not be the whole story. It keeps your UI local and pulls
in content dynamically through an API.[5]

Fig-1: Application shell and content [6]

In general the application shell architecture will:
Prioritize the initial load, but let service worker cache the
application shell so repeat visits do not require the shell to
be re-fetched from the network.
Lazy-load or background load everything else. One good
option is to use read-through caching for dynamic content.
Use service worker tools, such as sw-precache, for example
to reliably cache and update the service worker that
manages your static content.

4.2 Service Workers:
A service worker is a script that runs in the background,
separate from your web page. It responds to events,
including network requests made from pages it serves and
push notices from your server. A service worker has an
intentionally short lifetime. It wakes up when it gets an
event and runs only as long as it needs to process it.[6]

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 06 | June-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 3030

Service workers also have a limited set of APIs when
compared to JavaScript in a normal browsing context. This
is standard for workers on the web. A Service worker can’t
access the DOM but can access things like the Cache API, and
they can make network requests using the Fetch API.
The IndexedDB API and postMessage() are also available to
use for data persistence and messaging between the service
worker and pages it controls. Push events sent from your
server can invoke the Notification API to increase user
engagement.
A service worker can intercept network requests made from
a page (which triggers a fetch event on the service worker)
and return a response retrieved from the network, or
retrieved from a local cache, or even constructed
programmatically. Effectively, it’s a programmable proxy in
the browser. The neat part is that, regardless of where the
response comes from, it looks to the web page as though
there were no service worker involvement.
Service Workers are a way to increase Web app
performance by helping to cache and deliver content and
background functionality (like push notifications). Service
workers can make sites work offline or help speed up the
content by, “intercepting network requests to deliver
programmatic or cached responses.”[7]

5. Comparative Study

5.1 Native Applications:
Native applications have codes that are devised specifically
for a particular platform, namely Android, iOS and so on.
Cross-platform codes are not possible with native apps as
the codes written for one platform cannot be used in
another. You may use the latest APIs, but you cannot use one
platform’s code on another one. A native app would always
feel right for the user because it has a mature ecosystem
containing all the specific guidelines used for the OS it is
developed for; ranging from swipes, app defines gestures to
centrally aligned headers for iOS and left aligned headers for
Android. This makes it easier for the user.

5.2 Web Apps:
Mobile web applications require web browsers to function
and they are developed using HTML ,CSS and JavaScript. The
program will be stored on a remote server and shows itself
when the user asks for it. It is not necessary for web apps to
have native codes and they can function on any operating
system.

5.3 Hybrid App:
When smartphones were first released into the market, the
war between native and web applications took shape and
form, but along with the spoils of the war, another category
was created – hybrid apps. If you want to get an app out the
door as soon as possible and save time and money on
developing the app, then you need hybrid apps. Hybrid app
development is cross-platform app development and only
one source code is used; this would be upgraded and
updated to suit the purpose. Thus it combines the benefits of
both native apps and web apps.

Table-1: Comparative factors

Factors Native Web Hybrid

Code Portability Not
Possible

Possible,
but poses
difficulties
sometimes

Possible
with many
codes

Local Storage,
Offline
Capability

Possible Possible Very less
possibility

Monetization Highly
Possible

Very Less
Possibility

Highly
Possible

Cost Comparat
ively High

Not very
Expensive

Not
Expensive

Time to Market Takes
time

Takes very
less time

Takes time

User Experience
& Interaction

Very
Good

Good Good

Internationaliza
tion &
Localization

Win-win Win-win Win-win

5.4 Comparative factors:

5.4.1 Code Portability:
You can not port native apps from one platform to another.
With web apps, you can have a single code base for any
major mobile platform. This is not 100% portable and
sometimes developers are faced with portability issues. For
hybrid apps, you can reuse many of the apps from one
platform to another.

5.4.2 Local Storage, Offline Capability:
 Offline apps would function even when your user is not
online. There is no need for the internet connection to be

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 06 | June-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 3031

constant. Local storage that retains web app data is possible
with web apps, and thus it would be ideal to use web apps if
you are looking for offline storage of 5MB at a time. With
hybrid apps, users cannot enjoy the offline mode as much as
they would want. With native apps, it would be possible for
users to enjoy the capabilities of offline capability.

5.4.3 Monetization:
Every app developer seeks to come up with a ground-
breaking concept when they release their app to the app
store. They all expect it to bring in phenomenal success in
terms of money. The possibility of monetization with native
and hybrid apps would be much higher compared to web
apps. The downside for native and hybrid apps is that the
app store takes a percentage of all sales that you
make. Whereas, for web apps, there are no commissions.

5.4.4 Cost:
Native apps often cost more to develop because they ask for
specific language and tooling ecosystems, apart from the
customization of code. Cost is often dependant on a number
of factors and sometimes even the skill of a developer which
could cost more. Web app’s functionality is based on
JavaScript, CSS and HTML5. Hybrid apps are least expensive
of all three.

5.4.5 Time to Market Apps:
App store is quite strict about the apps sold in their store
and things get stricter for in app purchases. You have to
submit an application and sometimes, wait for months to get
their approval. The time to market for web apps is much
smoother and simpler, whereas for the other two, you will
have to wait.

5.4.6 User Experience and Interaction:
Native app provides much better accessibility features when
in a native UI. You have absolute control here.
Unfortunately, web apps are hindered by the capability of a
web browser. For native apps, you can actually accelerate
the UI performance when you enhance the capabilities of the
device hardware.

5.4.7 Internationalization & Localization:
 Every app development company dreams of surpassing
geographical boundaries and creating software that people
from anywhere can access. Internationalization &
Localization for hybrid, native and web apps is excellent
because the software can be designed in such a way that
they can be adapted to any language without making
engineering changes. These softwares can be localized by
making it applicable for a particular region or language.[8]

6. Pros & Cons

6.1 Pros:
There are two big pros when it comes to progressive web
apps. The offline support and the app install banners. The
offline part comes from the caching that the web does with
the service worker. The app install banner is a banner that
chrome prompt when it sees a manifest on the site. This will
allow the user add an icon on their home screen.[9]

6.2 Cons:
The first con is that is only supported by browsers that
support the service worker. At the moment, that is only
Chrome. Another big problem is the high barrier to entry.
This high barrier is HTTPS. HTTPS gives the site better
ranking in Google searches and more privacy. Another thing
is the service worker. It's awesome, but it's another thing to
learn, this means that developers will not pick it up so likely
or poorly. A problem with that is that the service worker is
really powerful but when not used properly it can give the
developer a lot of headaches. [10]

7. Example

7.1 Flipkart Lite:
 Flipkart Lite, a Progressive Web App that combines the best
of the web and the best of the Flipkart native app. It
leverages new, open web APIs to offer a mobile web
experience that loads fast, uses less data than before, and re-
engages users in multiple ways. Users visit via their browser
and find a fast app-like user experience.[11]

7.1.1 A fast and streamlined site:
With 63% of Flipkart Lite users reaching the site via a 2G
network, a fast user experience was essential. To decrease
load times, Flipkart added service workers and streamlined
the site to help consumers quickly reach the product they are
looking for. Users can even continue to browse categories,
review previous searches, and view product pages—all
while offline.

7.1.2 Taking advantage of the web’s low friction:
Reaching a broad set of users is important for Flipkart. With
Flipkart Lite, users are one click away from accessing
content and many new users are first-time internet users. In
addition to easy access, Flipkart Lite requires less data. A
key metric for Flipkart is tracking data usage to complete
first transaction: when comparing Flipkart Lite to the native
app, Flipkart Lite uses 3x less data. Having a strong and
engaging mobile website means they’re no longer turning

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 06 | June-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 3032

away potential shoppers who don’t want to use data or
space to download an app.”

7.1.3 Bringing users back with home screen icon:
Flipkart wanted to be able to re-engage with mobile web
users just as they would with mobile app users. The company
implemented an “Add to Home Screen” prompt. Now, 60% of
all visits to Flipkart Lite come from people launching the site
from the homescreen icon. Add to Home Screen also delivers
high-quality visits, with customers converting 70% more
than average users. These two activities alone resulted in
engagement numbers that were 40% higher than before.

7.1.4 Building for future success for the evolving
online shopper:
Flipkart will continue using progressive web technology to
reach their evolving online shoppers. Flipkart Lite has
enabled us to find some of Flipkart's highest-value
customers. Flipkart will continue to expand progressive web
app technology across all of their platforms, investing
significant resources to maximize the potential scale. They
truly believe that this is a new way to experience mobile and
they’re just getting started.”[12]

8. CONCLUSION

Progressive web apps have benefits for everyone involved.
The user will be able to instantly install the “app” without a
visit to the app store and a large download, which can be an
unpleasant experience on a slow connection. Organizations
can go back to developing web apps without requiring the
requisite separate Android and iOS teams. They can update
and “release” their app without going through the app store
approval process. Releases and defect fixes can be deployed
immediately. Web design elements are immediately picked
up by the progressive web app.
A progressive web app is a website that combines the best
experiences of the web and an app. They don't require any
installation. The app loads quickly, even when the user is on
bad networks. It can send relevant push notifications to the
user and has an icon on the home screen and loads as top-
level, full screen experience.
Application shell architectures comes with several benefits
but only makes sense for some classes of applications. The
model is still young and it will be worth evaluating the effort
and overall performance benefits of this architecture.
Progressive web apps are an interesting forward look into
the future of mobile apps. It will become a key factor in the
world of apps.

REFERENCES

[1]http://www.ness-ses.com/progressive-web-apps-the-
new-future-of-mobile-apps/
[2]http://blog.cloudfour.com/android-instant-apps-
progressive-web-apps-and-the-future-of-the-web
[3]https://arc.applause.com/2015/11/30/application-shell-
architecture
[4]http://digiday.com/platforms/wtf-progressive-web-
apps/
[5]https://developers.google.com/web/updates/2015/11/a
pp-shell?hl=en
[6]https://addyosmani.com/blog/getting-started-with-
progressive-web-apps
[7]http://blog.ionic.io/what-is-a-progressive-web-app/
[8]http://www.cabotsolutions.com/native-vs-hybrid-vs-
web-comparison-study/
[9]http://developer.telerik.com/featured/what-progressive-
web-apps-mean-for-the-web/
[10]http://kasszz.github.io/minor-web-
development/performanceMatters/exercise3/index.html
[11]https://mobiforge.com/news-comment/progressive-
web-apps-are-future
[12]https://developers.google.com/web/showcase/2016/fli
pkart#tldr

