
EVALUATION OF CHANNEL WATER QUALITY IN SHAMANUR, DAVANGERE CITY

Reshma¹, Soumvashree S H²

¹ M.Tech student, Civil engineering, Bapuji Institute of Engineering and Technology, Karnataka, India ² Assistant Professor, Civil Engineering, Bapuji Institute of Engineering and Technology, Karnataka, India

Abstract. In the present study the water sample is collected from a channel near Shamanur, Davangere city. Grab sampling method was carried out from the month of December to April 2015-2016. Physicochemical characteristics of the water were determined, and 14 parameters were considered. Analysis of the same was conducted in the laboratorial experimental work. The results obtained were found under the permissible limits. The evaluation results shows that channel water can be utilized for agricultural purposes.

Key Words: Sampling, water analysis, pH, SAR, Eutrification

1. INTRODUCTION

Water is the main source for agriculture. Water is polluted in agriculture due to the use of chemical fertilizers, improper use of land for solid waste disposal. Yield of the crop is mainly dependent on the quantity and quality of the water. If the water that is being used for the agriculture is having low pH content, it turns out to be acidic in nature. With high exposure it hinders the growth of the crops that is being cultivated. It is very necessary to maintain the quality of the water, since it is being used for various purposes. The live stock gets affected if the water is contaminated with pollutants and the microbes. Therefore it is significant to monitor the quality of the water from time to time.

1.1 SOURCES OF CONTAMINANTS

The sources of contaminants are not determined in particular. The pollutants get induced into the water through many non point sources. Some point sources of the pollutants may be gathered as the chemical fertilizers used for the agricultural purpose for the enhancement of the crop yield with providing certain nutrients. At some point of time it may be also contributing from the nearby industries or by the cleaning of the vehicles and live stocks. Direct disposal of the wastes from the industries will lead to significant variation in pH, turbidity and aesthetics of the water.

2. MATERIALS AND METHODOLOGY

2.1 EQUIPMENTS REQUIRED

- bH meter
- Conductivity meter
- Flame photometer
- \geq Conical flasks
- Pipettes and Burettes

2.2 SAMPLING METHOD

Grab Sampling is adopted for the present study. It is a process of collecting a sample at a point at the same instant of time.

2.3 METHODOLOGY

14 parameters were studied and the same are shown as below with respect to the methods they adopt.

Table -1: Methods adopted for determining water quality parameters

SL	PARAMETERS	METHODS
NO		
1	рН	pH meter
2	TDS	Conductivity meter
3	Electrical Conductivity	Conductivity meter
4	Chlorides	Titrometric
5	Calcium	Titrometric
6	Magnesium	Titrometric
7	Sodium	Flame photometer
8	Potassium	Flame photometer
9	Carbonates	Titrometric
10	Bicarbonates	Titrometric

Initially 4 Stations were taken for determining 14 parameters that are considered. Sampling of the water is carried out on the monthly basis starting from the month of December to April 2015 -2016. Each of the parameter was determined by the experimental work.

3. RESULTS AND DISCUSSION

3.1 pH

MONTH	S1	S2	S3	S4
DEC	7.85	7.60	7.89	7.55
JAN	6.82	7.32	6.96	7.66
FEB	7.41	6.97	7.54	7.32
MAR	7.07	6.91	7.12	7.05
APR	7.10	7.32	6.90	7.22

Fig 3.1 – Monthly variation with respect to different stations

3.2 TOTAL DISSOLVED SOLIDS

MONTH	S1	S2	S3	S4
DEC	157	172	14602	190
JAN	153	167	152	206
FEB	227.5	170	167.8	230
MAR	196.8	185.5	147.7	210
APR	161	193	151.6	196.4

Fig 3.2 - Monthly variation with respect to different station

3.3 ELECTRICAL CONDUCTIVITY

MONTH	S1	S2	S3	S4
DEC	237	218	248	315
JAN	246	229	240	244
FEB	246	216	236	223
MAR	248	210	238	216
APR	243	228	223	217

3.4 CHLORIDE

MONTH	S1	S2	S3	S4
DEC	12	15.15	12.1	18.7
JAN	7.6	10.33	10.9	9.3
FEB	23.9	19.43	20	21.1
MAR	13.5	16.6	10.4	19
APR	17.6	19.6	15.1	14.3

3.7 SODIUM

MONTH	S1	S2	S3	S4
DEC	10.6	12.1	6.9	9.1
JAN	13.2	11	8.2	10.4
FEB	18.5	15.4	16.9	14.1
MAR	12.6	8.9	7.3	14.2
APR	8.4	9.9	6.2	12.6

3.8 POTASSIUM

MONTH	S1	S2	S3	S4
DEC	6.8	12	9.1	10.1
JAN	10.9	9.4	11.1	12.3
FEB	11.3	11	8.8	9.9
MAR	9.1	10.2	10.8	7.8
APR	11.4	11.2	10.3	11

3.5 CALCIUM

MONTH	S1	S2	S3	S4
DEC	52	49.1	54	48
JAN	55.1	57.4	48.7	52.5
FEB	57.9	56.1	57.6	54.3
MAR	42	50.2	48.6	42.1
APR	52	44.1	45.8	51

3.6 MAGNESIUM

MONTH	S1	S2	S3	S4
DEC	12.3	18.9	16.1	9.8
JAN	15.1	17.2	18	12
FEB	17.8	16.5	12.7	14.4
MAR	13.9	10.4	18.5	11.9
APR	12.2	14.6	11.7	17.5

© 2016, IRJET

Fig 3.8 – Monthly variation with respect to different stations

3.9 CARBONATES

MONTH	S1	S2	S3	S4
DEC	0.063	0.02	0.080	0.074
JAN	0.016	0.013	0.15	0.02
FEB	0.041	0.067	0.031	0.052
MAR	0.066	0.051	0.077	0.067
APR	0.01	0.027	0.014	0.022

3.10 BI-CARBONATES

MONTH	S1	S2	S3	S4
DEC	0.063	0.39	0.69	0.50
JAN	0.2	0.36	0.56	0.19
FEB	0.1	0.19	0.17	0.20
MAR	0.60	0.46	0.36	0.39
APR	0.2	0.21	0.15	0.13

Fig 3.10 – Monthly variation with respect to different stations

3.11 SODIUM ADSORPTION RATIO (SAR)

MONTH	S1	S2	S3	S4
DEC	1.6	1.9	0.9	1.4
JAN	2	1.6	1.2	1.6
FEB	2.8	2.3	2.6	2.2
MAR	2.1	1.4	1	2.5
APR	1.3	1.6	0.9	1.9

3.12 RESIDUAL SODIUM CARBONATE(RSC)

MONTH	S1	S2	S3	S4
DEC	0.17	0.8	0.17	0.21
JAN	0.8	0.07	0.13	0.04
FEB	0.05	0.064	0.054	0.067
MAR	0.2	0.13	0.9	0.13
APR	0.055	0.073	0.054	0.041

© 2016, IRJET

Fig 3.12 – Monthly variation with respect to different stations

4. CONCLUSIONS

From the above tables and graphs of the water analysis done .It is evident that the analyzed parameters were found within the permissible limit and is suitable for agricultural purpose.

REFERENCES

- A.K., Chowdhury, S. Gupta, "Evaluation of water quality, Hydrogeochemistry of Confined and Unconfined aquifers and irrigation water quality in Digha Coast of West Bengal, India (A case study)", *International Journal of Environmental Sciences*, Volume 2, No 2, ISSN 0976 – 4402, pp.576-589, (2011).
- [2] L. D. Doneen, "Water quality for agriculture", Department of Irrigation, University of Calfornia, Davis, Volume 48, (1964).
- [3] F.M. Eaton, "Significance of carbonate in irrigation water", S. Sci. Volume 69, No. 2, pp.123-133, (1950).
- [4] D.M. Joshi, A. Kumar and N. Agrawal, "Assessment of the Irrigation water quality of River Ganga in Haridwar district". *Rasayan Journal of Chemistry* Volume 2 No. 2. Pp. 285-292, (2009).
- [5] D.R. Rowe, and M. AbdelMagid., "Handbook of Wastewater Reclamation and Reuse", *CRC Press*, Inc., pp 550. (1995).
- [6] R. Sakthivel "TDS levels for traditional crops, TDS – resistant crops submitted by India" Water Portal on November 5, 2007-00:10 International Land Development Consultants, 1981. WES, Net India, New Delhi. (2007).
- [7] D. W.Thorne, and H. B. Peterson, "Irrigated soils. London: Constable and Company". (1954).
- [8] R. K.Trivedy, and P. K.Geol, "Chemical and biological methods for water pollution studies.

Karad", Environ Publications. (1984).

- [9] United States Department of Agriculture, "Assessing Water Quality for Human Consumption, Agriculture, and Aquatic Life Uses", *Natural Resources Conservation Service*, Environment Technical Note No. MT1 (Rev. 1), (2008).
- [10] US Salinity Laboratory Staff diagnosis and improvement of saline and alkali soils, US Department of Agricultural soils, US Department of Agricultural Hand Book 60, Washington, DC., (1954).