
International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

Volume: 04 Issue: 02 | Feb -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 668

Continuity in the development of seamless mobility:

An approach for a system-of-systems environment

Albert Albers1, Ralf Reussner2, Armin Kurrle1, Erik Burger2,
Georg Moeser1, Nikola Bursac1, Simon Klingler1, Matthias Behrendt1

1Institute of Product Engineering (IPEK), Karlsruhe Institute of Technology, Germany
2Institute for Program Structures and Data Organization (IPD), Karlsruhe Institute of Technology, Germany

---***---
Abstract – Today’s product innovations increasingly
consist of tightly coupled heterogeneous smart systems. This
trend can also be observed in the automotive domain. In
future seamless mobility, the car will be one part of a com-
plex system-of-systems where many partly independent
working teams from different disciplines and companies
with high interrelations are involved in development of the
mobility system. In practice, many different methods, pro-
cesses and tools are used in product development, which
leads to the challenge of obtaining consistency and continui-
ty over multiple development generations and product gen-
erations, level of detail, and different projects. As changes to
the product models can have a wide impact, management of
change plays an important role. This research article pre-
sents two integrated approaches to enable multi-level
traceability in interdisciplinary product development. The
presented approaches use semantic technologies for hetero-
geneous development artefacts and model-based techniques
to build consistent product models for cyber-physical sys-
tems and systems-of-systems. Finally, a methodology to
support management of change in distributed product de-
velopment based on the SPALTEN problem-solving process
is presented. The integration of these three approaches with
the change management methodology supports distributed
development of seamless mobility systems with high con-
sistency and traceability.
Key Words: Seamless Mobility, Traceability, Systems-
of-Systems, Smart Mobility, Connected Car, Model-
based Systems Engineering, RDF, Change Management,
PGE - Product Generation Engineering

1. INTRODUCTION AND MOTIVATION

Today’s innovations in product development are increas-
ingly based on a close interaction between mechanics,
electronics and software engineering. Information and
communication technology open up further possibilities.
Future products are becoming increasingly interdiscipli-
nary, complex, autonomous, connected and with embed-
ded intelligence (1).

This trend can also be observed in the automotive and
transportation industry in terms of increasing digitaliza-
tion. The car of the future will be connected with other
“smart products” (e.g., smart buildings, smart grids, smart

factories, smart logistic) (2) enabling a seamless mobility.
“Seamless” is understood as accessible, intermodal, con-
nected, safe, secure, effective, and efficient in order to be
affordable, value creating, environmentally friendly, resili-
ent and acceptable. Such a seamless mobility enables new
business models for IT, retail market, insurance and oth-
ers. The car itself is part of a complex, interconnected sys-
tem-of-systems (SoS), where many people from different
disciplines are involved in development.

Because of the highly interrelated product models in the
distributed and partly independent development teams,
changes to requirements or goals can have a wide impact.
Inconsistency can lead to serious problems in product
development process. In particular, it shifts projects risks
to later phases of development with often severe financial
impacts.

During a research cooperation between the connected car
department of a German car manufacturer and the IPEK –
Institute of product engineering of Karlsruhe Institute of
Technology in the period of 2013 – 2016, the following
observations of development project were made: In prac-
tice, a variety of heterogeneous tools and representation
forms are used in product development to explain product
models. They support collaboration in product develop-
ment. It is however hardly possible to unify these meth-
ods, processes and tools, especially in a systems-of-
systems environment. This is traced back to a variety of
boundary conditions on selection of methods and tools
(see Figure 1).

For example, the form of representation can vary between
different development phases. In early phase of product
development, sketches or posters and mockups are gladly
used to describe product models. Tools like Microsoft
Power Point can be used to do that. In later development
phases, requirements and specifications have to be de-
scribed in detail. Tools like IBM Rational Doors or model-
based techniques with direct link to implementation or
shape are chosen.

Existing processes, methods and tools, even from different
domains have to be integrated. In the investigated case,
over 40 tools have been used to develop electrical compo-
nents for cars. Dissolvement of one tool often means to
rebuild many existing interfaces.

International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

Volume: 04 Issue: 02 | Feb -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 669

Internal guidelines have to be addressed or existing con-
tracts or licences have to be considered because of eco-
nomic or legal reasons.

External guidelines, e.g. a supplier requests a certain re-
quirements documentation format like can lead to some
tool selection as well in product development projects.

Usability and expenditure is important, especially if a
product model has to be shared among a large group of
stakeholders. Microsoft Office and natural language or
sketches are chosen very frequently in this case. Model-
based techniques can be used to transform a specification
directly into software which can facilitate development.

The general acceptance of tools by the individual users is
very important when making a tool selection. It is based
on individual preferences of developers which exist either
because of rational or emotional reasons.

For this paper, we have identified the following research
questions:

1. How can continuity be addressed in product devel-
opment of systems-of-systems?

2. How can explicit relations between heterogeneous
development artifacts be modeled in a distributed
SoS environment to achieve consistency?

3. How can the management of changes be supported in
a distributed product development environment to
ensure continuity?

4. How can the developed approach be applied to
achieve seamless mobility?

This paper is structured as follows: In section 2, we will
give an overview of the state of the art. In section 3, we
will address research question 1 by presenting a classifica-
tion of continuity dimensions in product engineering. In
section 4, we will describe how the KaRDF and Vitruvius
methods can be used for consistent modelling, answering
research question 2. In section 5, we will present a meth-
od for the management of changes, answering research
question 3. Finally, section 6 gives a conclusion as well as

an outlook on future work and answers research
question 4.

2. STATE OF THE ART

2.1 Systems Engineering

Systems Engineering (3) is an interdisciplinary approach
and is intended to enable the development of systems
methodically. SE focuses on a holistic and collaborative
understanding of stakeholder requirements, the discovery
of solutions and the documentation of requirements, as
well as the synthesis, verification, validation and develop-
ment of solutions. The entire problem is considered from
concept development to system development. System
engineering provides suitable methods, processes and
best practices for this purpose. A system in the context of
this work is a model of a entirety, which (4):

 has relations between attributes (inputs, outputs,
states)

 is an assemblage of connected parts or subsystems
 is differentiated by its environment or supersystems

(through a system boundary).

Using systems theory the product development can be
described with the research concept of the PGE – Product
Generation Engineering (5). PGE describes that the most
products are developed in generations (6). Based on an
existing product – the reference product – like a former
product generation or a competitor’s product, a new de-
velopment is started. The new product generation consists
of subsystems that are varied in order to be carried over
and of newly developed subsystems (7). In the context of
seamless mobility as a SoS, the PGE-approach can be fur-
ther developed to SGE - Systems Generation Engineering.

Systems Engineering is furthermore used to describe
product engineering processes. The product development
process is understood as the transformation of objectives
into objects by performing certain activities by an opera-
tion system (8). A model that can describe development
processes including the system of objectives, the operation
system with activities of product engineering and activi-
ties of problem solving and the project’s system of objects
as well as the interaction between different product gen-
erations is the iPeM – integrated Product engineering
Model (see Figure 2) (9). It consists of different layers:
product Gn, product Gn+1, validation system, production
system and strategy. Furthermore, it consists of different
activities, which are described with the SPALTEN problem
solving methodology (10). This way, different methods can
be added to the activities and support product developers
in the product development process (11).

2.2 Cyber-physical Systems and
Systems-of-Systems

Figure 1: Boundary conditions of tool selection in product de-
velopment

International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

Volume: 04 Issue: 02 | Feb -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 670

A cyber-physical system (CPS) is a combination of physical
and computational components, which are connected by a
network at multiple and extreme scales. It may re-
organize and re-configure itself dynamically and is usually

created with a high degree of automation, so that the phys-
ical processes can be monitored and controlled in real-
time. The computational components affect the physical
components as well as vice versa. (12)

According to MAIER (13), a system-of-systems (SoS) is an
assemblage of systems, where each system can be seen
itself as a system but with some special characteristics:

 Each is capable of independent action and fulfills a
purpose of its own.

 The individual systems of the set are managed inde-
pendently—to fulfill their stated purposes.

Cyber‐physical systems-of-systems are CPS which exhibit
the features of systems-of-systems.

Based on existing research, ALBERS ET AL. (14) summarize
the following challenges in development of SoS:

 SoS are an assemblage of constituent systems where
the constituent systems are able to handily operate in
an independent manner (e.g. a car, smartphone). They
are separately acquired and integrated, and maintain a
continuous operational existence independent of the
system-of-systems.

 The Constituent systems of the SoS might fulfill objec-
tives independent of the system-of-systems and the

system owner may have little interest in fulfilling the
SoS objectives. SoS objectives can conflict with objec-
tives of the constituent systems.

 Independent organizations can be involved in devel-

opment of constituent systems. A comprehensive, co-
ordinating SoS organization is not necessarily present.
Many Stakeholders are involved.

 Constituent systems might be in different phases of
their product life cycles. The development is not neces-
sarily synchronized or centrally managed.

 Development of the SoS is never completed. Changes to
the constituent systems or adding and removing new
systems may appear frequently. Because of high inter-
relations this can affect other constituent systems.

 SoS are complex. Nobody has a full overview on every-
thing. Constituent systems are to a high degree hetero-
geneous and are a “Black Box” for other organizational
units.

2.3 Semantic Technologies and Metadata

Semantics is generally defined as a subdivision of linguis-
tics, which deals with the meaning of language or (linguis-
tic) signs (15). In computer science, semantics are often
used with the goal of supporting knowledge management.
Semantic models are intended to support communication
among people, machines and human-machine interaction.
The resulting challenges are illustrated in the semiotic
triangle (see Figure 3) (16).

operation system

operation system

operation system

operation system

manage knowledge

manage changes

activities of
product engineering

activities of problem solving

S P A L T E N

manage projects

detect profiles

model principle solution and

embodiment

built up prototype

detect ideas

s
y
s

te
m

 o
f
re

s
o

u
rc

e
s

validate and verify

heute

phase model

s
y
s

te
m

 o
f

o
b

je
c

ts

s
y
s

te
m

 o
f

o
b

je
c

ti
v

e
s

produce

market launch

analyse utilization

analyse decommission

Handlungssystem

product gn

operation system

Figure 2: The integrated Product engineering Model (9)

International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

Volume: 04 Issue: 02 | Feb -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 671

Knowledge is formalized based on the projection of a reali-
ty section into a corresponding semantic representation
on a computer. Metadata is understood to mean hierarchi-
cally ordered as well as structured data about data. In
general, metadata is used to make statements about a

particular record. Prominent example is the so-called Re-
source Description Framework (RDF). Metadata can be
interpreted by machines to derive new (semantic)
metadata (inference) based on rules. Furthermore, they
enable a context-specific search and thus more efficient
access to explicitly existing knowledge. Thus, semantic
metadata also allows conclusion of new information out of
existing data (17). An example of an RDF graph can be
seen in Figure 4.

2.4 Model-driven Development

Model-Driven engineering is a development paradigm that
puts domain specific models and their utilization with
analysis and generation tools in the center of the devel-
opment process. It always makes use of the following con-
cepts (18): First, domain- specific languages (DSL) express
domain concepts. Thus, they reduce the complexity in the
modelling of systems. DLSs are defined using metamodels,
which themselves are defined using a standardized, fixed
meta-metamodel. Second, transformations engines are
used to transform these models into instances of other
domain-specific languages or into textual representations
of other formalisms, such as programming languages or
textual data formats.

The Systems Modeling Language (SysML) (19) is a deriva-
tive of the UML2 standard for systems engineering. SysML
features a set of nine diagram types, which cover require-
ments, structural, and behavioural view points, which can
be used for the modelling of hardware, software, and pro-
cesses.
Prior research on adapting model-based
systems engineering (MBSE) concepts with SysML to the
domain of mechanical engineering in order to increase
continuity has been done the authors (20).

The Eclipse Modeling Framework (EMF)1 is a development
framework for model-driven development that is imple-
mented using the Java-based Eclipse platform. The EMF

project encompasses several sub-projects for managing,
querying and transforming model-based data.

3. DIMENSIONS OF CONTINUITY IN PRODUCT EN-
GINEERING

EDWARDS AND HOWELL (21) demand for traceability model-
ing a relationship between the requirements, the design,
and the final implementation of the system in product
development. ALBERS ET AL. have identified three dimen-
sions of a continuous flow of knowledge (22). We have
extended these dimensions by a fourth dimension to con-
tinuously describe product models in product engineering.

1. Level of detail
2. Temporal consistency
3. Consistency between projects
4. Consistency between partial models

This is reflected in the context of systems-of-systems in
the following. We will use the example of a SoS develop-
ment goal to explain the dimensions of continuity
(see Figure 5).

Level of detail: In development of complex systems and
systems-of-systems, the development is subdivided into
different organizational units on multiple levels. In earlier
phases of product development, a description of the prod-
uct is possible only on the top level, e.g. “As a user, I want
to receive the charge status of my electric vehicle on my
smartphone.” In later phases, the goal defined on SoS-
Level has to be decomposed into goals for the correspond-
ing constituent systems or components. As changes can
occur on all levels of detail in product engineering, conti-
nuity between different levels has to be guaranteed.

Temporal consistency: Product models change over
time. The operation system in product development (e.g.
developers, tools used for describing product models) can

1 http://www.eclipse.org/modeling/emf/, retrieved
2016-12-13

Figure 3: The semiotic triangle (16)

Figure 4: Example of an RDF Graph with subject, predicate and
object and representation in XML.

International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

Volume: 04 Issue: 02 | Feb -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 672

also change. Temporal consistency describes the use of
the same product model over several development and
product generations, so information of the transfered
parts can be connected consistently even if the operation
system changes. Especially in SoS context, product devel-
opment life cycles can be different which leads to further
challenges.

Consistency between projects: The third dimension
represents the need for continuity throughout different
product development projects. Consistency across differ-
ent projects is necessary in order to be able to implement
a uniform or modular approach, using common parts in
different products (e.g. same Online Connectivity Unit
enabling similar SoS services in different car models). This
makes it possible to make the information transparent
when changing a component in a product, identifying the
affected products from different projects.

Consistency between partial models: Products can be
described by nine partial models (23). The following par-
tial models cover all three systems of product engineering:

 Requirements
 Goals
 Use cases
 Functions
 Stakeholder
 Implementation / Structure
 Tests
 Milestones & deliverables
 Phases & activies

According to EILETZ (24), continuity between all these
partial models is required in order to enable traceability,
e.g. between requirements, design and implementation.

Changes to an element of a product model can occur very
frequently in product development. This can have implica-
tions to other related elements in all identified dimen-
sions. In practice, because of the heterogeneity of product
models, an integrated Change Management approach is
necessary to obtain consistency in the described dimen-
sions.

4. CONTINUOUS AND CONSISTENT DOCUMENTA-
TION OF PRODUCT MODELS

In this section, we present two integrated approaches,
which enable traceability and which improve consistency
in a distributed, interdisciplinary, and partly independent
working product development environment. The first
approach KaRDF enables traceability through linking het-
erogeneous development artifacts of systems-of-systems,
independent from their representation. The second ap-
proach Vitruvius is a model-based framework for the syn-
chronization of software engineering models on different
levels of abstraction, which is applied in a cyber-physical
environment. Furthermore, a similar, prototypical ap-
proach for the synchronization of 3D CAD data with SysML
system models in mechanical engineering is referenced. It
shows an option to extend the Vitruvius approach for in-
terdisciplinary models.

Figure 5: Dimensions of continuity in product development based on (22) (23)

International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

Volume: 04 Issue: 02 | Feb -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 673

4.1 Traceability between heterogenous artefacts
– the KaRDF approach

The Karlsruhe RDF approach for product development -
KaRDF allows the continuous documentation of product
models by providing a metadata scheme and an inference
model for heterogeneous development artefacts consider-
ing the four dimensions of continuity presented in chapter
3.

The requirements and objectives for the approach were
derived from two descriptive studies in the context of real
Connected Car development projects in order to align the
approach to the actual needs of developers in practice.

The empirical study shows that developers use artefacts to
share their knowledge. Depending on product develop-
ment phase, level of detail, project or documented partial
model, methods and tools vary, even if there are high de-
pendencies. This is caused by changing boundary condi-
tions (see also chapter 1). Figure 6 shows an example from
the Connected Car domain, how artefacts are used for
development of system of objectives in different phases
and in different development projects. On SoS-Level, a
portfolio list is used to describe connected car services for
different cars. These services are further described in a
functional description in early stage on SoS-Level. In later
phases, a concept description is created and a specification
or a system model. In the investigated case study, Mi-
crosoft Excel is used for defining the portfolio, a functional
description with sketches is created in Microsoft Power
Point and a detailed specification is created with IBM Ra-
tional Doors, Microsoft Word or in a Web-based Wiki in-
cluding model-based approaches (e.g. SysML). Many refer-
ence products are used in order to describe the connected
car services (e.g. a specification from a weather provider).
Besides the listed documents, many relations to further
development artefacts where identified (e.g. a project
schedule, test cases, system documentation).

Figure 6: Using semantic Metadata to link heterogeneous development artefacts

Table 1: The KaRDF metadata scheme

International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

Volume: 04 Issue: 02 | Feb -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 674

In order to improve continuity and traceability between
these kinds of development artefacts, a metadata scheme
was developed based on the semantic technology RDF. The
RDF scheme includes attributes that allow description of
development artefacts as well as references to a functional
or system structure, stakeholders, development phases,
product generations or other development artefacts.

The RDF schema from KaRDF (in the following referenced
with prefix “KaRDF”) contains 9 metadata types and 32
predicates, which can be used to define RDF statements
(see Table 1).

In an independent working and distributed SoS environ-
ment, it cannot be guaranteed that all developers contrib-
ute to the metadata database. Therefore, KaRDF provides
an inference engine which allows generating further
knowledge out of existing product development metadata.
Rules have been defined which allow derivations from the
function or building structure of systems, stakeholder
relations, relations between development artefacts or
from reference products of other product generations.
Figure 7 shows an example how the inference engine
works. If metadata exists, which gives information about
content of a specification - e.g. a specification “describes”
content of a specific car - and relevant stakeholders of the
specific car are known (e.g. a Stakeholder is “responsible”
for development of the specific car), than it can be derived
that the Stakeholder has an interest in the specification
(e.g. he wants to get “informed” when changes to the
specification occur).

Figure 7: Example of deriving implicit relations from existing
metadata knowledge in KaRDF

The approach is implemented with the Apache Jena
Framework in a web-based prototype which was used
during an empirical study in five Connected Car develop-
ment projects. The participant’s defined metadata for de-
velopment artefacts created in the development projects.
Finally, the participants have been interviewed in order to
evaluate the approach. All participants on the one hand
agree, that the approach can be integrated well in an SoS
environment where distributed, interdisciplinary and
partly independent working development teams have to
collaborate. The participants also agree, that continuity is
improved when using KaRDF in the four dimensions pre-
viously introduced. On the other hand, the participants
claim a high effort in creating and maintaining the metada-

ta. Nevertheless, 4 out of 5 participants say that the benefit
of using KaRDF to improve continuity in product devel-
opment is higher than the effort to create and maintain the
metadata.

4.2 Traceablity on model level

During the development and implementation of systems,
developers create heterogeneous artefacts on different
levels of abstraction. For example, the architecture of a
system can be specified using the SysML standard, while
the concrete implementation of software and hardware
components is then realized with general-purpose pro-
gramming languages, such as C or Java, and CAD tools for
the mechanical design of system components. SysML al-
ready defines a concrete form of representation. Further-
more, it does not support all kinds partial models, but
offers means to create links between the partial models
that it supports.

Since these artefacts describe the same system on differ-
ent levels of abstraction, they have to conform to each
other to give a consistent description of the system. For
example, the software implementation of a system must
adhere to the interface definitions that are specified in a
SysML system model. This is already important if the de-
velopment process follows a strict refinement from ab-
stract models to more concrete models and program code,
and is aggravated further when e.g. architecture-relevant
changes to the code must be propagated back to the sys-
tem models. In current development processes, this con-
sistency is often only checked manually; this is, however, a
tedious and error-prone activity for developers. Model-
based approaches offer the opportunity to define con-
sistency relations across models of different abstraction
levels, if all models are defined within the same technical
space, for example the Eclipse Modeling Framework. Con-
straint languages such as OCL and transformation engines
such as QVT or ATL can be used to detect inter-model
inconsistencies , and to re-establish consistency. This is
especially interesting when model transformation are
already used for generative techniques, i.e. that parts of
the software are generated automatically from model-
based descriptions.

Within mechanical engineering disciplines, different types
of descriptions of systems have to be considered as well.
Often functional, logical and physical representations are
differentiated. Especially traces between different repre

Figure 8: The Modular SUM Metamodel concept of Vitruvius

International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

Volume: 04 Issue: 02 | Feb -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 675

sentations are important within models to check impacts
of changes and to re-establish consistency (25). E.g. a tex-
tual description of functionality has to be checked after
changes on the geometry in a CAD model have been ap-
plied.

VITRUVIUS (26), (27) is a view-based, model-driven frame-
work for the management of consistency between hetero-
geneous models, i.e., models that are instances of different
metamodels. Information is contained in a single underly-
ing model (SUM), which represents all the information
that is available about the system under development. The
SUM conforms to a customized metamodel that is specific
to the domain in which the Vitruvius approach is used; for
example, in the automotive domain, the it may contain the
metamodels of SysML, AMALTHEA and other standards,
which are combined to form a modular SUM metamodel
(see Figure 8). The metamodels are included non-
intrusively and do not have to be adapted to work with the
VITRUVIUS approach.

To express the traces between the elements of the meta-
models, VITRUVIUS defines a language framework for con-
sistency description and restoration that consists of three
languages for reactions, mappings and invariants. Since
VITRUVIUS is a view-based approach. All information in the
SUM can only be retrieved or manipulated via specialized
views. For the definition of view types and views, VITRUVI-

US uses the ModelJoin language (28). The consistency
preservation mechanism is triggered by changes to one or
several views. The preservation mechanism of VITRUVIUS
then reacts on a list of changes to propagate them to the
SUM.

VITRUVIUS has been implemented as a prototype in the
Eclipse Modeling Framework and can thus be used with
any Ecore-conforming metamodel. So far, it has been ap-
plied to software architecture models (29) and model-
based representations of programming languages (30).

Outside of pure software engineering, it has been applied
in the systems modeling of energy networks (31).

Implementation of traces from SysML models to 3D prod-
uct data in CAD has been established within a research
project (32). In this case it was shown without a SUM since
CAD objects has been duplicated to SysML objects, which
were used to trace to the physical parts. The basic applica-
bility was shown. An adaption to the VITRUVIUS framework
would make the traces more versatile.

5. MANAGEMENT OF CHANGE IN DISTRIBUTED
AND INDEPENDENT DEVELOPMENT TEAMS

Main reasons for a loss of consistency and continuity are
changes which can occur on different levels in product
development. The implementation of a change can also be
seen as a problem whereas the management of changes in
a distributed environment has fractal character. This
means that the same process must be processed at differ-
ent levels and in different phases by different problem
solving teams. For this reason, a process model has been
developed for the management of changes, which is based
on the problem-solving methodology SPALTEN (10). The
methodology is intended as a support for the management
of changes in product development in distributed and
partly independent working environments providing de-
velopers an instruction to handle changes when using
KaRDF and Vitruvius in order to maintain consistency and
continuity in product development. The process model
consists of seven steps and 13 activities of management of
change (see Figure 10). In addition to the above-
mentioned activities, it must be examined in each step
whether the problem-solving team responsible for as-
sessment, decision and implementation of the change is
adequately staffed and that all parties concerned are in-
volved.

Situation Analysis (SA): The situation analysis is the first
step of management of changes and forms the basis for the
further processing. Changes can occur due to both internal
and external factors. In the case of independent and dis-
tributed SoS development teams, changes to constituent
systems are possible without communication to all rele-
vant stakeholders. Therefore, three activites are necessary
in situation analysis: Observe changes, identify change and
collect information. The knowledge which is present in
KaRDF metadata and derived implicit relations allows
identification of relevant product development artefact
supporting situation analysis. KaRDF is used for getting
artefacts of systems or functions which change.

Problem selection (PE): In problem selection, the infor-
mation available is delimited to the change-relevant data.
The cause and effect is determined by the change. Two
activities are required: detect affected partial models,
define change. KaRDF gives input for the definition of the
change, e.g. which partial models, systems or functionality
has to be changed and who is responsible for accepting

Figure 9: SysML Diagram of a SoS “remote monitoring of
charge status” (34)

International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

Volume: 04 Issue: 02 | Feb -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 676

and implementing the change or who has to be informed.
All affected development artefacts will be added to the
change definition. Vitruvius supports the definition of
changes on model level by explicitly modeling atomic and
complex changes to the models in a dedicated change met-
amodel. The Vitruvius change metamodel is instantiated
for this purpose to define the change on model level.

Generate alternative solutions (AL): The goal of this
step is the development of possible action alternatives for
the implementation of the change. KaRDF supports as-
sessment of alternative solutions through an implicit im-
pact model which can be derived from the metadata. In
Vitruvius a definition of several reaction policies for specif-
ic changes has to be done. These can be used to determine
possible alternative solutions.

Select solution (LA): Based on the alternative solutions
identified, a solution has to be selected which satisfies the
goals of the required change.

Load-bearing analysis (TA): In the load-bearing analysis,
an assessment of the change is carried out on the basis of
the selected solution. This must be carried out by the
stakeholders affected by the change and merged and as-
sessed. The assessment of the change may be required by
different involved stakeholders. Besides a financial and
temporal assessment, the feasibility of a change must be
confirmed. Three activities are required: Identification of
required resources, assessment of the implementation of
the selected solution, assessment of availability of re-
quired resources necessary for implementation of the

change. The models generated with Vitruvius are used for
further model-based simulation and analysis of non-
functional properties.

Decision-making and implementation (EU): In deci-
sion-making and implementation, based on the defined
change and identified artefacts and partial models, KaRDF
is used to get all responsible and accountable stakeholder
which have to be consulted for decision, planning and
implementation.

Reworking & Learning (NL): In the last step, the experi-
ence from implementation of the change will be recorded.
Documentation of the change and experiences and prob-
lem-solving team is required for carrying out the man-
agement of changes. The change definition artefact, updat-
ed artefacts and new identified relations are added to the
KaRDF metadata database. The change metamodel in the
Vitruvius approach is instantiated for each type of model
change. The resulting change model can be used for docu-
mentation and further analysis.

6. CONCLUSION AND FUTURE WORK IN ORDER
TO ACHIEVE SEAMLESS MOBILITY

In this paper, we have presented an approach for the con-
tinuous, interdisciplinary documentation of product mod-
els when working in distributed teams. Four dimensions
of continuity of product models in development processes
have been presented: level of detail, temporal consistency,
consistency between projects, and consistency between
partial models of product engineering. The approach re-

Figure 10: Activities of management of change based on the SPALTEN problem-solving methodology

International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

Volume: 04 Issue: 02 | Feb -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 677

spects the four dimensions by supporting heterogeneous
artifacts independently from the form of representation.
We have developed an inference engine that concludes
new knowledge from existing information in the metadata.

This inference capability is required when systems-of-
systems are developed independently in distributed
teams. The main challenge in such a scenario is keeping
consistency between individual development artifacts and
models. We have addressed this challenge with a method
for managing traces between development artifacts, which
guarantees long-term consistency for these systems. En-
suring consistency avoids frequent problems of distribut-
ed development processes, such as drift and erosion be-
tween specification and implementation, manual efforts
for the correction of errors that result from inconsistent
models, and others. Thus, our approach may improve the
quality of software and reduce development time by offer-
ing automatic methods for consistency checking and res-
toration. We have shown the applicability of our approach
in several industry projects in the seamless mobility do-
main.

While our approach delivered promising results for the
presented scenario, we have also identified areas for fu-
ture research: While we have successfully demonstrated
the integration of several engineering models for systems
engineering, we have not studied the connection with
further kinds of models, such as traffic models, infrastruc-
ture models, or societal models yet, which could offer
many benefits. These benefits, such as shorter develop-
ment times and higher quality of software, should be
shown in a larger study that combines more different
model types. Furthermore, the different development and
usage cycles of the modeled artifacts have not been treat-
ed in a specialized way yet: While vehicles often have a
development cycle of about five years, infrastructure enti-
ties, such as, e.g., roads, have cycles of 50 years and more.
For societal developments, these cycles may even span
generations. It is a special challenge to model these as-
pects continuously.

Our modeling approach does not explicitly support con-
current modifications of artifacts and metadata at the
moment. Thus, a change management approach for mod-
els would be an important extension to our approach,
especially for the support of changes across disciplines
and stakeholders, such as engineers, infrastructure plan-
ners, politicians, and others. These change descriptions
can then be used to automatically check violations of con-
sistency.

Finally, the continuous models may also be used for the
analysis of security and safety properties of the systems
under development, if special methods for these proper-
ties are included in the approach. The validation and veri-
fication can then profit from continuous models for auto-
matic checking and restauration of safety and security
properties.

REFERENCES

1. A. Albers, A. Kurrle and F. Munker. Das Auto und die
Cloud – ein System-of-Systems. s.l. : WiGeP News, 2016.

2. M. Abramovici, R. Stark. Smart Product Engineering –
Proceedings of the 23rd CIRP Design Conference, Bochum,
Germany, March 11th – 13th, 2013. [Hrsg.] Michael
Abramovici und Rainer Stark. Berlin, Heidelberg :
Springer, 2013.

3. J. Gausemeier, A. M. Czaja, R. Dumitrescu, C.
Tschirner, D, Steffen and O. Wiederkehr. Studie:
Systems Engineering in der industriellen Praxis. 2014.

4. Ropohl, G. Allgemeine Technologie – Eine Systemtheorie
der Technik. Karlsruhe : Universitätsverlag Karlsruhe,
2009. ISBN 9783866443747.

5. A. Albers, N. Bursac and E. Wintergerst. Product
Generation Development – Importance and Challenges
from a Design Research Perspective. [ed.] Nikos E.
Mastorakis and Cho W. Solomon To. Proceedings of INASE
Conferences 2015. Vienna : s.n., 2015.

6. A. Albers, N. Bursac and S. Rapp. PGE‐
Produktgenerationsentwicklung am Beispiel des
Zweimassenschwungrads. Forschung im Ingenieurwesen.
Dezember 2016, S. 1–19.

7. A. Albers, N. Bursac and E. Wintergerst.
Produktgenerationsentwicklung. Bedeutung und
Herausforderungen aus einer entwicklungsmethodischen
Perspektive. Proceedings of the Stuttgarter Symposium für
Produktentwicklung. Stuttgart, Germany : s.n., 2015.

8. Albers, A. Five Hypotheses about Engineering Processes
and their Consequences. [ed.] F. Mandorli, Z. Rusák I.
Horváth. 8th International Symposium on Tools and
Methods of Competitive Engineering. TMCE 2010. Ancona,
Italy : s.n., 2010.

9. A. Albers, N. Reiß, N. Bursac and T. Richter. iPeM –
Integrated Product Engineering Model in Context of
Product Generation Engineering. Procedia CIRP. 2016, Vol.
50, pp. 100-105.

10. A. Albers, N. Reiß, N. Bursac, and J. Breitschuh. 15
Years of SPALTEN Problem Solving Methodology in
Product Development. [ed.] Casper Boks, et al. DS 85-1:
Proceedings of NordDesign 2016, Volume 1. Trondheim :
s.n., 2016, Vol. 1, pp. 411-420.

11. A. Albers, N. Reiß, N. Bursac, B. Walter and B.
Gladysz. InnoFox – Situationsspezifische
Methodenempfehlung im Produktentstehungsprozess.
Proceedings of the Stuttgarter Symposium für
Produktentwicklung (SSP). Stuttgart, Deutschland : s.n.,
2015.

International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

Volume: 04 Issue: 02 | Feb -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 678

12. L. Miclea, T. Sanislav. About Dependability in Cyber-
Physical Systems. 9th East-West Design Test Symposium
(EWDTS), Sevastopol. s.l. : IEEE, 2011, pp. 17–21.

13. Maier, M. W. Architecting Principles for Systems-of-
Systems. Systems Engineering. 1998, Bd. 1, 4, S. 267–284.

14. A. Albers, A. Kurrle and S. Klingler. The Connected
Car – A system-of-systems : Exploration of challenges in
development from experts view. [ed.] Michael Bargende,
Hans-Christian Reuss and Jochen Wiedemann. 16.
Internationales Stuttgarter Symposium: Automobil- und
Motorentechnik. Wiesbaden : Springer Fachmedien, 2016,
pp. 1439-1450.

15. Baier, E. Semantische Technologien in
Wissensmanagementlösungen – Einsatzpotentiale für den
Mittelstand. [Hrsg.] Wolfgang George und Martin Bonow.
Regionales Zukunftsmanagement. Lengerich : Pabst Science
Publishers, 2009, Bd. 3, S. 226–237.

16. V. Mayank, N. Kositsyna and M. Austin. Requirements
Engineering and the Semantic Web: Part II. Representation,
Management, and Validation of Requirements and System-
Level Architectures. Institute for Systems Research,
University of Maryland. 2004. ISR Technical Report. TR
2004-14.

17. P. Hitzler, M. Krötzsch, S. Rudolph and Y. Sure.
Semantic Web – Grundlagen. Berlin, Heidelberg : Springer-
Verlag, 2008. ISBN 978-3-540-33993-9.

18. Schmidt, Douglas. Guest Editor's Introduction: Model-
Driven Engineering. Computer. February 2006, Vol. 39, 2,
pp. 25-31.

19. Object Management Group. OMG Systems Modeling
Language (OMG SysML) Version 1.3. [Online] June 2012.
http://www.omg.org/spec/SysML/1.3/.

20. A. Albers, S. Matthiesen, N. Bursac, G. Moeser, S.
Klingler, S. Schmidt, F. Munker, H. Scherer and A.
Kurrle. Model-Based Systems Engineering (MBSE) in der
Karlsruher Schule: Fünf Jahre Forschung für die
Anwendung. develop³ systems engineering. 2016, 1, S. 38–
41.

21. M. Edwards, S. L. Howell. A Methodology for System
Requirements Specification and Traceability for Large Real-
Time Complex Systems. Dahlgren, Virginia, USA : U.S. Naval
Surface Warfare Center, Dahlgren Division, 1991. NAVSWC
TR 91-584.

22. A. Albers, R. Lüdcke, N. Bursac and N. Reiß.
Connecting knowledge-management-sytems to improve a
continuous flow of knowledge in engineering design
processes. Proceedings of TMCE 2014. 2014.

23. Ebel, B. Modellierung von Zielsystemen in der
interdisziplinären Produktentstehung. Phd Thesis : IPEK,
Karlsruher Institut für Technologie, 2015.

24. Zielkonfliktmanagement bei der Entwicklung komplexer
Produkte – am Beispiel PKW- Entwicklung. Eiletz. 1999.

25. A. Albers, G. Moeser. Modellbasierte Prinzip- und
Gestaltvariation. s.l. : Brökel, Klaus; Feldhusen, Jörg; Grote,
Karl-Heinrich; Rieg, Frank; Stelzer, Ralph; Köhler, Peter;
Müller, Norbert; Scharr, Gerhard: 14. Gemeinsames
Kolloquium Konstruktionstechnik, 2016.

26. Kramer, Max E., Burger, Erik and Langhammer,
Michael. View-centric engineering with synchronized
heterogeneous models. Proceedings of the 1st Workshop on
View-Based, Aspect-Oriented and Orthographic Software
Modeling. Montpellier, France : ACM, 2013.

27. Burger, E. Flexible Views for View-based Model-driven
Development. Karlsruhe : KIT Scientific Publishing, 2014.
PhD Thesis.

28. Burger, Erik, et al. View-Based Model-Driven
Software Development with ModelJoin. [ed.] Robert
France and Bernhard Rumpe. Software & Systems
Modeling. 2014, Vol. 15, 2, pp. 472-496.

29. Kramer, Max E., et al. Realizing Change-Driven
Consistency for Component Code, Architectural Models, and
Contracts in Vitruvius. Department of Informatics,
Karlsruhe Institute of Technology. Karlsruhe : s.n., 2015.
Tech. rep. 2015,4.

30. Langhammer, Michael and Krogmann, Klaus. A Co-
Evolution Apporach for Source Code and Component-
based Architecture Models. 17. Workshop Software-
Reengineering und -Evolution. 2015, Vol. 4.

31. E. Burger, V. Mittelbach and A. Koziolek. Model-
driven Consistency Preservation in Cyber-physical
Systems. Proceedings of the 11th Workshop on
Models@run.time co-located with ACM/IEEE 19th
International Conference on Model Driven Engineering
Languages and Systems (MODELS 2016). Saint Malo,
France : CEUR Workshop Proceedings, 2016.

32. G. Moeser, M. Grundel, T. Weilkiens, S. Kümpel, C.
Kramer and A, Albers. Modellbasierter mechanischer
Konzeptentwurf. [Hrsg.] Sven-Olaf Schulze und Christian
Muggeo. Tag des Systems Engineering, Herzogenaurach,
25.–27. Oktober. München : Carl Hanser Verlag GmbH & Co.
KG, 2016, S. 417–428.

33. Ebel, Björn. Modellierung von Zielsystemen in der
interdisziplinären Produktentstehung. 2015.

34. A. Albers, A. Kurrle and G. Moeser. Modellbasiertes
Anforderungsmanagement von Systems- of-Systems am
Beispiel des vernetzten Fahrzeugs. s.l. : Tag des Systems
Engineering, 2014.

