
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 04 Issue: 04 | Apr -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 3172

Optimizing Software Testing using fuzzy logic in Aspect oriented

programming

JYOTI1, Susheela Hooda2

1Student, Department of Computer Science, B.S.A.I.T.M, Faridabad, Haryana
2 Assistant Professor, Department of Computer Science, B.S.A.I.T.M, Faridabad, Haryana

---***---
Abstract - Software testing is one of the most important
activities in product development. For performing the task of
software testing, test cases are to be designed. Thus, efficiency
of software testing depends on designing proper test cases.
Considering all possible combinations of values in a program is
practically not possible due to various kinds of limitations.
Thus exhaustive testing is impractical. If test cases are defined
accurately on the basis of conditions, then testing becomes
efficient and inexpensive. However, many a times redundant
and useless test cases are developed. Redundant and useless
test cases increase the effort and cost. Thus, software testing
can be optimized by reducing the number of test cases without
reducing the coverage. Various techniques for this have been
proposed for this. This includes various Meta heuristic
techniques as well. However, very less has been done in this
field regarding Aspect Oriented Programming. Thus, this
paper covers using fuzzy technique for reducing the number of
test cases in aspect oriented programming. A difference in
using this technique for AOP is presented. Also, the technique
proposed not only significantly reduces the number of test
cases using a special type of fuzzy clustering in AOP, it even
tells the efficiency by which this is successful.

Key Words: Software quality assurance; fuzzy logic;
meta-heuristic approach; Cyclomatic complexity;
Aspect-oriented programming (AOP), AOP testing; Fuzzy
c-means clustering; Test case redundancy.

1. INTRODUCTION

A program consists of supporting functions and the main
program's business logic. To isolate supporting functions
from the main program's business logic, Aspect-oriented
Programming (AOP) is used. To increase modularity, is the
main aim of AOP. Each cross cutting concern must
encapsulate at one place. AOP helps in achieving this as all
implementations have same cross cutting expressions. This
helps in achieving minimal or no code scattering.

Main aim is to provide sufficiently good solution to an
optimization problem, for which a heuristic (partial search
algorithm) is chosen that provides good solution for this.
Metaheuristics is higher level heuristics. Finding by trial and
error is called heuristics. And meta means higher level. Thus,
metaheuristics are better than simple heuristics.
Metaheuristics are useful for a variety of problems.

Testing techniques are divided into manual and automation
testing techniques. Test cases can be found manually or can
be prioritized using meta-heuristic techniques like genetic
algorithm and fuzzy logic. Till date various researches have
been applied on object oriented programming. Not much has
been covered in context of aspect-oriented programming.

The motivation of this paper is to propose an algorithm
using fuzzy logic which helps to reduce the number of test
cases by clustering the similar together. Also, after
performing the clustering of the various test cases, it then
finds out the best from a given cluster. It even calculates the
efficiency of the same. Thus, this paper proposes this
algorithm which is very beneficial for increasing the overall
efficiency of the software lifecycle.

 This paper is divided into 6 different sections. Section 1
introduces the need of AOP and testing and research area to
be covered. Section 2 presents the literature survey . Section
3 presents the proposed methodology for reducing the test
cases. Section 4 shows the implementation of the proposed
algorithm using examples of a small as well as larger
programs. Section 5 analyses the results and finds the
comparison by calculating the efficiency. At last, conclusion
and future prospects of this algorithm are covered in section
6.

2. LITERATURE SURVEY

To have a proper understanding of aspect oriented, current
scenario of research in this field is to be identified. In order to
analyse various existing testing techniques available for
aspect-oriented software systems, available literature was
extensively studied. Applied various search techniques from
sources like digital libraries of IEEE, ACM, Springer Link etc.
During the study, various journal, technical reports and
conference papers were referred from these sources.

Following criteria are used for comparison: explaining meta-
heuristic search algorithms including fuzzy logic, genetic
algorithm. Work done in this direction even in OOP has been
discussed.

For optimizing the test cases and reducing the effort, Meta
heuristic techniques have to be considered. Heuristics means
to find or to discover by trial and error. And Meta means
higher level and metaheuristics generally perform better than
simple heuristics. Meta-heuristic algorithms have the ability
to obtain the optimal solution in a very large search space of
candidate solutions. Meta-heuristics consists of applying
Artificial intelligence like Genetic algorithm, Fuzzy logic to a

https://en.wikipedia.org/wiki/Optimization_problem
https://en.wikipedia.org/wiki/Search_algorithm
https://en.wikipedia.org/wiki/Search_algorithm

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 04 Issue: 04 | Apr -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 3173

problem. Thus, now papers introducing Meta heuristic
techniques are referred.

Meta-heuristic techniques are very much used in software
testing. Pandey et al [2] proposed a technique called search
based software testing. This paper gives an insight into the
recent trends of the applications of search based techniques
to generate Applications of meta-heuristic techniques in the
field of software testing phases. Meta-heuristic techniques
can also be applied in generation of test data [3]. The aim is to
generate the optimum set of test data. Next meta-heuristic
techniques are needed to generate search–based test data for
branch coverage [4]. This paper introduces multi–objective
branch. While studying meta-heuristics, some evolutionary
test environment has been identified for automatic structural
testing [5]. The environment has been developed that
performs fully automatic test data generation for most
structural test methods.

 After getting knowledge of meta-heuristics, a basis of object
oriented was reviewed to find the applications of meta-
heuristics in object oriented programming. Nothing much has
been identified in the field of meta-heuristics in aspect
oriented. So, a general comparison of AOP vs OOP is also
being referred in order to apply meta-heuristics in aspect
oriented.

Dr. Suresh [6] presented a method of Software quality
assurance for object-oriented systems using meta-heuristic
search techniques. This paper tells how much capable meta-
heuristic search techniques are in software fault classification
for Apache Integration Framework. Also, regression testing of
object oriented systems [7] has been reviewed. A hybrid
technique is formed which identifies the changes that are not
visible in design models. Finally, comparison of AOP with
OOP is done and identifying whether AOP is harder or easier
than OOP [1]. An incremental testing process is proposed in
this paper, which tests crosscutting functionalities as aspects
in successive steps. Model based testing approach for object
oriented systems is being considered by Arilo et al [15]. By
identifying four hundred and six papers, this paper narrowed
down it to seventy-eight papers for reference.

 On identifying the meta-heuristic techniques and their usage
in object-oriented programs, the problem was identified that
not much has been done for implementation of meta-
heuristics in aspect oriented programming. A proper review
regarding the same has also never been done. So, next thing is
identifying the papers in this field. The strategy goes by
finding papers written for genetic algorithm, fuzzy algorithm
or their combination. Fifth, let’s identify the work done in the
field of using genetic algorithm and mutation testing in aspect
oriented programs.

Genetic algorithm has been applied to increase the efficiency
of a Data Flow-based Test Data Generation Approach [8].
 How effective it is to use a genetic algorithm for the same has
been identified here. Another major application of genetic
programming is in effort estimation [9]. Ferrucci et al [9]
found the impact different fitness functions can have on effort
estimation. To consider the indirect impact of aspects,
Delamare et al [14], proposed an approach. When many

methods are indirectly impacted by aspects, this approach
can reduce the testing efforts by relying on genetic algorithm.

Fuzzy logic has been used in aspect oriented for proposing a
model on coupling measures [10]. In object oriented and
module oriented systems, quality metrics are used for quality
features but very less has been done for aspect-oriented
systems. Various factors like Number of dependencies,
responsibility and Instability have been related with coupling
for making the comparison. Another application of fuzzy logic
approach has been identified in measuring the complexity of
a generic aspect-oriented system [11]. A generalized
framework for finding the complexity of AO systems has been
defined. That it takes into account three AOP languages,
which are AspectJ, CaesarJ and Hyper/J.

 Fuzzy clustering is very much useful in various applications.
One of them is using it in test-case prioritization. Nida et al
[12] identified an approach to rank the test cases as per their
preference degrees. Software testing optimization can also
be achieved by fuzzy clustering [13]. This is very much useful
in reducing the time spent in testing.

3. PROPOSED METHODOLOGY

 On analysing the various works done, it has been
identified that very less has been done using meta-
heuristics with AOP in software testing. Thus, this paper
proposes a fuzzy technique which helps to reduce the
number of test cases for better efficiency and
optimizations in the testing process. The algorithm
defined as:

1. Construct activity diagram.
2. Conversion of activity diagram to Control

flow graph.
3. Calculation of Cyclomatic Complexity.
4. Calculation of independent paths.
5. Calculate number of nodes of each path.

This will act as cost of each path.
6. Apply fuzzy -c algorithm to form clusters.
7. Select best test case from given cluster.

This is done by choosing a test case which is most
closely related to other test cases i.e. which has
the least sum of difference with other test cases.

8. Calculate efficiency of two things.
a. First, calculate efficiency

of the whole algorithm by comparing the
number of original test cases vs new test
cases.

b. Second, how efficient
and fault free this algorithm is , by
computing the efficiency with which
given output will cover all the cases. This
is computed by calculating difference of
the chosen test cases with other given in
the cluster. Less the difference, more
efficient it will be.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 04 Issue: 04 | Apr -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 3174

Covering each and every step in detail with the help of an
example is further described in this paper. An example
with 5 test cases has been discussed which properly
explains the use case of each step.

3. EXAMPLE OF PROPOSED ALGORITHM

EXAMPLE 1: BANKING EXAMPLE

Problem statement: Consider a banking system which
considers security as an important feature. Thus,
authentication, authorization etc. to be considered as
aspects. Withdrawal system is to be considered. Draw
activity diagram for the same and find test cases manually,
and then optimize it using fuzzy approach.

Solution: Let’s apply the above algorithm step by step to
find out how it works.
 Step 1: Construct activity diagram. Activity diagram for
banking withdrawal system is given which shows the
aspect nodes, decision nodes and aspect nodes.

Sequential nodes: 1, 4, 5, 6,8,9,17,18

Decision nodes: 3,10,12,14

Aspect nodes: 2,7,11,13,15,16

Figure 1: Banking activity diagram

Step 2: Conversion of activity diagram to Control flow
graph.

Figure 2: Banking CFG

Step 3: Calculation of Cyclomatic Complexity.
 Cyclomatic complexity: Number of regions + 1
 : 5 + 1 = 6.
Step 4: Calculation of independent paths.
TC 1: 1 -> 2 -> 3->18
TC 2: 1 ->2 ->3 ->4 ->5 ->6 ->7 ->8->18
TC 3: 1 ->2 ->3 ->4 ->5 ->6 ->7 ->8->9 ->10->11->18
TC 4: 1 ->2 ->3 ->4 ->5 ->6 ->7 ->8->9 ->10->12->13-> 18
TC 5: 1 ->2 ->3 ->4 ->5 ->6 ->7 ->8->9 ->10->12->14-> 15-
> 18
TC 6: 1 ->2 ->3 ->4 ->5 ->6 ->7 ->8->9 ->10->12->14-> 16-
> 17-> 18
Step 5: Calculate cost of each path by calculating the
number of nodes in each path.
TC 1: 1 -> 2 -> 3->18 Cost : 4
TC 2: 1 ->2 ->3 ->4 ->5 ->6 ->7 ->8->18 Cost : 9
TC 3: 1 ->2 ->3 ->4 ->5 ->6 ->7 ->8->9 ->10->11->18 Cost :
12
TC 4: 1 ->2 ->3 ->4 ->5 ->6 ->7 ->8->9 ->10->12->13-> 18
Cost : 13
TC 5: 1 ->2 ->3 ->4 ->5 ->6 ->7 ->8->9 ->10->12->14-> 15-
> 18 Cost : 14
TC 6: 1 ->2 ->3 ->4 ->5 ->6 ->7 ->8->9 ->10->12->14-> 16-
> 17-> 18 Cost : 15
Step 6: Apply fuzzy -c algorithm to form clusters.
#Cluster 1:
4.000000 9.000000
4.000000 9.000000
12.000000 12.000000
#Cluster 2:
14.000000 15.000000
13.000000 13.000000
14.000000 15.000000

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 04 Issue: 04 | Apr -2017 www.irjet.net p-ISSN: 2395-0072

© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 3175

Step 7: Select best test case from given cluster.
From cluster 1: output is: 9
From cluster 2: output is: 34
Evaluating for cluster 1: values are 4,9,12.
For 4: (9-4) + (12-4) = 13
For 9: (9-4) + (12 - 9) = 8
For 12: (12-9) + (12-4) = 11
Least value is of 9.
Evaluating for cluster 2: values are 13, 14, 15
For 13: (14-13) + (15-13) = 3
For 14: (14-13) + (15 - 14) = 2
For 15: (15-14) + (15-13) = 3
Least value is of 14.
Step 8: Calculate efficiency.
First: (1- Number of reduced test cases/Number of
original test cases) * 100 = (1-2/5) * 100 = 60%
Second:
Cluster 1: (1-least difference/ (sum of cost of test cases in
a cluster)) * 100 = (1-8/ (4+9+12))*100 = 68%
Cluster 2: (1-least difference/ (sum of cost of test cases in
a cluster)) * 100 = (1-2/ (13+14+15))*100 = 95.2%

5. CONCLUSION

In this paper, a proposed algorithm for reducing the
number of test cases keeping AOP in mind has been
discussed. The algorithm gives the best test case keeping
everything in mind. Also, it tells with what efficiency it
tells that the given test case is the best. On looking at the
efficiency, we come to know to either run it or not.

 Explanation through example covers each and every
step of the algorithm for easy understanding. This
algorithm can easily be applied on any example given
activity diagram and further work would be done.

 This algorithm would be one of the most important
step in exploring fuzzy logic with AOP. Any researcher can
gain enough information from this using this algorithm.
Also, it marks the beginning of further researches in this
field.

REFERENCES

[1] Mariano Ceccato, Paolo Tonella and Filippo Ricca , Is

AOP code easier or harder to test than OOP code?.2015.

[2] Abhishek Pandey, Dr. Soumya Banerjee and Dr. G. Sahoo,
Applications of Meta Heuristic Search Algorithms in
Software Testing. 2014.

[3] P. R. Srivastava, V. Ramachandran, M. Kumar, G.
Talukder, V. Tiwari, and P. Sharma, “Generation of test
data using meta heuristic approach,” in TENCON 2008 -
2008 IEEE Region 10 Conference, 2008.

[4] K. Lakhotia, M. Harman, and P. McMinn, “A multi-
objective approach to search-based test data
generation,” in Proceedings of the 9th annual conference
on Genetic and evolutionary computation - GECCO ’07,
2007.

[5] J. Wegener, A. Baresel, and H. Sthamer, “Evolutionary
test environment for automatic structural testing,”
Information and Software Technology, vol. 43, no. 14,
pp. 841–854, 2001.

[6] Y. Suresh, “Software quality assurance for object-
oriented systems using meta-heuristic search
techniques,” in 2015 International Conference on
Applied and Theoretical Computing and Communication
Technology (iCATccT), 2015.

[7] Pierre-Luc Vincent, Linda Badri and Mourad Badri,
Regression Testing of Object-Oriented Software.2013.

[8] M. Mahajan, S. Kumar, and R. Porwal, “Applying genetic
algorithm to increase the efficiency of a data flow-based
test data generation approach,” ACM SIGSOFT Software
Engineering Notes, vol. 37, no. 5, p. 1, 2012.

[9] F. Ferrucci, C. Gravino, R. Oliveto, and F. Sarro, “Genetic
Programming for Effort Estimation: An Analysis of the
Impact of Different Fitness Functions,” in 2nd
International Symposium on Search Based Software
Engineering, 2010.

[10] F. Chishti and A. Singhal, “‘Proposed model on coupling
measures in aspect oriented software development
using fuzzy logic,’” in 2016 2nd International Conference
on Advances in Computing, Communication, &
Automation (ICACCA) (Fall), 2016.

[11] R. Kumar, P. S. Grover, and A. Kumar, “A Fuzzy Logic
Approach to Measure Complexity of Generic Aspect-
Oriented Systems,” The Journal of Object Technology,
vol. 9, no. 3, p. 59, 2010.

[12] N. Gökçe, F. BELLİ, M. EMİNLİ, and B. T. DİNÇER, “Model-
based test case prioritization using cluster analysis: a
soft-computing approach,” TURKISH JOURNAL OF
ELECTRICAL ENGINEERING & COMPUTER SCIENCES,
vol. 23, pp. 623–640, 2015.

[13] G. Kumar and P. K. Bhatia, “Software testing
optimization through test suite reduction using fuzzy
clustering,” CSI Transactions on ICT, vol. 1, no. 3, pp.
253–260, 2013.

[14] R. Delamare and N. A. Kraft, “A Genetic Algorithm for
Computing Class Integration Test Orders for Aspect-
Oriented Systems,” in 2012 IEEE Fifth International
Conference on Software Testing, Verification and
Validation, 2012.

[15] A. C. Dias Neto, R. Subramanyan, M. Vieira, and G. H.
Travassos, “A survey on model-based testing
approaches,” in Proceedings of the 1st ACM
international workshop on Empirical assessment of
software engineering languages and technologies held in
conjunction with the 22nd IEEE/ACM International
Conference on Automated Software Engineering (ASE)
2007 - WEASELTech ’07, 2007.

http://paperpile.com/b/5A8nJd/BA8x
http://paperpile.com/b/5A8nJd/BA8x
http://paperpile.com/b/5A8nJd/BA8x
http://paperpile.com/b/5A8nJd/BA8x
http://paperpile.com/b/5A8nJd/Wbl9
http://paperpile.com/b/5A8nJd/Wbl9
http://paperpile.com/b/5A8nJd/Wbl9
http://paperpile.com/b/5A8nJd/Wbl9
http://paperpile.com/b/5A8nJd/Wbl9
http://paperpile.com/b/5A8nJd/gHJb
http://paperpile.com/b/5A8nJd/gHJb
http://paperpile.com/b/5A8nJd/gHJb
http://paperpile.com/b/5A8nJd/gHJb
http://paperpile.com/b/5A8nJd/s1cm
http://paperpile.com/b/5A8nJd/s1cm
http://paperpile.com/b/5A8nJd/s1cm
http://paperpile.com/b/5A8nJd/s1cm
http://paperpile.com/b/5A8nJd/s1cm
http://paperpile.com/b/5A8nJd/roi8
http://paperpile.com/b/5A8nJd/roi8
http://paperpile.com/b/5A8nJd/roi8
http://paperpile.com/b/5A8nJd/roi8
http://paperpile.com/b/5A8nJd/vUgB
http://paperpile.com/b/5A8nJd/vUgB
http://paperpile.com/b/5A8nJd/vUgB
http://paperpile.com/b/5A8nJd/vUgB
http://paperpile.com/b/5A8nJd/vUgB
http://paperpile.com/b/5A8nJd/M9Et
http://paperpile.com/b/5A8nJd/M9Et
http://paperpile.com/b/5A8nJd/M9Et
http://paperpile.com/b/5A8nJd/M9Et
http://paperpile.com/b/5A8nJd/M9Et
http://paperpile.com/b/5A8nJd/GUaQ
http://paperpile.com/b/5A8nJd/GUaQ
http://paperpile.com/b/5A8nJd/GUaQ
http://paperpile.com/b/5A8nJd/GUaQ
http://paperpile.com/b/5A8nJd/tCGo
http://paperpile.com/b/5A8nJd/tCGo
http://paperpile.com/b/5A8nJd/tCGo
http://paperpile.com/b/5A8nJd/tCGo
http://paperpile.com/b/5A8nJd/tCGo
http://paperpile.com/b/5A8nJd/bFj1
http://paperpile.com/b/5A8nJd/bFj1
http://paperpile.com/b/5A8nJd/bFj1
http://paperpile.com/b/5A8nJd/bFj1
http://paperpile.com/b/5A8nJd/fGIu
http://paperpile.com/b/5A8nJd/fGIu
http://paperpile.com/b/5A8nJd/fGIu
http://paperpile.com/b/5A8nJd/fGIu
http://paperpile.com/b/5A8nJd/fGIu
http://paperpile.com/b/5A8nJd/5pm5
http://paperpile.com/b/5A8nJd/5pm5
http://paperpile.com/b/5A8nJd/5pm5
http://paperpile.com/b/5A8nJd/5pm5
http://paperpile.com/b/5A8nJd/5pm5
http://paperpile.com/b/5A8nJd/5pm5
http://paperpile.com/b/5A8nJd/5pm5
http://paperpile.com/b/5A8nJd/5pm5

